

Apache Kafka 1.0 Cookbook

Over 100 practical recipes on using distributed enterprise
messaging to handle real-time data

Raúl Estrada

BIRMINGHAM - MUMBAI

Apache Kafka 1.0 Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1211217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-684-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Raúl Estrada

Copy Editor
Safis Editing

Reviewers
Sandeep Khurana
Brian Gatt

Project Coordinator
Nidhi Joshi

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Varsha Shetty

Indexer
Tejal Daruwale Soni

Content Development Editor
Cheryl Dsa

Graphics
Tania Dutta

Technical Editors
Dinesh Pawar

Production Coordinator
Aparna Bhagat

About the Author
Raúl Estrada has been a programmer since 1996 and a Java developer since 2001. He loves
functional languages like Scala, Elixir, Clojure, and Haskell. He also loves all topics related
to computer science. With more than 14 years of experience in high availability and
enterprise software, he has designed and implemented architectures since 2003. His
specialization is in systems integration and he has participated in projects mainly related to
the financial sector. He has been an enterprise architect for BEA Systems and Oracle Inc.,
but he also enjoys mobile programming and game development. He considers himself a
programmer before an architect, engineer, or developer.

Raul is a supporter of free software, and enjoys experimenting with new technologies,
frameworks, languages, and methods.

I want to say thanks to my editors Cheryl Dsa and Dinesh Pawar. Without their effort and
patience, it would not have been possible to write this book. I also thank my acquisition
editor, Varsha Shetty, who believed in this project from the beginning.

And finally, I want to thank all the heroes who contribute (often anonymously and without
profit) to open source projects, specifically Apache Kafka. An honorable mention for those
who build the connectors of this technology, and especially the Confluent Inc. crew.

About the Reviewers
Sandeep Khurana is an early proponent in the domain of big data and analytics, which
started during his days in Yahoo! (originator of Hadoop). He has been part of many other
industry leaders in the same domain such as IBM Software Lab, Oracle, Yahoo!, Nokia,
VMware and an array of startups where he was instrumental in architecting, designing and
building multiple petabyte scale big data processing systems, which has stood the test of
industry rigor. He is completely in his elements with coding in all the big data
technologies such as MapReduce, Spark, Pig, Hive, ZooKeeper, Flume, Oozie, HBase, and
Kafka. With the wealth of experience arising from being around for 21 years in the industry,
he has developed a unique trait of solving the most complicated and critical architectural
issues with the simplest and most efficient means. Being an early entrant in the industry he
has worked in all aspects of Java/JEE-based technologies and frameworks such as Spring,
Hibernate, JPA, EJB, security, and Struts before he delved into the big data domain. Some of
his other present areas of interest are OAuth2, OIDC, micro services frameworks, artificial
intelligence, and machine learning. He is quite active on LinkedIn (/skhurana333) with his
tech talks.

Brian Gatt is a software developer who holds a bachelor's degree in computer science and
artificial intelligence from the University of Malta, and a masters degree in computer games
and entertainment from Goldsmiths University of London. In his spare time, he likes to
keep up with the latest in programming, specifically native C++ programming and game
development techniques.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1787286843.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843
https://www.amazon.com/dp/1787286843

This book is dedicated to my mom, who loves cookbooks

Table of Contents
Preface 1

Chapter 1: Configuring Kafka 8

Introduction 8
Installing Kafka 10

Getting ready 10
How to do it... 11

Installing Java in Linux 12
 Installing Scala in Linux 12
Installing Kafka in Linux 13

There's more... 13
See also 16

Running Kafka 16
Getting ready 16
How to do it... 16
There's more... 17
See also 17

Configuring Kafka brokers 17
Getting ready 18
How to do it... 18
How it works... 19
There's more... 19
See also 20

Configuring Kafka topics 20
Getting ready 21
How to do it... 21
How it works... 21
There's more… 22

Creating a message console producer 24
Getting ready 24
How to do it... 24
How it works... 24
There's more… 25

Creating a message console consumer 26
Getting ready 26

Table of Contents

[ii]

How to do it... 26
How it works... 26
There's more... 27

Configuring the broker settings 28
Getting ready 28
How to do it... 28
How it works… 28
There's more… 29

Configuring threads and performance 30
Getting ready 30
How to do it... 30
How it works… 30
There's more... 31

Configuring the log settings 31
Getting ready 31
How to do it... 32
How it works… 32
There's more… 33
See also 33

Configuring the replica settings 34
Getting ready 34
How to do it... 34
How it works… 34
There's more... 35

Configuring the ZooKeeper settings 35
Getting ready 35
How to do it… 36
How it works… 36
See also 36

Configuring other miscellaneous parameters 37
Getting ready 37
How to do it... 37
How it works… 38
See also 39

Chapter 2: Kafka Clusters 40

Introduction 40
Configuring a single-node single-broker cluster – SNSB 41

Getting ready 41

Table of Contents

[iii]

How to do it... 42
Starting ZooKeeper 42
Starting the broker 43

How it works... 44
There's more... 44
See also 44

SNSB – creating a topic, producer, and consumer 44
Getting ready 44
How to do it... 45

Creating a topic 45
Starting the producer 46
Starting the consumer 47

How it works... 47
There's more... 47

Configuring a single-node multiple-broker cluster – SNMB 48
Getting ready 48
How to do it... 49
How it works... 50
There's more... 50
See also 50

SNMB – creating a topic, producer, and consumer 50
Getting ready 51
How to do it... 51

Creating a topic 51
Starting a producer 52
Starting a consumer 52

How it works... 52
There's more... 52
See also 53

Configuring a multiple-node multiple-broker cluster – MNMB 53
Getting ready 54
How to do it... 54
How it works... 55
See also 55

Chapter 3: Message Validation 56

Introduction 56
Modeling the events 57

Getting ready 57
How to do it... 57
How it works... 58

Table of Contents

[iv]

There's more... 59
See also 60

Setting up the project 61
Getting ready 61
How to do it... 62
How it works... 64
There's more... 65
See also 65

Reading from Kafka 65
Getting ready 65
How to do it... 66
How it works... 67
There's more... 67
See also 68

Writing to Kafka 68
Getting ready 68
How to do it... 68
How it works... 70
There's more... 70
See also 70

Running ProcessingApp 70
Getting ready 70
How to do it... 71
How it works... 71
There's more... 74
See also 74

Coding the validator 74
Getting ready 75
How to do it... 75
There's more... 77
See also 77

Running the validator 77
Getting ready 77
How to do it... 78
How it works... 78
There's more... 81
See also 81

Chapter 4: Message Enrichment 82

Table of Contents

[v]

Introduction 82
Geolocation extractor 83

Getting ready 83
How to do it... 83
How it works... 86
There's more... 86
See also 86

Geolocation enricher 86
Getting ready 86
How to do it... 87
How it works... 89
There's more... 89
See also 89

Currency price extractor 89
Getting ready 89
How to do it... 90
How it works... 91
There's more... 91
See also 91

Currency price enricher 91
Getting ready 92
How to do it... 93
How it works... 94
There's more... 94
See also 95

Running the currency price enricher 95
Getting ready 95
How to do it... 95
How it works... 96

Modeling the events 98
Getting ready 98
How to do it... 98
How it works... 99
There's more... 100
See also 100

Setting up the project 100
Getting ready 101
How to do it... 101
How it works... 103

Table of Contents

[vi]

There's more... 103
See also 104

Open weather extractor 104
Getting ready 104
How to do it... 104
How it works... 105
There's more... 105
See also 106

Location temperature enricher 106
Getting ready 106
How to do it... 106
How it works... 108
There's more... 108
See also 108

Running the location temperature enricher 108
Getting ready 108
How to do it... 109
How it works... 109

Chapter 5: The Confluent Platform 112

Introduction 112
Installing the Confluent Platform 114

Getting ready 114
How to do it... 115
There's more... 116
See also 116

Using Kafka operations 116
Getting ready 116
How to do it... 116
There's more... 119
See also 119

Monitoring with the Confluent Control Center 119
Getting ready 119
How to do it... 121
How it works... 123
There's more... 123

Using the Schema Registry 123
Getting ready 124
How to do it... 124

Table of Contents

[vii]

See also 128
Using the Kafka REST Proxy 128

Getting ready 128
How to do it... 129
There's more... 130
See also 130

Using Kafka Connect 130
Getting ready 131
How to do it... 131
There's more... 133
See also 135

Chapter 6: Kafka Streams 136

Introduction 136
Setting up the project 137

Getting ready 137
How to do it... 137
How it works... 139

Running the streaming application 140
Getting ready 140
How to do it... 140

Chapter 7: Managing Kafka 143

Introduction 143
Managing consumer groups 143

Getting ready 144
How to do it... 144
How it works... 145

Dumping log segments 145
Getting ready 145
How to do it... 146
How it works... 146

Importing ZooKeeper offsets 146
Getting ready 147
How to do it... 147
How it works... 147

Using the GetOffsetShell 147
Getting ready 147
How to do it... 148
How it works... 148

Table of Contents

[viii]

Using the JMX tool 148
Getting ready 149
How to do it... 149
How it works... 149
There's more... 150

Using the MirrorMaker tool 150
Getting ready 150
How to do it... 150
How it works... 150
There's more... 151
See also 151

Replaying log producer 151
Getting ready 151
How to do it... 152
How it works... 152

Using state change log merger 152
Getting ready 153
How to do it... 153
How it works... 153

Chapter 8: Operating Kafka 154

Introduction 154
Adding or removing topics 154

Getting ready 155
How to do it... 155
How it works... 156
There's more... 157
See also 157

Modifying message topics 157
Getting ready 157
How to do it... 158
How it works... 158
There's more... 159
See also 159

Implementing a graceful shutdown 159
Getting ready 159
How to do it... 160
How it works... 160

Balancing leadership 160

Table of Contents

[ix]

Getting ready 161
How to do it... 161
How it works... 161
There's more... 161

Expanding clusters 162
Getting ready 162
How to do it... 162
How it works... 165
There's more... 165

Increasing the replication factor 166
Getting ready 166
How to do it... 166
How it works... 166
There's more... 167

Decommissioning brokers 167
Getting ready 167
How to do it... 167
How it works... 168

Checking the consumer position 168
Getting ready 168
How to do it... 168
How it works... 169

Chapter 9: Monitoring and Security 170

Introduction 170
Monitoring server statistics 171

Getting ready 171
How to do it... 171
How it works... 174
See also 175

Monitoring producer statistics 175
Getting ready 175
How to do it... 175
How it works... 177
See also 178

Monitoring consumer statistics 178
Getting ready 178
How to do it... 178
How it works... 180

Table of Contents

[x]

See also 181
Connecting with the help of Graphite 181

Getting ready 181
How to do it... 181
How it works... 182
See also 183

Monitoring with the help of Ganglia 183
Getting ready 183
How to do it... 183
How it works... 184
See also 185

Implementing authentication using SSL 185
How to do it... 185
See also 187

Implementing authentication using SASL/Kerberos 187
How to do it... 187
See also 188

Chapter 10: Third-Party Tool Integration 189

Introduction 189
Moving data between Kafka nodes with Flume 190

Getting ready 190
How to do it... 190
How it works... 191
See also 192

Writing to an HDFS cluster with Gobblin 192
Getting ready 193
How to do it... 193
How it works... 194
See also 195

Moving data from Kafka to Elastic with Logstash 195
Getting ready 196
How to do it... 196
How it works... 196
There's more... 197
See also 197

Connecting Spark streams and Kafka 197
Getting ready 197
How to do it... 198

Table of Contents

[xi]

How it works... 198
There's more... 199

Ingesting data from Kafka to Storm 199
Getting ready 199
How to do it... 199
How it works... 200
There's more... 200
See also 201

Pushing data from Kafka to Elastic 201
Getting ready 201
How to do it... 201
How it works... 202
See also 202

Inserting data from Kafka to SolrCloud 203
Getting ready 203
How to do it... 203
How it works... 204
See also 204

Building a Kafka producer with Akka 204
Getting ready 205
How to do it... 205
How it works... 206
There's more... 206

Building a Kafka consumer with Akka 206
Getting ready 206
How to do it... 207

Storing data in Cassandra 209
Getting ready 209
How to do it... 209
How it works... 210

Running Kafka on Mesos 210
Getting ready 210
How to do it... 211
How it works... 212
There's more... 213

Reading Kafka with Apache Beam 214
Getting ready 214
How to do it... 214
How it works... 215

Table of Contents

[xii]

There's more... 215
See also 215

Writing to Kafka from Apache Beam 215
Getting ready 215
How to do it... 216
How it works... 216
There's more... 216
See also 217

Index 218

Preface
Since 2011, Kafka's growth has exploded. More than one-third of all Fortune 500 companies
use Apache Kafka. These companies include the top 10 travel companies, 7 of the top 10
banks, 8 of the top 10 insurance companies, and 9 of the top 10 telecom companies.

LinkedIn, Uber, Twitter, Spotify, Paypal, and Netflix process with Apache Kafka, each one
with a total of four-comma (1,000,000,000,000) messages in a single day.

Nowadays, Apache Kafka is used for real-time data streaming, to collect data, or to do real-
time data analyses. In other contexts, Kafka is used in microservice architectures to improve
durability. It can also be used to feed events to Complex Event Processing (CEP)
architectures and IoT automation systems.

Today we live in the middle of a war, a streaming war. Several competitors (Kafka Streams,
Spark Streaming, Akka Streaming, Apache Flink, Apache Storm, Apache Beam, Amazon
Kinesis, and so on) are immersed in a competition where there are many factors to evaluate,
but mainly the winner is the one with the best performance.

Much of the current adoption of Apache Kafka is due to its ease of use. Kafka is easy to
implement, easy to learn, and easy to maintain. Unlike most of its competitors, the learning
curve is not so steep.

This book is practical; it is focused on hands-on recipes and it isn't just stop at theoretical or
architectural explanations about Apache Kafka. This book is a cookbook, a compendium of
practical recipes that are solutions to everyday problems faced in the implementation of a
streaming architecture with Apache Kafka. The first part of the book is about programming,
and the second part is about Apache Kafka administration.

What this book covers
Chapter 1, Configuring Kafka, explains the basic recipes used to get started with Apache
Kafka. It discusses how to install, configure, and run Kafka. It also discusses how to do
basic operations with a Kafka broker.

Chapter 2, Kafka Clusters, covers how to make three types of clusters: single-node single-
broker cluster, single-node multiple-broker cluster, and multiple-node multiple-broker
cluster.

Preface

[2]

Chapter 3, Message Validation, in this chapter having an enterprise service bus, one of the
tasks is related to data validation, this is filtering some events from an input message
stream. This chapter is about the programming of this validation.

Chapter 4, Message Enrichment, details how the next task of an enterprise service bus is
related to message enrichment, which means having an individual message, obtaining
additional information, and incorporating it into the message stream.

Chapter 5, The Confluent Platform, shows how to operate and monitor a Kafka system with
the Confluent Platform. It also explains how to use the Schema Registry, the Kafka REST
Proxy, and Kafka Connect.

Chapter 6, Kafka Streams, explains how to obtain information about a group of messages (a
message stream) and additional information such as aggregation and composition of
messages using Kafka Streams.

Chapter 7, Managing Kafka, talks about the command-line tools developed by the authors of
Kafka to make a sysadmin team's life easier when debugging, testing, and running a Kafka
cluster.

Chapter 8, Operating Kafka, explains the different operations that can be done on a Kafka
cluster. These tools cannot be used daily, but they help the DevOps team manage Kafka
clusters.

Chapter 9, Monitoring and Security, has a first half that talks about various statistics, how
they are exposed, and how to monitor them with tools such as Graphite and Ganglia. Its
second part is about security—in a nutshell, how to implement SSL authentication,
SASL/Kerberos authentication, and SASL/plain authentication.

Chapter 10, Third-Party Tool Integration, talks about other real-time data processing tools
and how to use Apache Kafka to make a data processing pipeline with them. Tools such as
Hadoop, Flume, Gobblin, Elastic, Logstash, Spark, Storm, Solr, Akka, Cassandra, Mesos,
and Beam are covered in this chapter.

What you need for this book
The reader should have some experience in programming with Java and some experience in
Linux/Unix operating systems.

The minimum configuration needed to execute the recipes in this book is: Intel ® Core i3
processor, 4 GB RAM, and 128 GB of disks. It is recommended to use Linux or Mac OS.
Windows is not fully supported.

Preface

[3]

Who this book is for
This book is for software developers, data architects, and data engineers looking for
practical Kafka recipes.

The first half of this cookbook is about programming; this is introductory material for those
with no previous knowledge of Apache Kafka. As the book progresses, the difficulty level
increases.

The second half of this cookbook is about configuration; this is advanced material for those
who want to improve existing Apache Kafka systems or want to better administer current
Kafka deployments.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it…, How it works…, There's more…, and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows.

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Preface

[4]

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Finally,
run the apt-get update to install the Confluent Platform."

A block of code is set as follows:

consumer.interceptor.classes=io.confluent.monitoring.clients.interceptor.Mo
nitoringConsumerInterceptor
producer.interceptor.classes=io.confluent.monitoring.clients.interceptor.Mo
nitoringProducerInterceptor

Any command-line input or output is written as follows:

> bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-
factor 1 --partitions 1 --topic SNSBTopic

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "From Kafka Connect, click
on the SINKS button and then on the New sink button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Apache- ​Kafka- ​1- ​Cookbook. We also have other code bundles from our
rich catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​ApacheKafka1Cookbook_ ​ColorImages. ​pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/Apache-Kafka-1-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheKafka1Cookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Configuring Kafka

In this chapter, we will cover the following topics:

Installing Kafka
Running Kafka
Configuring Kafka brokers
Configuring Kafka topics
Creating a message console producer
Creating a message console consumer
Configuring the broker settings
Configuring threads and performance
Configuring the log settings
Configuring the replica settings
Configuring the Zookeeper settings
Configuring other miscellaneous parameters

Introduction
This chapter explains the basic recipes to get started with Apache Kafka. It discusses how to
install, configure, and run Kafka. It also discusses how to make basic operations with a
Kafka broker.

Configuring Kafka Chapter 1

[9]

Kafka can run in several operating systems: Mac, Linux, and even Windows. As it usually
runs in production on Linux servers, the recipes in this book are designed to run in Linux
environments. This book also considers the bash environment usage.

Kafka scales very well in a horizontal fashion without compromising speed and efficiency.

This chapter explains how to install, configure, and run Kafka. As this is a practical recipes
book, it does not cover the theoretical details of Kafka. These three things are enough theory
for the moment:

To connect heterogeneous applications, we need to implement a mechanism for1.
message publishing by sending and receiving messages among them. A message
router is known as a message broker. Kafka is a software solution to deal with
routing messages among consumers in a quick way.
The message broker has two directives: the first is to not block the producers, and2.
the second is to isolate producers and consumers (the producers should not know
who their consumers are).
Kafka is two things: a real-time, publish-subscribe solution, and a messaging3.
system. Moreover, it is a solution: open source, distributed, partitioned,
replicated, commit-log based, with a publish-subscribe schema.

Before we begin it is relevant to mention some concepts and nomenclature in Kafka:

Broker: A server process
Cluster: A set of brokers
Topic: A queue (that has log partitions)
Offset: A message identifier
Partition: An ordered and immutable sequence of records continually appended
to a structured commit log
Producer: Those who publish data to topics
Consumer: Those who process the feed
ZooKeeper: The coordinator
Retention period: The time to keep messages available for consumption

Configuring Kafka Chapter 1

[10]

In Kafka, there are three types of clusters:

Single node: Single broker
Single node: Multiple Broker
Multiple node: Multiple Broker

There are three ways to deliver messages:

Never redelivered: The messages may be lost
May be redelivered: The messages are never lost
Delivered once: The message is delivered exactly once

There are two types of log compaction:

Coarse grained: By time
Finer grained: By message

The next six recipes contain the necessary steps to make a full Kafka test from zero.

Installing Kafka
This is the first step. This recipe shows how to install Apache Kafka.

Getting ready
Ensure that you have at least 4 GB of RAM in your machine; the installation directory will
be /usr/local/kafka/ for Mac users and /opt/kafka/ for Linux users. Create these
directories.

Configuring Kafka Chapter 1

[11]

How to do it...
Go to the Apache Kafka home page at http:/ ​/​kafka. ​apache. ​org/ ​downloads, as in Figure
1-1, Apache Kafka download page:

Figure 1-1. Apache Kafka download page

The current available version of Apache Kafka is 0.10.2.1, as a stable release. A major
limitation with Kafka since 0.8.x is that it is not backward-compatible. So, we cannot replace
this version for one prior to 0.8. Once you've downloaded the latest available release, let's
proceed with the installation.

Remember, for Mac users, replace the directory /opt/ for /usr/local/ in the examples.

http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads

Configuring Kafka Chapter 1

[12]

Installing Java in Linux
We need Java 1.7 or later. Download and install the latest JDK from Oracle's website: http:/
/​www.​oracle.​com/ ​technetwork/ ​java/ ​javase/ ​downloads/ ​index. ​html

Change the file mode:1.

> chmod +x jdk-8u131-linux-x64.rpm

Go to the directory in which you want to perform the installation:2.

> cd <directory path name>

Run the rpm installer with the command:3.

> rpm -ivh jdk-8u131-linux-x64.rpm

Finally, add the environment variable JAVA_HOME. This command will write the4.
JAVA_HOME environment variable to the file /etc/profile:

> echo "export JAVA_HOME=/usr/java/jdk1.8.0_131" >> /etc/profile

 Installing Scala in Linux
The following are the steps to install Scala in Linux:

Download the latest Scala binary from: http:/ ​/​www. ​scala- ​lang. ​org/ ​download1.
Extract the downloaded file scala-2.12.2.tgz:2.

> tar xzf scala-2.12.2.tgz

Most tutorials agree that the best place to set environment variables is in the3.
/etc/profile file.

Create the SCALA_HOME environment variable:4.

> export SCALA_HOME=/opt/scala

Add the Scala bin directory to the PATH variable:5.

> export PATH=$PATH:$SCALA_HOME/bin

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download
http://www.scala-lang.org/download

Configuring Kafka Chapter 1

[13]

Installing Kafka in Linux
The following are the steps to install Kafka in Linux:

Extract the downloaded file kafka_2.10-0.10.2.1.tgz:1.

> tar xzf kafka_2.10-0.10.2.1.tgz

Create the KAFKA_HOME environment variable:2.

> export KAFKA_HOME=/opt/kafka_2.10-0.10.2.1

Add the Kafka bin directory to the PATH variable:3.

> export PATH=$PATH:$KAFKA_HOME/bin

Now Java, Scala, and Kafka are installed.

There's more...
To do all these steps in command-line mode, there is a powerful tool for Mac users called
brew (the equivalent in Linux would be yum).

To install from the command line, we use the following steps:

With brew, install sbt (Scala build tool):1.

> brew install sbt

If you already have it (downloaded in the past), upgrade it:

> brew upgrade sbt

The output is similar to:

> brew upgrade sbt
==> Upgrading 1 outdated package, with result:
sbt 0.13.15
==> Upgrading sbt
==> Using the sandbox
==> Downloading
https://github.com/sbt/sbt/releases/download/v0.13.15/sbt-0.13.15.t
gz
==> Downloading from
https://github-cloud.s3.amazonaws.com/releases/279553/09838df4-23c6

Configuring Kafka Chapter 1

[14]

-11e7-9276-14
###
100.0%
==> Caveats
You can use $SBT_OPTS to pass additional JVM options to SBT:
 SBT_OPTS="-XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
This formula is now using the standard lightbend sbt launcher
script.
Project specific options should be placed in .sbtopts in the root
of your project.
Global settings should be placed in /usr/local/etc/sbtopts
==> Summary
/usr/local/Cellar/sbt/0.13.15: 378 files, 63.3MB, built in 1 minute
5 seconds

With brew, install Scala:2.

> brew install scala

If you already have it (downloaded in the past), upgrade it:

> brew upgrade scala

The output is similar to:

> brew install scala
==> Using the sandbox
==> Downloading
https://downloads.lightbend.com/scala/2.12.2/scala-2.12.2.tgz
###
100.0%
==> Downloading
https://raw.githubusercontent.com/scala/scala-tool-support/0a217bc/
bash-completion/sr
###
100.0%
==> Caveats
To use with IntelliJ, set the Scala home to:
/usr/local/opt/scala/idea
Bash completion has been installed to:
/usr/local/etc/bash_completion.d
==> Summary
/usr/local/Cellar/scala/2.12.2: 44 files, 19.9MB, built in 19
seconds
Mist:Downloads admin1$ scala -version
Scala code runner version 2.11.8 -- Copyright 2002-2016, LAMP/EPFL

Configuring Kafka Chapter 1

[15]

With brew, install Kafka (it also installs ZooKeeper):3.

> brew install kafka

If you already have it (downloaded in the past), upgrade it:

> brew upgrade kafka

The output is similar to:

> brew install kafka
==> Installing dependencies for kafka: zookeeper
==> Installing kafka dependency: zookeeper
==> Downloading
https://homebrew.bintray.com/bottles/zookeeper-3.4.9.sierra.bottle.
tar.gz
###
100.0%
==> Pouring zookeeper-3.4.9.sierra.bottle.tar.gz
==> Using the sandbox
==> Caveats
To have launched start zookeeper now and restart at login:
brew services start zookeeper
Or, if you don't want/need a background service you can just run:
zkServer start
==> Summary
/usr/local/Cellar/zookeeper/3.4.9:
242 files, 18.2MB
==> Installing kafka
==> Downloading
https://homebrew.bintray.com/bottles/kafka-0.10.2.0.sierra.bottle.t
ar.gz
###
100.0%
==> Pouring kafka-0.10.2.0.sierra.bottle.tar.gz
==> Caveats
To have launchd start kafka now and restart at login:
brew services start kafka
Or, if you don't want/need a background service you can just run:
zookeeper-server-start /usr/local/etc/kafka/zookeeper.properties &
kafka-server-start /usr/local/etc/kafka/server.properties
==> Summary
/usr/local/Cellar/kafka/0.10.2.0: 145 files, 37.3MB

Configuring Kafka Chapter 1

[16]

See also
Take a look at the Apache Kafka download page: http:/ ​/​kafka. ​apache. ​org/
downloads

To see more details about brew, visit: https:/ ​/​brew. ​sh/​

Running Kafka
This is the second step. This recipe shows how to test the Apache Kafka installation.

Getting ready
Go to the Kafka installation directory (/usr/local/kafka/ for Mac users and
/opt/kafka/ for Linux users):

> cd /usr/local/kafka

How to do it...
First of all, we need to run Zookeeper (sorry, the Kafka dependency on1.
Zookeeper is still very strong):

 zkServer start

You will get the following result:

ZooKeeper JMX enabled by default
Using config: /usr/local/etc/zookeeper/zoo.cfg
Starting zookeeper ... STARTED

To check if Zookeeper is running, use the lsof command over the port 90932.
(default port):

 > lsof -i :9093

http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
http://kafka.apache.org/downloads
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Configuring Kafka Chapter 1

[17]

You will get the following output:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE
NAME
java 17479 admin1 97u IPv6 0xcfbcde96aa59c3bf 0t0 TCP
*:9093 (LISTEN)

Now run the Kafka server that comes with the installation; go to3.
/usr/local/kafka/ for Mac users and /opt/kafka/ for Linux users, as
follows:

 > ./bin/kafka-server-start.sh /config/server.properties

Now there is an Apache Kafka broker running on your machine.

There's more...
Remember that Zookeeper must be running on the machine before you start Kafka. If you
don't want to start Zookeeper every time you need to run Kafka, install it as an operating
system autostart service.

See also
To experiment in making the Apache Kafka quick start, follow the instructions
at https:/ ​/​kafka. ​apache. ​org/ ​quickstart

Configuring Kafka brokers
This recipe shows how to deal with the Kafka brokers' basic configuration. For learning and
development purposes, one can run Kafka in standalone mode. The real Kafka power is
unlocked when it is running with replication in cluster mode and the topics are partitioned
accordingly.

There are two main advantages of the cluster mode: parallelism and redundancy.
Parallelism is the capacity to run tasks simultaneously among the cluster members.
Redundancy warrants that when a Kafka node goes down, the cluster is safe and accessible
from the other nodes.

https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart

Configuring Kafka Chapter 1

[18]

Single node clusters are not recommended for production environments, so this recipe
shows how to configure a cluster with several nodes.

Getting ready
Go to the Kafka installation directory (/usr/local/kafka/ for Mac users and
/opt/kafka/ for Linux users):

> cd /usr/local/kafka

How to do it...
As already said, a broker is a server's instance. This recipe shows how to start two different
servers on one machine. There is a server configuration template called
server.properties located in the Kafka installation directory in the config sub-
directory:

For each Kafka broker (server) that we want to run, we make a copy of the1.
configuration file template and rename it accordingly. In this example, the cluster
is called synergy:

> cp config/server.properties synergy-1.properties
> cp config/server.properties synergy-2.properties

Modify each file according to the plan. If the file is called synergy-1, the2.
broker.id should be 1. Specify the port in which the server should run; the
recommendation is 9093 for synergy-1 and 9094 for synergy-2. The port
property is not set in the template, so add the line accordingly. Finally, specify
the location of the Kafka logs (specific archives to store all the Kafka broker
operations); in this case, we use the directory /tmp.

In synergy-1.properties, set:

broker.id=1
port=9093
log.dir=/tmp/synergy-1-logs

Configuring Kafka Chapter 1

[19]

In synergy-2.properties, set:

broker.id=2
port=9094
log.dir=/tmp/synergy-2-logs

Start the Kafka brokers using the kafka-server-start.sh command with the3.
corresponding configuration file. Don't forget that Zookeeper must be already
running with its corresponding Kafka node and the ports should not be in use by
another process:

> bin/kafka-server-start.sh synergy-1.properties &
...
> bin/kafka-server-start.sh synergy-2.properties &

Recall that trailing & is to specify that you want your command line back. If you want to see
the broker output, it is recommended that you run each command in its own command-line
window.

How it works...
The properties file contains the server configuration. The server.properties file located
in the config directory is just a template.

All of the members of the cluster should point to the same Zookeeper cluster. Every broker
is identified inside the cluster by the name specified in the broker.id property. If the port
property is not specified, Zookeeper will assign the same port number and will overwrite
the data. If log.dir is not specified, all the brokers will write to the same default log.dir.
If the brokers are going to run on different machines, then port and log.dir might not be
specified.

There's more...
Before assigning a port to a server, there is a useful command to see what process is
running on a specific port (in this case, the port 9093):

> lsof -i :9093

Configuring Kafka Chapter 1

[20]

The output of the previous command is something like this:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 17479 admin 97u IPv6 0xcfbcde96aa59c3bf 0t0 TCP *:9093
(LISTEN)

Try to run this command before starting the Kafka servers and run it after starting to see the
change. Also, try to start a broker on a port in use to see how it fails.

To run Kafka nodes on different machines, change the ZooKeeper connection string in the
configuration file; its default value is:

zookeeper.connect=localhost:2181

This value is correct only if you are running the Kafka broker on the same machine as
Zookeeper. In production, it could not happen. To specify that ZooKeeper is running on
different machines (that is, in a ZooKeeper cluster), set:

zookeeper.connect=localhost:2181, 192.168.0.2:2183, 192.168.0.3:2182

The previous line says that Zookeeper is running on the localhost machine on port 2181, on
the machine with IP Address 192.168.0.2 on port 2183, and on the machine with IP
Address 192.168.0.3 on port 2182. The Zookeeper default port is 2181, so try to run it
there.

As an exercise, try to raise a broker with incorrect information about Zookeeper. Also, in
combination with the lsof command, try to raise Zookeeper on a port in use.

See also
The server.properties template (as all the Kafka projects) is published online
at: https:/ ​/​github. ​com/ ​apache/ ​kafka/ ​blob/ ​trunk/ ​config/ ​server. ​properties

Configuring Kafka topics
The Kafka cluster is running, but the magic inside a broker is the queues, that is, the topics.
This recipe shows the second step: how to create Kafka topics.

https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties
https://github.com/apache/kafka/blob/trunk/config/server.properties

Configuring Kafka Chapter 1

[21]

Getting ready
At this point, you need to:

Have installed Kafka
Have Zookeeper up and running
Have a Kafka server up and running
Go to the Kafka installation directory (/usr/local/kafka/ for Mac users and
/opt/kafka/ for Linux users):

cd /usr/local/kafka

How to do it...
Recall that almost all modern projects have two ways to do things: through the command
line and through code. Yes, believe or not, the Kafka brokers' creation can be done through
code in almost all the modern programming languages; the previous recipe showed just the
command-line method. In later chapters, the process to achieve it programmatically is
explained.

The same goes for the topics. They can be created through the command line and through
code. In this recipe, we will show it through the command line. Kafka has built-in utilities to
create brokers (as already shown) and topics. From the Kafka installation directory, type the
following command:

> ./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-
factor 1 --partitions 1 --topic humbleTopic

The output should be:

Created topic "humbleTopic".

How it works...
Here, the kafka-topics.sh command is used. With the --create parameter, it is
specified that we want to create a new topic. The --topic parameter set the name of the
topic; in this case, humbleTopic.

Configuring Kafka Chapter 1

[22]

The --replication-factor parameter is very important; it specifies how many servers of
the cluster the topic is going to be replicated in (we mean, running). One broker can run just
one replica. Obviously, if we specify a number greater than the number of running servers
on the cluster, it is an error (don't be shy and try it in your environment), like this:

Error while executing topic command : replication factor: 3 larger than
available brokers: 1
[2017-02-28 07:13:31,350] ERROR
org.apache.kafka.common.errors.InvalidReplicationFactorException:
replication factor: 3 larger than available brokers: 1
 (kafka.admin.TopicCommand$)

The --partitions parameter, as its name implies, says how many partitions our topic will
have. The number of partitions determines the parallelism that can be achieved on the
consumer's side. This parameter is fundamental when doing fine tuning on the cluster.

Finally, the --zoookeeper parameter indicates where the Zookeeper cluster is running.

When a topic is created, the output in the broker log is something like this:

[2017-02-28 07:05:53,910] INFO [ReplicaFetcherManager on broker 1] Removed
fetcher for partitions humbleTopic-0 (kafka.server.ReplicaFetcherManager)
[2017-02-28 07:05:53,950] INFO Completed load of log humbleTopic-0 with 1
log segments and log end offset 0 in 21 ms (kafka.log.Log)

This message says that a new topic has been born in that broker.

There's more…
Yes, there are more parameters than --create. To check whether a topic has been
successfully created, run the kafka-topics command with the --list parameter:

> ./bin/kafka-topics.sh --list --ZooKeeper localhost:2181 humbleTopic

This parameter returns the list of all the existent topics in the Kafka cluster.

To get the details of a particular topic, run the kafka-topics command with the --
describe parameter:

> ./bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic
humbleTopic

Configuring Kafka Chapter 1

[23]

The command output is:

Topic:humbleTopic PartitionCount:1 ReplicationFactor:1 Configs:
Topic: humbleTopic Partition: 0 Leader: 1 Replicas: 1 Isr: 1

The explanation of the output is:

PartitionCount: Number of partitions existing on this topic.
ReplicationFactor: Number of replicas existing on this topic.
Leader: Node responsible for the reading and writing operations of a given
partition.
Replicas: List of brokers replicating the Kafka data. Some of these might even
be dead.
ISR: List of nodes that are currently in-sync replicas.

To create a topic with multiple replicas, we need to increase the replication factor as follows:

> ./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-
factor 2 --partitions 1 --topic replicatedTopic

The output is as follows:

Created topic "replicatedTopic".

Call the kafka-topics command with the --describe parameter to check the topic
details:

> ./bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic
replicatedTopic
Topic:replicatedTopic PartitionCount:1 ReplicationFactor:2 Configs:
Topic: replicatedTopic Partition: 0 Leader: 1 Replicas: 1,2 Isr:
1,2

As Replicas and ISR (in-sync replicas) are the same lists, all the nodes are in-sync.

Try to play with all these commands; try to create replicated topics on dead servers and see
the output. Also, create topics on running servers and then kill them to see the results.

As mentioned before, all the commands executed through the command line can be
executed programmatically.

Configuring Kafka Chapter 1

[24]

Creating a message console producer
Kafka also has a command to produce data through the console. The input can be a text file
or the console standard input. Each line typed in the input is sent as a single message to the
Kafka cluster.

Getting ready
For this recipe, you need the execution of the previous recipes in this chapter: Kafka already
downloaded and installed, the Kafka nodes up and running, and a topic created inside the
cluster. To begin producing some messages from the console, change to the Kafka directory
in the command line.

How to do it...
Go to the Kafka installation directory (/usr/local/kafka/ for Mac users and
/opt/kafka/ for Linux users):

> cd /usr/local/kafka

Run this command, followed by the lines to be sent as messages to the server:

./bin/kafka-console-producer.sh --broker-list localhost:9093 --topic
humbleTopic

Her first word was Mom

Her second word was Dad

How it works...
The previous command pushes two messages to the humbleTopic running on the localhost
machine on the port 9093.

This is a simple way to check if a broker with a specific topic is up and running as expected.

Configuring Kafka Chapter 1

[25]

There's more…
The kafka-console-producer program receives the following parameters:

--broker-list: Specifies the Zookeeper servers, specified as a comma-
separated list of hostname and ports.
--topic: Followed by the target topic's name.
--sync: This parameter specifies whether the messages should be sent
synchronously.
--compression-codec: This parameter specifies the compression codec used to
produce the messages. The possible options are: none, gzip, snappy, or lz4. If
not specified, the default is gzip.
--batch-size: The number of messages sent in a single batch if they are not
sent synchronously. The batch's size value is specified in bytes.
--message-send-max-retries: Communication is not perfect; the brokers can
fail receiving messages. This parameter specifies the number of retries before a
producer gives up and drops the message. The number following this parameter
must be a positive integer.
--retry-backoff-ms: The election of leader nodes might take some time. This
is the time to wait before the producer retries after this election. The number
following this parameter is the time in milliseconds.
--timeout: If set and the producer is running in asynchronous mode, this gives
the maximum amount of time a message will queue awaiting sufficient batch
size. The value is given in milliseconds.
--queue-size: If set and the producer is running in asynchronous mode, this
gives the maximum amount of time messages will queue awaiting sufficient
batch size.

When doing server fine tuning, the batch-size, message-send-max-retries, and
retry-backoff-ms are fundamental; take these parameters into consideration to achieve
the desired performance.

Just a moment; someone could say, Eeey, I don't want to waste my precious time typing all the
messages. For those people, the command receives a file where each line is considered a
message:

> ./bin/kafka-console-producer.sh --broker-list localhost:9093 --topic
humbleTopic < firstWords.txt

Configuring Kafka Chapter 1

[26]

If you want to see the complete list of arguments, take a look at the command source code
at: https:/​/​apache. ​googlesource. ​com/ ​kafka/ ​+/​0.​8. ​2/​core/ ​src/ ​main/ ​scala/ ​kafka/
tools/​ConsoleProducer. ​scala

Creating a message console consumer
Now, take the last step. In the previous recipes, it was explained how to produce messages
from the console; this recipe indicates how to read the messages generated. Kafka also has a
fancy command-line utility that enables consuming messages. Recall that all the command-
line tasks can also be done programmatically. Also, recall that each line of the input was
considered a message from the producer.

Getting ready
For this recipe, the execution of the previous recipes in this chapter is needed: Kafka already
downloaded and installed, the Kafka nodes up and running, and a topic created inside the
cluster. Also, some messages need to be produced with the message console producer. To
begin consuming some messages from the console, change to the Kafka directory in the
command line.

How to do it...
Consuming messages through the console is easy; just run the following command:

> ./bin/kafka-console-consumer.sh --topic humbleTopic --bootstrap-server
localhost:9093 --from-beginning

Her first word was Mom
Her second word was Dad

How it works...
The parameters are the topic and broker names of the producer. Also, the --from-
begining parameter specifies that messages should be consumed from the beginning
instead of the last messages in the log (go and give it a try: generate many more messages
and don't specify this parameter).

https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala
https://apache.googlesource.com/kafka/+/0.8.2/core/src/main/scala/kafka/tools/ConsoleProducer.scala

Configuring Kafka Chapter 1

[27]

There's more...
There are more useful parameters for this command; some interesting ones are:

--fetch-size: The amount of data to be fetched in a single request. The size in
bytes follows this argument. The default value is 1024 * 1024.
--socket-buffer-size: The size of the TCP RECV. The size in bytes follows
this argument. The default value is 2 * 1024 * 1024.
--formater: The name of a class to use for formatting messages for display. The
default value is NewlineMessageFormatter (already presented in the recipe).
--autocommit.interval.ms: The time interval at which to save the current
offset (the offset concept will be explained later) in milliseconds. The time in
milliseconds follows the argument. The default value is 10,000.
--max-messages: The maximum number of messages to consume before exiting.
If not set, the consumption is continual. The number of messages follows the
argument.
--skip-message-on-error: If there is an error while processing a message, the
system should skip it instead of halt.

Enough boring theory; this is a practical cookbook, so look at these most solicited menu
entries:

Consume just one message:

> ./bin/kafka-console-consumer.sh --topic humbleTopic --bootstrap-server
localhost:9093 --max-messages 1

Consume one message from an offset:

> ./bin/kafka-console-consumer.sh --topic humbleTopic --bootstrap-server
localhost:9093 --max-messages 1 --formatter
'kafka.coordinator.GroupMetadataManager$OffsetsMessageFormatter'

Consume messages from a specific consumer group (consumer groups will be explained
further):

> ./bin/kafka-console-consumer.sh --topic humbleTopic --bootstrap-server
localhost:9093 --new-consumer --consumer-property group.id=my-group

If you want to see the complete list of arguments, take a look at the command source code
at: https:/​/​github. ​com/ ​kafka- ​dev/ ​kafka/ ​blob/ ​master/ ​core/ ​src/ ​main/ ​scala/ ​kafka/
consumer/​ConsoleConsumer. ​scala

https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/consumer/ConsoleConsumer.scala

Configuring Kafka Chapter 1

[28]

Configuring the broker settings
Most of Apache Kafka's magic is achieved through configuration. As with all the intensive
messaging systems, the success factor is to configure them well. In this point, Kafka is
highly configurable. In practice, most of the systems have average performance with the
default settings, but in production, it is required to configure it to achieve optimal
performance. Sometimes, finding the right configuration is a test and error task; there is no
such thing as a configuration silver bullet.

The rest of the chapter is about Kafka broker fine tuning.

Getting ready
In previous recipes, it was explained how to install and run Kafka. Now, make a copy of the
server.properties template in the config directory and open the copy with a text
editor.

How to do it...
Configure the basic settings in the configuration file.1.
Set each one of the following parameters with these values:2.

broker.id=0
listeners=PLAINTEXT://localhost:9093
log.dirs=/tmp/kafka-logs

How it works…
As shown in the previous recipes, all of the broker definition is contained in the
configuration file. The rest is to pass the configuration file as an argument to the server-
start command.

Configuring Kafka Chapter 1

[29]

A detailed explanation of every parameter is as follows:

broker.id: A non-negative integer; the default value is 0. The name should be
unique in the cluster. The important point here is to assign a name to the broker,
so when it is moved to a different host or to a different port, no change is made in
the consumer's side.
listeners: A comma-separated list of URIs the broker will listen on and the
listener names. Examples of legal listener lists are:
PLAINTEXT://127.0.0.1:9092, SSL://:9091, CLIENT://0.0.0.0:9092,
and REPLICATION://localhost:9093.
host.name: DEPRECATED. A string; the default value is null. If it is not
specified, Kafka will bind all the interfaces on the system. If it is specified, it will
bind only to the specified address. Set this name if you want the clients to connect
to a particular interface.
port: DEPRECATED. A non-negative integer; the default value is 9092. It is
the TCP port in which listen connections. Note that in the file template this value
is not set.
log.dir: A String; the default value is /tmp/kafka-logs. This is the directory
where Kafka persists the messages locally. This parameter tells the directory
where Kafka will store the data. It is very important that the user that runs the
start command have write permissions on that directory.
log.dirs: A String; the default value is null. This is the directory where Kafka
persists the messages locally. If not set, the value in log.dir is used. There can
be more than one location specified, separating the directories with a comma.

There's more…
If bridged connections are used, it means that when the internal host.name and port are
different from the ones which external parties need to connect to, this parameter is used:

advertised.listeners: The hostname given to producers, consumers, and
other brokers specified to connect to. If it is not specified, it is the same as
host.name.

Configuring Kafka Chapter 1

[30]

Configuring threads and performance
No parameter should be left by default when the optimal performance is desired. These
parameters should be taken into consideration to achieve the best behavior.

Getting ready
With your favorite text editor, open your server.properties file copy.

How to do it...
Adjust the following parameters:

message.max.bytes=1000000
num.network.threads=3
num.io.threads=8
background.threads=10
queued.max.requests=500
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
num.partitions=1

How it works…
With these changes, the network and performance configurations have been set to achieve
optimum levels for the application. Again, every system is different, and you might need to
experiment a little to come up with the optimal one for a specific configuration.

Here is an explanation of every parameter:

message.max.bytes: Default value: 10 00 000. This is the maximum size, in
bytes, for each message. This is designed to prevent any producer from sending
extra large messages and saturating the consumers.
num.network.threads: Default value: 3. This is the number of simultaneous
threads running to handle a network's request. If the system has too many
simultaneous requests, consider increasing this value.

Configuring Kafka Chapter 1

[31]

num.io.threads: Default value: 8. This is the number of threads for Input
Output operations. This value should be at least the number of present
processors.
background.threads: Default value: 10. This is the number of threads for
background jobs. For example, old log files deletion.
queued.max.requests: Default value: 500. This is the number of messages
queued while the other messages are processed by the I/O threads. Remember,
when the queue is full, the network threads will not accept more requests. If your
application has erratic loads, set this to a value at which it will not throttle.
socket.send.buffer.bytes: Default value: 102 400. This is SO_SNDBUFF
buffer size, used for socket connections.
socket.receive.buffer.bytes: Default value: 102 400. This is SO_RCVBUFF
buffer size, also used for socket connections.
socket.request.max.bytes: Default value: 104 857 600. This is the maximum
request size, in bytes, that the server can accept. It should always be smaller than
the Java heap size.
num.partitions: Default value: 1. This is the number of default partitions of a
topic, without giving any partition size.

There's more...
As with everything that runs on the JVM, the Java installation should be tuned to achieve
optimal performance. This includes the settings for heap, socket size, memory parameters,
and garbage collection.

Configuring the log settings
Log refers to the file where all the messages are stored in the machine; here (in this book),
when log is mentioned, think in terms of data structures, not just event recording.

The log settings are fundamental, so it is the way the messages are persisted in the broker
machine.

Getting ready
With your favorite text editor, open your server.properties file copy.

Configuring Kafka Chapter 1

[32]

How to do it...
Adjust the following parameters:

log.segment.bytes=1073741824
log.roll.hours=168
log.cleanup.policy=delete
log.retention.hours=168
log.retention.bytes=-1
log.retention.check.interval.ms= 30000
log.cleaner.enable=false
log.cleaner.threads=1
log.cleaner.backoff.ms=15000
log.index.size.max.bytes=10485760
log.index.interval.bytes=4096
log.flush.interval.messages=Long.MaxValue
log.flush.interval.ms=Long.MaxValue

How it works…
Here is an explanation of every parameter:

log.segment.bytes: Default value: 1 GB. This defines the maximum segment
size in bytes (the concept of segment will be explained later). Once a segment file
reaches that size, a new segment file is created. Topics are stored as a bunch of
segment files in the log directory. This property can also be set per topic.
log.roll.{ms,hours}: Default value: 7 days. This defines the time period after
a new segment file is created, even if it has not reached the size limit. This
property can also be set per topic.
log.cleanup.policy: Default value: delete. Possible options are delete or
compact. If the delete option is set, the log segments will be deleted periodically
when it reaches its time threshold or size limit. If the compact option is set, log
compaction is used to clean up obsolete records. This property can also be set per
topic.
log.retention.{ms,minutes,hours}: Default value: 7 days. This defines the
time to retain the log segments. This property can also be set per topic.
log.retention.bytes: Default value: -1. This defines the number of logs per
partition to retain before deletion. This property can also be set per topic. The
segments are deleted when the log time or size limits are reached.

Configuring Kafka Chapter 1

[33]

log.retention.check.interval.ms: Default value is five minutes. This
defines the time periodicity at which the logs are checked for deletion to meet
retention policies.
log.cleaner.enable: To enable log compaction, set this to true.
log.cleaner.threads: Indicates the number of threads working on clean logs
for compaction.
log.cleaner.backoff.ms: Periodicity at which the logs will check whether
any log needs cleaning.
log.index.size.max.bytes: Default value: 1 GB. This sets the maximum size,
in bytes, of the offset index. This property can also be set per topic.
log.index.interval.bytes: Default value: 4096. The interval at which a new
entry is added to the offset index (the offset concept will be explained later). In
each fetch request, the broker does a linear scan for this number of bytes to find
the correct position in the log to begin and end the fetch. Setting this value too
high may mean larger index files and more memory used, but less scanning.
log.flush.interval.messages: Default value: 9 223 372 036 854 775 807. The
number of messages kept in memory before flushed to disk. It does not guarantee
durability, but gives finer control.
log.flush.interval.ms: Sets maximum time in ms that a message in any topic
is kept in memory before it is flushed to disk. If not set, it is used the value in
log.flush.scheduler.interval.ms.

There's more…
All of the settings are listed at: http:/ ​/​kafka. ​apache. ​org/ ​documentation.
html#brokerconfigs.

See also
More information about log compaction is available here: http:/ ​/​kafka. ​apache.
org/​documentation. ​html#compaction

http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction
http://kafka.apache.org/documentation.html#compaction

Configuring Kafka Chapter 1

[34]

Configuring the replica settings
The replication is configured for reliability purposes. Replication can also be tuned.

Getting ready
With your favorite text editor, open your server.properties file copy.

How to do it...
Adjust the following parameters:

default.replication.factor=1
replica.lag.time.max.ms=10000
replica.fetch.max.bytes=1048576
replica.fetch.wait.max.ms=500
num.replica.fetchers=1
replica.high.watermark.checkpoint.interval.ms=5000
fetch.purgatory.purge.interval.requests=1000
producer.purgatory.purge.interval.requests=1000
replica.socket.timeout.ms=30000
replica.socket.receive.buffer.bytes=65536

How it works…
Here is an explanation of these settings:

default.replication.factor: Default value: 1. For an automatically created
topic, this sets how many replicas it has.
replica.lag.time.max.ms: Default value: 10 000. There are leaders and
followers; if a follower has not sent any fetch request or is not consumed up in at
least this time, the leader will remove the follower from the ISR list and consider
the follower dead.
replica.fetch.max.bytes: Default value: 1 048 576. In each request, for each
partition, this value sets the maximum number of bytes fetched by a request from
its leader. Remember that the maximum message size accepted by the broker is
defined by message.max.bytes (broker configuration) or max.message.bytes
(topic configuration).

Configuring Kafka Chapter 1

[35]

replica.fetch.wait.max.ms: Default value: 500. This is the maximum
amount of time for the leader to respond to a replica's fetch request. Remember
that this value should always be smaller than the replica.lag.time.max.ms.
num.replica.fetchers: Default value: 1. The number of fetcher threads used
to replicate messages from a source broker. Increasing this number increases the
I/O rate in the following broker.
replica.high.watermark.checkpoint.interval.ms: Default value: 500.
The high watermark (HW) is the offset of the last committed message. This value
is the frequency at which each replica saves its high watermark to the disk for
recovery.
fetch.purgatory.purge.interval.requests: Default value: 1000.
Purgatory is the place where the fetch requests are kept on hold till they can be
serviced (great name, isn't?). The purge interval is specified in number of requests
(not in time) of the fetch request purgatory.
producer.purgatory.purge.interval.requests: Default value: 1000. It sets
the purge interval in number of requests (not in time) of the producer request
purgatory (do you catch the difference to the previous parameter?).

There's more...
Some other settings are listed here: http:/ ​/​kafka. ​apache. ​org/ ​documentation.
html#brokerconfigs

Configuring the ZooKeeper settings
Apache Zookeeper is a centralized service for maintaining configuration information
providing distributed synchronization. ZooKeeper is used in Kafka for cluster management
and to maintain the topics information synchronized.

Getting ready
With your favorite text editor, open your server.properties file copy.

http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs

Configuring Kafka Chapter 1

[36]

How to do it…
Adjust the following parameters:

zookeeper.connect=127.0.0.1:2181,192.168.0.32:2181
zookeeper.session.timeout.ms=6000
zookeeper.connection.timeout.ms=6000
zookeeper.sync.time.ms=2000

How it works…
Here is an explanation of these settings:

zookeeper.connect: Default value: null. This is a comma-separated value in
the form of the hostname:port string, indicating the Zookeeper connection.
Specifying several connections ensures the Kafka cluster reliability and
continuity. When one node fails, Zookeeper uses the chroot path
(/chroot/path) to make the data available under that particular path. This
enables having the Zookeeper cluster available for multiple Kafka clusters. This
path must be created before starting the Kafka cluster, and consumers must use
the same string.
zookeeper.session.timeout.ms: Default value: 6000. Session timeout means
that if in this time period a heartbeat from the server is not received, it is
considered dead. This parameter is fundamental, since if it is long and if the
server is dead the whole system will experience problems. If it is small, a living
server could be considered dead.
zookeeper.connection.timeout.ms: Default value: 6000. This is the
maximum time that the client will wait while establishing a connection to
Zookeeper.
zookeeper.sync.time.ms: Default value: 2000. This is the time a Zookeeper
follower can be behind its Zookeeper leader.

See also
From the Kafka perspective, the ZooKeeper parameters are detailed at: http:/ ​/
kafka.​apache. ​org/ ​documentation. ​html#brokerconfigs

The Apache ZooKeeper home page is here: https:/ ​/​zookeeper. ​apache. ​org/ ​

http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/

Configuring Kafka Chapter 1

[37]

Configuring other miscellaneous parameters
No parameter should be left at default when optimal behavior is desired. These parameters
should be taken into consideration to achieve the best performance.

Getting ready
With your favorite text editor, open your server.properties file copy.

How to do it...
Adjust the following parameters:

auto.create.topics.enable=true
controlled.shutdown.enable=true
controlled.shutdown.max.retries=3
controlled.shutdown.retry.backoff.ms=5000
auto.leader.rebalance.enable=true
leader.imbalance.per.broker.percentage=10
leader.imbalance.check.interval.seconds=300
offset.metadata.max.bytes=4096
max.connections.per.ip=Int.MaxValue
connections.max.idle.ms=600000
unclean.leader.election.enable=true
offsets.topic.num.partitions=50
offsets.topic.retention.minutes=1440
offsets.retention.check.interval.ms=600000
offsets.topic.replication.factor=3
offsets.topic.segment.bytes=104857600
offsets.load.buffer.size=5242880
offsets.commit.required.acks=-1
offsets.commit.timeout.ms=5000

Configuring Kafka Chapter 1

[38]

How it works…
Here is an explanation of these settings:

auto.create.topics.enable: Default value: true. Suppose that metadata is
fetched or a message is produced for a nonexistent topic; if this value is true, the
topic will automatically be created. In production environments, this value
should be false.
controlled.shutdown.enable: Default value: true. If this value is true, when a
shutdown is called on the broker, the leader will gracefully move all the leaders
to a different broker. When it is true, the availability is increased.
controlled.shutdown.max.retries: Default value: 3. This is the maximum
number of retries the broker tries a controlled shutdown before making a forced
and unclean shutdown.
controlled.shutdown.retry.backoff.ms: Default value: 5000. Suppose that
a failure happens (controller fail over, replica lag, and so on); this value
determines the time to wait before recovery from the state that caused the failure.
auto.leader.rebalance.enable: Default value: true. If this value is true, the
broker will automatically try to balance the partition leadership among the
brokers. At regular intervals, a background thread checks and triggers leader
balance if required, setting the leadership to the preferred replica of each
partition if available.
leader.imbalance.per.broker.percentage: Default value: 10. This value is
specified in percentages and is the leader imbalance allowed per broker (the
leader imbalance will be explained later). The cluster will rebalance the
leadership if this percentage goes above the set value.
leader.imbalance.check.interval.seconds: Default value: 300. This value
is the frequency at which to check the leader imbalance by the controller.
offset.metadata.max.bytes: Default value: 4096. This is the maximum size
allowed to the client for a metadata to be stored with an offset commit.
max.connections.per.ip: Default value: 2 147 483 647. This is the maximum
number of connections that the broker accepts from each IP address.
connections.max.idle.ms: Default value: 600 000. This is the idle connection's
timeout. The server socket processor threads close the connections that idle more
than this value.
unclean.leader.election.enable: Default value: true. If this value is true,
the replicas that are not ISR can become leaders. Doing so may result in data loss.

Configuring Kafka Chapter 1

[39]

offsets.topic.num.partitions: Default value: 50. This is the number of
partitions for the offset commit topic. This value cannot be changed post
deployment.
offsets.retention.minutes: Default value: 1440. This is the log retention
window for the offsets topic. This is the time to keep the offsets. Passed this, the
offsets will be marked for deletion.
offsets.retention.check.interval.ms: Default value: 60 000. This is the
frequency at which to check for stale offsets
offsets.topic.replication.factor: Default value: 3. This is the number of
replicas for the offset commit topic. The higher this value, the higher the
availability. As shown in the previous recipes, if the number of brokers is lower
than the replication factor, the number of replicas will be equal to the number of
brokers.
offsets.topic.segment.bytes: Default value: 104 857 600. This is the
segment size for the offsets topic. The lower this value, the faster the log
compaction and cache loading are.
offsets.load.buffer.size: Default value: 5 242 880. This is the batch size to
be used for reading offset segments when loading offsets into the cache.
offsets.commit.required.acks: Default value: -1. This is the number of
acknowledgements required before the offset commit can be accepted. It is
recommended to not override the default value of -1, meaning no
acknowledgements required.
offsets.commit.timeout.ms: Default value: 5000. This is the time that an
offset commit will be delayed until all replicas for the offsets topic receive the
commit or this time value is reached. This value is similar to the producer
request.timeout.ms.

See also
There are more broker configurations that are available. Read more about them
at: http:/ ​/​kafka. ​apache. ​org/ ​documentation. ​html#brokerconfigs

http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs
http://kafka.apache.org/documentation.html#brokerconfigs

2
Kafka Clusters

In this chapter, we will cover the following topics:

Configuring a single-node single-broker cluster – SNSB
SNSB – creating a topic, producer, and consumer
Configuring a single-node multiple-broker cluster – SNMB
SNMB – creating a topic, producer, and consumer
Configuring a multiple-node multiple-broker cluster – MNMB

Introduction
In the previous chapter, we explained how to program with the Apache Kafka publisher-
subscriber messaging system. In Apache Kafka there are three types of clusters:

Single-node single-broker
Single-node multiple-broker
Multiple-node multiple-broker cluster

The following four recipes show how to run Apache Kafka in these clusters.

Kafka Clusters Chapter 2

[41]

Configuring a single-node single-broker
cluster – SNSB
The first cluster configuration is single-node single-broker (SNSB). This cluster is very
useful when a single point of entry is needed. Yes, its architecture resembles the singleton
design pattern. A SNSB cluster usually satisfies three requirements:

Controls concurrent access to a unique shared broker
Access to the broker is requested from multiple, disparate producers
There can be only one broker

If the proposed design has only one or two of these requirements, a redesign is almost
always the correct option.

Sometimes, the single broker could become a bottleneck or a single point of failure. But it is
useful when a single point of communication is needed.

Getting ready
Go to the Kafka installation directory (/usr/local/kafka/ for macOS users and
/opt/kafka/ for Linux users):

 > cd /usr/local/kafka

Kafka Clusters Chapter 2

[42]

How to do it...
The diagram shows an example of an SNSB cluster:

Starting ZooKeeper
Kafka provides a simple ZooKeeper configuration file to launch a single1.
ZooKeeper instance. To install the ZooKeeper instance, use this command:

 > bin/zookeeper-server-start.sh config/zookeeper.properties

The main properties specified in the zookeeper.properties file are:2.
clientPort: This is the listening port for client requests. By default,
ZooKeeper listens on TCP port 2181:

clientPort=2181

dataDir: This is the directory where ZooKeeper is stored:

dataDir=/tmp/zookeeper

Kafka Clusters Chapter 2

[43]

maxClientCnxns: The maximum number of connections per IP (0
means unbounded):

maxClientCnxns=0

For more information about Apache ZooKeeper visit the project home
page at: http://zookeeper.apache.org/.

Starting the broker
After ZooKeeper is started, start the Kafka broker with this command:3.

 > bin/kafka-server-start.sh config/server.properties

The main properties specified in the server.properties file are:4.
broker.id: The unique positive integer identifier for each broker:

broker.id=0

log.dir: Directory to store log files:

log.dir=/tmp/kafka10-logs

num.partitions: The number of log partitions per topic:

num.partitions=2

port: The port that the socket server listens on:

port=9092

zookeeper.connect: The ZooKeeper URL connection:

zookeeper.connect=localhost:2181

http://zookeeper.apache.org/

Kafka Clusters Chapter 2

[44]

How it works...
Kafka uses ZooKeeper for storing metadata information about the brokers, topics, and
partitions. Writes to ZooKeeper are performed only on changes of consumer group
membership or on changes to the Kafka cluster itself.

This amount of traffic is minimal, and there is no need for a dedicated ZooKeeper ensemble
for a single Kafka cluster. Actually, many deployments use a single ZooKeeper ensemble to
control multiple Kafka clusters (using a chroot ZooKeeper path for each cluster).

There's more...
ZooKeeper must be running on the machine before starting Kafka. To avoid starting
ZooKeeper every time you need to run Kafka, install it as an operating system auto start
service.

See also
The server.properties template (as well as the entire Kafka project) is
published online at:
https://github.com/apache/kafka/blob/trunk/config/server.properties

SNSB – creating a topic, producer, and
consumer
The SNSB Kafka cluster is running; now let's create topics, producer, and consumer.

Getting ready
We need the previous recipe executed:

Kafka already installed
ZooKeeper up and running

https://github.com/apache/kafka/blob/trunk/config/server.properties

Kafka Clusters Chapter 2

[45]

A Kafka server up and running
Now, go to the Kafka installation directory (/usr/local/kafka/ for macOS
users and /opt/kafka/ for Linux users):

 > cd /usr/local/kafka

How to do it...
The following steps will show you how to create an SNSB topic, producer, and consumer.

Creating a topic
As we know, Kafka has a command to create topics. Here we create a topic called1.
SNSBTopic with one partition and one replica:

> bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic SNSBTopic

We obtain the following output:

Created topic "SNSBTopic".

The command parameters are:

--replication-factor 1: This indicates just one replica
--partition 1: This indicates just one partition
--zookeeper localhost:2181: This indicates the ZooKeeper
URL

As we know, to get the list of topics on a Kafka server we use the following2.
command:

> bin/kafka-topics.sh --list --zookeeper localhost:2181

We obtain the following output:

SNSBTopic

Kafka Clusters Chapter 2

[46]

Starting the producer
Kafka has a command to start producers that accepts inputs from the command3.
line and publishes each input line as a message. By default, each new line is
considered a message:

> bin/kafka-console-producer.sh --broker-list localhost:9092 --
topic SNSBTopic

This command requires two parameters:

broker-list: The broker URL to connect to
topic: The topic name (to send a message to the topic subscribers)

Now, type the following in the command line:4.

The best thing about a boolean is [Enter]
even if you are wrong [Enter]
you are only off by a bit. [Enter]

This output is obtained (as expected):

The best thing about a boolean is
even if you are wrong
you are only off by a bit.

The producer.properties file has the producer configuration. Some important
properties defined in the producer.properties file are:

metadata.broker.list: The list of brokers used for bootstrapping information
on the rest of the cluster in the format host1:port1, host2:port2:

metadata.broker.list=localhost:9092

compression.codec: The compression codec used. For example, none, gzip,
and snappy:

compression.codec=none

Kafka Clusters Chapter 2

[47]

Starting the consumer
Kafka has a command to start a message consumer client. It shows the output in5.
the command line as soon as it has subscribed to the topic:

> bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
SNSBTopic --from-beginning

Note that the parameter from-beginning is to show the entire log:

The best thing about a boolean is
even if you are wrong
you are only off by a bit.

One important property defined in the consumer.properties file is:

group.id: This string identifies the consumers in the same group:

group.id=test-consumer-group

How it works...
In this recipe, a topic, a producer, and a consumer were created to test the SNSB cluster
created in the previous recipe.

There's more...
It is time to play with this technology. Open a new command-line window for ZooKeeper, a
broker, two producers, and two consumers. Type some messages in the producers and
watch them get displayed in the consumers. If you don't know or don't remember how to
run the commands, run it with no arguments to display the possible values for the
parameters.

Kafka Clusters Chapter 2

[48]

Configuring a single-node multiple-broker
cluster – SNMB
The second cluster configuration is single-node multiple-broker (SNMB). This cluster is
used when there is just one node but inner redundancy is needed.

When a topic is created in Kafka, the system determines how each replica of a partition is
mapped to each broker. In general, Kafka tries to spread the replicas across all available
brokers.

The messages are first sent to the first replica of a partition (to the current broker leader of
that partition) before they are replicated to the remaining brokers.

The producers may choose from different strategies for sending messages (synchronous or
asynchronous mode). Producers discover the available brokers in a cluster and the
partitions on each (all this by registering watchers in ZooKeeper).

In practice, some of the high volume topics are configured with more than one partition per
broker. Remember that having more partitions increases the I/O parallelism for writes and
this increases the degree of parallelism for consumers (the partition is the unit for
distributing data to consumers).

On the other hand, increasing the number of partitions increases the overhead because:

There are more files, so more open file handlers
There are more offsets to be checked by consumers, so the ZooKeeper load is
increased

The art of this is to balance these tradeoffs.

Getting ready
Go to the Kafka installation directory (/usr/local/kafka/ for macOS users and
/opt/kafka/ for Linux users):

 > cd /usr/local/kafka

Kafka Clusters Chapter 2

[49]

The following diagram shows an example of an SNMB cluster:

How to do it...
Begin starting the ZooKeeper server as follows:1.

 > bin/zookeeper-server-start.sh config/zookeeper.properties

A different server.properties file is needed for each broker. Let's call them:
server-1.properties, server-2.properties, server-3.properties,
and so on (original, isn't it?).

Each file is a copy of the original server.properties file.

In the server-1.properties file set the following properties:2.
broker.id=1

port=9093

log.dir=/tmp/kafka-logs-1

Similarly, in the server-2.properties file set the following properties:3.
broker.id=2

port=9094

log.dir=/tmp/kafka-logs-2

Kafka Clusters Chapter 2

[50]

Finally, in the server-3.properties file set the following properties:4.
broker.id=3

port=9095

log.dir=/tmp/kafka-logs-3

With ZooKeeper running, start the Kafka brokers with these commands:5.

> bin/kafka-server-start.sh config/server-1.properties
> bin/kafka-server-start.sh config/server-2.properties
> bin/kafka-server-start.sh config/server-3.properties

How it works...
Now the SNMB cluster is running. The brokers are running on the same Kafka node, on
ports 9093, 9094, and 9095.

There's more...
In the following recipe, an explanation of how to create a topic, a producer, and consumer is
given.

See also
In case of file deletion, the original file is located at:
https://github.com/apache/kafka/blob/trunk/config/server.properties

SNMB – creating a topic, producer, and
consumer
The SNMB Kafka cluster is running; now let's create topics, producer, and consumer.

https://github.com/apache/kafka/blob/trunk/config/server.properties

Kafka Clusters Chapter 2

[51]

Getting ready
We need the previous recipe executed:

Kafka already installed
ZooKeeper up and running
A Kafka server up and running
Now, go to the Kafka installation directory (/usr/local/kafka/ for macOS
users and /opt/kafka/ for Linux users):

 > cd /usr/local/kafka

How to do it...
The following steps will show you how to create an SNMB topic, producer, and consumer

Creating a topic
Using the command to create topics, let's create a topic called SNMBTopic with1.
two partitions and two replicas:

> bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 2 --partitions 3 --topic SNMBTopic

The following output is displayed:

Created topic "SNMBTopic".

This command has the following effects:

Kafka will create three logical partitions for the topic.
Kafka will create two replicas (copies) per partition. This means,
for each partition it will pick two brokers that will host those
replicas. For each partition, Kafka will randomly choose a broker
leader.

Kafka Clusters Chapter 2

[52]

Now ask Kafka for the list of available topics. The list now includes the new2.
SNMBTopic:

> bin/kafka-topics.sh --zookeeper localhost:2181 --list
SNMBTopic

Starting a producer
Now, start the producers; indicating more brokers in the broker-list is easy:3.

> bin/kafka-console-producer.sh --broker-list localhost:9093,
localhost:9094, localhost:9095 --topic SNMBTopic

If it's necessary to run multiple producers connecting to different brokers, specify
a different broker list for each producer.

Starting a consumer
To start a consumer, use the following command:4.

> bin/kafka-console-consumer.sh -- zookeeper localhost:2181 --from-
beginning --topic SNMBTopic

How it works...
The first important fact is the two parameters: replication-factor and partitions.

The replication-factor is the number of replicas each partition will have in the topic
created.

The partitions parameter is the number of partitions for the topic created.

There's more...
If you don't know the cluster configuration or don't remember it, there is a useful option for
the kafka-topics command, the describe parameter:

> bin/kafka-topics.sh --zookeeper localhost:2181 --describe --topic
SNMBTopic

Kafka Clusters Chapter 2

[53]

The output is something similar to:

Topic:SNMBTopic PartitionCount:3 ReplicationFactor:2 Configs:
 Topic: SNMBTopic Partition: 0 Leader: 2 Replicas: 2,3 Isr:
3,2
 Topic: SNMBTopic Partition: 1 Leader: 3 Replicas: 3,1 Isr:
1,3
 Topic: SNMBTopic Partition: 2 Leader: 1 Replicas: 1,2 Isr:
1,2

An explanation of the output: the first line gives a summary of all the partitions; each line
gives information about one partition. Since we have three partitions for this topic, there are
three lines:

Leader: This node is responsible for all reads and writes for a particular
partition. For a randomly selected section of the partitions each node is the
leader.
Replicas: This is the list of nodes that duplicate the log for a particular partition
irrespective of whether it is currently alive.
Isr: This is the set of in-sync replicas. It is a subset of the replicas currently alive
and following the leader.

See also
In order to see the options for: create, delete, describe, or change a topic, type this
command without parameters:

> bin/kafka-topics.sh

Configuring a multiple-node multiple-broker
cluster – MNMB
Finally, the third cluster configuration is multiple-node multiple-broker (MNMB). This
cluster is used when there are several nodes and one or many brokers per node.

Kafka Clusters Chapter 2

[54]

Getting ready
Go to the Kafka installation directory (/usr/local/kafka/ for macOS users and
/opt/kafka/ for Linux users):

> cd /usr/local/kafka

How to do it...
The following diagram shows an example MNMB cluster:

Here we are presented with the real power of the cluster. In this cluster, Kafka should be
installed on every machine in the cluster. Here, every physical server could have one or
many brokers; all the nodes on the same cluster should connect to the same ZooKeeper.

Kafka Clusters Chapter 2

[55]

How it works...
The good news is that all the commands in the previous recipes remain the same. The
commands for ZooKeeper, the broker, producer, and consumer, don't change.

See also
The complete list of important properties of Kafka brokers is
at: http://kafka.apache.org/documentation.html#brokerconfigs

http://kafka.apache.org/documentation.html#brokerconfigs

3
Message Validation

In this chapter, we cover the following topics:

Modeling the events
Setting up the project
Reading from Kafka
Writing to Kafka
Running ProcessingApp
Coding the validator
Running the validator

Introduction
The first two chapters were focused on how to build a Kafka cluster, run a producer, and
run a consumer. Now that we have a producer of events, we will process those events.

In a nutshell, event processing takes one or more events from an event stream and applies
actions to those events. In general, an enterprise service bus has commodity services, the
most common services are the following:

Event handling
Data transformation
Data mapping
Protocol conversion

Message Validation Chapter 3

[57]

The operation of processing events involves the following:

An event stream to filter some events from the stream
Event validation against an event schema
Event enrichment with additional data
Event composition (aggregation) to produce a new event from two or more
events

This chapter is about message validation, the following chapters will be about enrichment
and composition.

Before going into a concrete recipe, let's present a case study. Imagine that we are modeling
the systems of Doubloon, a fictional company dedicated to cryptocurrency exchange.
Doubloon wants to implement an enterprise service bus with Apache Kafka. The goal is to
unify all of the logs in its business. Doubloon has a website, the objective is to react to
customer behavior in a timely way.

Worldwide, online customers browse the Doubloon website to exchange their currencies.
There are a lot of other things that visitors can do on the website, but we will focus on the
exchange rate query workflow, specifically from the web application.

Modeling the events
This recipe shows how to model events in JSON format.

Getting ready
For this recipe, basic knowledge of JSON is required.

How to do it...
The first step to model an event is expressing it in English language in the form: subject-verb-
direct object.

For this example, we are going to model the event customer sees BTC price:

Customer: This is the sentence's subject, a noun in nominative case. The subject in
an English sentence is the entity performing the action.

Message Validation Chapter 3

[58]

Sees: This is the verb of the sentence, it describes the action being done by the
subject.
BTC price: This is the direct object of the sentence or simply the object. The entity
to which the action is being done.

There are several options for data representation, in this case we will pick JSON. We could
use Avro, Apache Thrift, or Protocol Buffers, but they will be covered in later chapters.

JSON has the advantage of being easily read and written by both humans and machines.
For example, one could use binary as representation, but it is not easily read by humans and
has a very rigid format; on the other hand, binary representation is light in weight.

The following snippet shows the representation of the customer sees BTC price event in JSON:

{
 "event": "CUSTOMER_SEES_BTCPRICE",
 "customer": {
 "id": "86689427",
 "name": "Edward S.",
 "ipAddress": "95.31.18.119"
 },
 "currency": {
 "name": "bitcoin",
 "price": "USD"
 },
 "timestamp": "2017-07-03T12:00:35Z"
}

How it works...
Yes, the solution sometimes raises more questions than answers. In this case, we see the
currency price expressed in dollars, why? Well, the proposed representation of this event in
JSON has four properties:

event: This is a string with the event's name.
customer: This represents the person (in this case, his name is Edward) viewing
the bitcoin price. In this representation, there is a unique ID for the customer, his
name, and the browser IP address, which is the IP address of the computer he is
browsing on.

Message Validation Chapter 3

[59]

currency: This contains the name and the currency in which the price is
expressed.
timestamp: This is fundamental because it is the time the customer sent the
request in seconds.

Let's analyze the event from another perspective. The event has only two parts: the
metadata, namely the event, name, and the timestamp; and two business entities, the
customer and the currency. As one can see, this message can be read and understood by
a human.

There's more...
We can represent this message schema. This is the template of all the messages of this type
in Avro. Our message in Avro schema would be as follows:

{ "name": "customer_sees_btcprice",
 "namespace": "doubloon.avro",
 "type": "record",
 "fields": [
 { "name": "event", "type": "string" },
 { "name": "customer",
 "type": {
 "name": "id", "type": "long",
 "name": "name", "type": "string",
 "name": "ipAddress", "type": "string"
 }
 },
 { "name": "currency",
 "type": {
 "name": "name", "type": "string",
 "name": "price", "type": {
 "type": "enum", "namespace": "doubloon.avro",
 "name": "priceEnum", "symbols": ["USD", "EUR"]}
 }
 },
 { "name": "timestamp", "type": "long",
 "logicalType": "timestamp-millis"
 }
]
}

Message Validation Chapter 3

[60]

In the following recipes, we also use these messages:

{ "event": "CUSTOMER_SEES_BTCPRICE",
 "customer": {
 "id": "18313440",
 "name": "Julian A.",
 "ipAddress": "185.86.151.11"
 },
 "currency": {
 "name": "bitcoin",
 "price": "USD"
 },
 "timestamp": "2017-07-04T15:00:35Z"
}

We also use the following messages:

{ "event": "CUSTOMER_SEES_BTCPRICE",
 "customer": {
 "id": "56886468",
 "name": "Lindsay M.",
 "ipAddress": "186.46.129.15"
 },
 "currency": {
 "name": "bitcoin",
 "price": "USD"
 },
 "timestamp": "2017-07-11T19:00:35Z"
}

See also
For more information about schemas, check the Apache Avro specification at:
http:/​/​avro. ​apache. ​org/ ​docs/ ​current

http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current
http://avro.apache.org/docs/current

Message Validation Chapter 3

[61]

Setting up the project
Before writing code, let's remember the project requirements for the stream processing
application. Recall that customer sees BTC price events happen in the customer's web browser
and are dispatched to Kafka via an HTTP event collector. Events are created in an
environment out of the control of Doubloon. The first step is to validate that the input
events have the correct structure. Remember that defective events could create bad data
(most data scientists agree that a lot of time could be saved if input data were clean).

Getting ready
Putting it all together, the specification is to create a stream application which does the
following:

Reads individual events from a Kafka topic called raw-messages
Validates the event, sending any invalid message to a dedicated Kafka topic
called invalid-messages
Writes the correct events to a Kafka topic called valid-messages, and writes
corrupted messages to an invalid-messages topic

All this is detailed in the following diagram, the first sketch of our stream processing
application:

Figure 3.1: The processing application reads events from the raw-messages topic, validates the messages, and routes the errors to the invalid-messages topic and the correct ones to
the valid-messages topic

Message Validation Chapter 3

[62]

How to do it...
There are two steps in the stream processing application:

Create a simple Kafka worker that reads from the raw-messages topic in Kafka1.
and writes the events to a new topic
Modify the Kafka worker to handle the validation2.

The first step is to download and install Gradle from: http:/ ​/ ​www.​gradle. ​org/
downloads. Gradle requires only a Java JDK or JDE version 7 or above. We can install
Gradle in the following ways:

For macOS users, the brew command will be enough:

$ brew update && brew install gradle

For Linux users, we use apt-get:

$ sudo apt-get install gradle

For Unix users, we use SDKMAN, a tool for managing parallel versions of most
Unix-based systems:

$ sdk install gradle 4.3

The manual installation steps are as follows:

Download the latest version from http://www.gradle.org/downloads and1.
select binary only. The latest version as of now is 4.3.
Unpack the distribution:2.

$ mkdir /opt/gradle
$ unzip /opt/gradle gradle-4.3-bin.zip
$ ls /opt/gradle/gradle-4.3
LICENSE NOTICE bin getting-started.html init.d lib media

Configure your system environment:3.

$ export PATH=$PATH:/opt/gradle/gradle-4.3/bin

http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads

Message Validation Chapter 3

[63]

Finally, to check that Gradle is installed correctly, type the following:4.

$ gradle -v

The output is something like the following:

--
Gradle 4.3
--

The next step is to create our project with Gradle, which will be called ProcessingApp.

Create a directory called doubloon, go to that directory, and execute the1.
following:

$ gradle init --type java-library

The output is something like the following:

...
BUILD SUCCESSFUL
...

Gradle creates a skeleton project in the directory, with two Java files called2.
Library.java and LibraryTest.java. Feel free to delete both files. Your
directory should be similar to the following:

 - build.gradle
 - gradle
 -- wrapper
 --- gradle-wrapper.jar
 --- gradle-vreapper.properties
 - gradlew
 - gradle.bat
 - settings.gradle
 - src
 -- main
 --- java
 ----- Library.java
 -- test
 --- java
 ----- LibraryTest.java

Message Validation Chapter 3

[64]

Now, modify the Gradle build file called build.gradle and replace with the3.
following code:

apply plugin: 'java'
apply plugin: 'application'

sourceCompatibility = '1.8'

mainClassName = 'doubloon.ProcessingApp'

repositories {
 mavenCentral()
}

version = '0.1.0'

dependencies {
 compile 'org.apache.kafka:kafka-clients:0.11.0.1'
 compile 'com.fasterxml.jackson.core:jackson-databind:2.6.3'
}
jar {
manifest {
 attributes 'Main-Class': mainClassName
 }
 from {
 configurations.compile.collect {
 it.isDirectory() ? it : zipTree(it)
 }
 } {
 exclude "META-INF/*.SF"
 exclude "META-INF/*.DSA"
 exclude "META-INF/*.RSA"
 }
}

How it works...
Some library dependencies were added to the application:

kafka_2.11: This is a necessary dependency for Apache Kafka
jackson-databind: This is the library for JSON parsing and manipulation

Message Validation Chapter 3

[65]

To compile the sources and download the required libraries, type the following command:

$ gradle compileJava

The output should be as follows:

...
BUILD SUCCESSFUL
...

There's more...
The project can be created with Maven or SBT, even from the IDE, but for simplicity, here
we created it with Gradle.

See also
Gradle's main page: http://www.gradle.org
Maven's main page: http://maven.apache.org
SBT's main page: http://www.scala-sbt.org/

Reading from Kafka
The next step is to read individual raw messages from the Kafka topic, raw-messages. In
Kafka jargon, a consumer is needed. In the last chapter, we used the command-line tools to
write events to a topic and to read events back to the topic. This recipe shows how to write a
Kafka consumer in Java using the Kafka library.

Getting ready
The execution of the previous recipes in this chapter is needed.

http://www.gradle.org
http://maven.apache.org
http://www.scala-sbt.org/

Message Validation Chapter 3

[66]

How to do it...
Create a file called Consumer.java in the src/main/java/doubloon/1.
directory with the following code:

package doubloon;

import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecords;

public interface Consumer {
 public static Properties createConfig(String servers, String
groupId) {
 Properties props = new Properties();
 props.put("bootstrap.servers", servers);
 props.put("group.id", groupId);
 props.put("enable.auto.commit", "true");
 props.put("auto.commit.interval.ms", "1000");
 props.put("auto.offset.reset", "earliest");
 props.put("session.timeout.ms", "30000");
 props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 return props;
 }

 public ConsumerRecords<String, String> consume();
}

The Consumer interface encapsulates the common behavior of all the Kafka
consumers. Principally, the Consumer interface has the createConfig
method, which sets all the properties needed by the consumers. Note that
deserializers are of the StringDeserializer type because the Kafka
consumer reads Kafka records, where the key and value are both of String type.
The consume is a method that would be implemented by Reader class.

Now, create a file called Reader.java in the src/main/java/doubloon/2.
directory with the following code:

package doubloon;

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

Message Validation Chapter 3

[67]

public class Reader implements Consumer {

 private final KafkaConsumer<String, String> consumer; // 1
 private final String topic;

 public Reader(String servers, String groupId, String topic) {
 this.consumer = new KafkaConsumer<String,
String>(Consumer.createConfig(servers, groupId));
 this.topic = topic;
 }

 @Override
 public ConsumerRecords<String, String> consume() {
this.consumer.subscribe(java.util.Arrays.asList(this.topic)); // 2
 ConsumerRecords<String, String> records =
consumer.poll(100); // 3
 return records;
 }
}

How it works...
The Reader implements the Consumer interface. So, the reader is a Kafka consumer.

As said, in line 1, <String, String> says that this Kafka consumer reads Kafka records
where the key and value are both of String type. In line 2, the Consumer subscribes to the
Kafka topic specified in the constructor. In line 3, the poll will fetch the data for the topics or
partitions specified with a timeout of 100 milliseconds.

This Consumer reads records from the Kafka topic given and sends them to the calling
method. All the configuration properties are specified in the Consumer interface, but the
groupId property is especially important because it lets us associate this Consumer with a
specific consumer group.

The consumer group is useful when one needs to share out the topic's events across all the
group's members. On the other hand, consumer groups are also used to group or isolate
different instances.

There's more...
Now we have the reader, in the next recipe let's code the writer because the writer is
nothing without readers.

Message Validation Chapter 3

[68]

See also
To read more about the Kafka consumer API, visit: https:/ ​/​kafka. ​apache. ​org/
0110/​javadoc/ ​index. ​html and search for KafkaConsumer in the lower-left of the
UI

Writing to Kafka
In the last recipe, the Reader has the invocation of the process method. This method
belongs to the Producer class. In this recipe, the Writer class is explained.

Getting ready
The execution of the previous recipes in this chapter is needed.

How to do it...
As we did with the Consumer interface, the Producer interface is needed to keep things
flexible. The two producers in this chapter will implement the Producer interface. This
interface isolates all the common behavior of the producers.

Copy the following content to a file called src/main/java/doubloon/Producer.java:

package doubloon;

import java.util.Properties;

public interface Producer {

 public void produce(String message); // 1

 public static Properties createConfig(String servers) { // 2
 Properties props = new Properties();
 props.put("bootstrap.servers", servers);
 props.put("acks", "all");
 props.put("retries", 0);
 props.put("batch.size", 1000);
 props.put("linger.ms", 1);
 props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html

Message Validation Chapter 3

[69]

 props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 return props;
 }
}

The Producer interface has the following details:

In line 1, the produce method is implemented in the Writer class, which sends a
message to the producer in the topic specified .
In line 2, a static method called createConfig, as its consumer counterpart, sets
the properties needed for a generic producer

Now, as with the consumer, an implementation of the Producer interface is needed. In this
first version, we just send the incoming source messages through into a second topic with
the messages untouched. The following implementation code should be saved in a file
called src/main/java/doubloon/Writer.java:

package doubloon;

import org.apache.kafka.clients.producer.*;

public class Writer implements Producer {

 private final KafkaProducer<String, String> producer;
 private final String topic;

 public Writer(String servers, String topic) {
 this.producer = new KafkaProducer<String,
String>(Producer.createConfig(servers)); // 1
 this.topic = topic;
 }

 @Override
 public void produce(String message) { //2
 ProducerRecord<String, String> pr = new ProducerRecord<String,
String>(topic, message);
 producer.send(pr);
 }
}

Message Validation Chapter 3

[70]

How it works...
In this implementation we have the following:

In line 1, the createConfig method is invoked to set the necessary properties
from the Producer interface.
In line 2, the produce method just writes the incoming messages in the output
topic. As the message arrives to the topic, it is copied to the target topic.

This Producer implementation is self-explanatory. It doesn't change, validate, or enrich the
incoming messages, it just writes them to the target topic.

There's more...
Now we have the reader and the writer, in the next recipe let's run everything.

See also
To read more about the Kafka Producer API, visit: https:/ ​/​kafka. ​apache. ​org/
0110/​javadoc/ ​index. ​html and search for KafkaProducer in the lower-left of the
UI

Running ProcessingApp
In the last recipe, the Writer class was coded. Now, in this recipe everything is compiled
and executed.

Getting ready
The execution of the previous recipes in this chapter is needed.

https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html
https://kafka.apache.org/0110/javadoc/index.html

Message Validation Chapter 3

[71]

How to do it...
The ProcessingApp class coordinates the Reader and Writer classes. It contains the main
method to execute them. Create a new file called
src/main/java/doubloon/ProcessingApp.java and fill it with the following code:

package doubloon;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;

public class ProcessingApp {

 public static void main(String[] args) {
 String servers = args[0];
 String groupId = args[1];
 String sourceTopic = args[2];
 String targetTopic = args[3];

 Reader reader = new Reader(servers, groupId, sourceTopic);
 Writer writer = new Writer(servers, targetTopic);

 while (true) { // 1
 ConsumerRecords<String, String> consumeRecords =
reader.consume();
 for (ConsumerRecord<String, String> record : consumeRecords) {
 writer.produce(record.value()); // 2
 }
 }
 }
}

How it works...
The ProcessingApp receives four arguments from the command line:

args[0] servers: This specifies the host and port of the Kafka broker
args[1] group id: This specifies that the Consumer belongs to this Kafka
consumer group
args[2] source topic: This is the topic Reader will read from
args[3] target topic: This is the topic Writer will write to

Message Validation Chapter 3

[72]

In line 1, yes, some people are afraid to do while(true) loops, but in this example it is
necessary for demonstrative purposes. In line 2 we send every message to be processed by
the Producer

To build the project, from the doubloon directory, run the following command:

$ gradle jar

If everything is okay, the output should be as follows:

...
BUILD SUCCESSFUL
Total time: ...

To run the project, open six different command-line windows. The following diagram
shows what the command-line windows should look like:

Figure 3.2: The six terminals to test the processing application include Zookeeper, Kafka broker, Command executor, Message producer, Message consumer, and the application
itself

In the first command-line Terminal, move to the Kafka installation directory and type the
following:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

In the second command-line Terminal, go to the Kafka installation directory and type the
following:

$ bin/kafka-server-start.sh config/server.properties

Message Validation Chapter 3

[73]

In the third command-line Terminal, go to the Kafka installation directory and generate the
two necessary topics:

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic source-topic

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic target-topic

Remember that the parameter list shows the existing topics as follows:

$ bin/kafka-topics.sh --list --zookeeper localhost:2181

Also remember that to delete an unwanted topic (yes, everybody makes mistakes) we do
the following:

$ bin/kafka-topics.sh --delete --zookeeper localhost:2181 --topic
unWantedTopic

In the fourth command-line Terminal, start the broker running the source-topic topic:

$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
source-topic

The preceding window is where the input messages are typed.

In the fifth command-line Terminal, start a consumer script listening to target-topic:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic target-topic

In the sixth command-line Terminal, start up the processing application. Go to the project
root directory (where the Gradle jar command was executed) and run the following:

$ java -jar ./build/libs/doubloon-0.1.0.jar localhost:9092
vipConsumersGroup source-topic target-topic

Now, that we have the stages mounted, the magic is about to happen. This act consists of
reading all the events from the source-topic and writing them into the target-topic.

Message Validation Chapter 3

[74]

Go to the fourth command-line Terminal (the console producer) and send the following
three messages (remember to press Enter between messages and execute each one in just
one line):

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "86689427", "name":
"Edward S.", "ipAddress": "95.31.18.119"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-03T12:00:35Z"}

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "18313440", "name":
"Julian A.", "ipAddress": "185.86.151.11"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-04T15:00:35Z"}

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "56886468", "name":
"Lindsay M.", "ipAddress": "186.46.129.15"}, "currency": {"name":
"bitcoin", "price": "USD"}, "timestamp": "2017-07-11T19:00:35Z"}

If everything works fine, the messages typed in the console-producer should be appearing
in the console-consumer window.

There's more...
The next step is to move onto a more complex version involving message validation (later
in this chapter), message enrichment (next chapter), and message transformation (two
chapters forward).

For the next recipe, shut down the processing application (with Ctrl + Z in the sixth
terminal), but don't close any other terminals.

See also
As we can see, the replication-factor and partitions parameters where set to 1.
Now, try playing with different values. Chapter 8, Operating Kafka is dedicated
entirely to this kind of parameterization.

Coding the validator
The next recipe involves the evolution from a simple Kafka producer-consumer to a Kafka
message stream processor that includes validation and routing.

Message Validation Chapter 3

[75]

Getting ready
The execution of the previous recipes in this chapter are needed.

How to do it...
Good architecture implies flexibility. As shown in the Writting recipe, the Writer class
implements the Producer interface. The idea is to start with that Writer and build a more
sophisticated class with minimum effort. Let's recall the goals for our Validator:

Read the Kafka messages from the source-messages topic
Validate the messages, sending the defective messages to a different topic
Write the good messages to the good-messages topic

For simplicity, the definition of a valid message is a message that is as follows:

In JSON format
Contains the four required fields: event, customer, currency, and timestamp

If these conditions aren't met, a new error message in JSON format is generated, sending it
to the bad events Kafka topic. The schema of this error message is very simple:

{"error": "Failure description" }

The first step is to copy the following code to the
src/main/java/doubloon/Validator.java file:

package doubloon;

import java.io.IOException;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

public class Validator implements Producer {

 private final KafkaProducer<String, String> producer;
 private final String goodTopic;
 private final String badTopic;

Message Validation Chapter 3

[76]

 protected static final ObjectMapper MAPPER = new ObjectMapper();

 public Validator(String servers, String goodTopic, String badTopic) {
// 1
 this.producer = new KafkaProducer<String,
String>(Producer.createConfig(servers));
 this.goodTopic = goodTopic;
 this.badTopic = badTopic;
 }

 @Override
 public void produce(String message) { //2
 ProducerRecord<String, String> pr = null;
 try {
 JsonNode root = MAPPER.readTree(message);
 String error = "";
 error = error.concat(validate(root, "event"));
 error = error.concat(validate(root, "customer"));
 error = error.concat(validate(root, "currency"));
 error = error.concat(validate(root, "timestamp"));
 // TO_DO: implement for the inner children

 if (error.length() > 0) {
 pr = new ProducerRecord<String, String>(this.badTopic,
"{\"error\": \" " + error + "\"}"); // 3
 } else {
 pr = new ProducerRecord<String, String>(this.goodTopic,
MAPPER.writeValueAsString(root));// 4
 }
 } catch (IOException e) {
 pr = new ProducerRecord<String, String>(this.badTopic,
 "{\"error\": \"" + e.getClass().getSimpleName() + ": "
+ e.getMessage() + "\"}"); // 5
 } finally {
 if (null != pr) {
 producer.send(pr);
 }
 }
 }

 private String validate(JsonNode root, String path) {
 if (!root.has(path)) {
 return path.concat(" is missing. ");
 }

 JsonNode node = root.path(path);
 if (node.isMissingNode()) {
 return path.concat(" is missing. ");

Message Validation Chapter 3

[77]

 }

 return "";
 }

}

The Validator class has the following details:

In line 1, the constructor takes two topics: the good and the bad message topics
In line 2, the produce method validates that the message is in JSON format, and
the existence of the event, customer, currency, and timestamp fields
In line 3, if the message doesn't have any required fields, an error message is sent
to the bad messages topic
In line 4, if the message is correct, the message is sent to the good messages topic
In line 5, if the message is not in JSON format, an error message is sent to the bad
messages topic

There's more...
Your turn... there is a to-do comment, you have to implement the validation of the node
inner children, not just the four main nodes.

See also
All the validation architecture is detailed in the first diagram of this chapter

Running the validator
In the last recipe, the Validator class was coded. Now, in this recipe everything is
compiled and executed.

Getting ready
The execution of the previous recipes in this chapter are needed.

Message Validation Chapter 3

[78]

How to do it...
At this point, the ProcessingApp class coordinates the Reader and Writer classes. It
contains the main method to execute them. We have to edit the ProcessingApp.java file
located at src/main/java/doubloon/ProcessingApp.java and change it with the
following code:

package doubloon;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;

public class ProcessingApp {

 public static void main(String[] args) {
 String servers = args[0];
 String groupId = args[1];
 String sourceTopic = args[2];
 String goodTopic = args[3];
 String badTopic = args[4];

 Reader reader = new Reader(servers, groupId, sourceTopic);
 Validator validator = new Validator(servers, goodTopic, badTopic);

 while (true) {
 ConsumerRecords<String, String> consumeRecords =
reader.consume();
 for (ConsumerRecord<String, String> record : consumeRecords) {
 validator.produce(record.value());
 }
 }
 }
}

How it works...
The ProcessingApp now receives five arguments from the command line:

args[0] servers: This specifies the host and port of the Kafka broker
args[1] group id: This specifies that the consumer belongs to this Kafka
consumer group
args[2] source topic: This is the topic the reader will read from

Message Validation Chapter 3

[79]

args[3] good topic: This is the topic the good messages will be sent to
args[4] bad topic: This is the topic the bad messages will be sent to

To build the project, from the doubloon directory, run the following command:

$ gradle jar

If everything is okay, the output should be as follows:

...
BUILD SUCCESSFUL
Total time: ...

To run the project, we have the six different command-line windows from the previous
recipes. The following diagram shows what the arrangement of command-line windows
should look like:

Figure 3.3: The six terminals to test the processing application including Zookeeper, Kafka broker, Message producer,
Good Message consumer, Bad Message consumer, and the application itself

In the first command-line Terminal, this command is running in the Kafka directory:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

In the second command-line Terminal, this command is running in the Kafka directory:

$ bin/kafka-server-start.sh config/server.properties

Message Validation Chapter 3

[80]

In the third command-line Terminal, go to the Kafka installation directory and generate the
two necessary topics:

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic good-topic

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic bad-topic

Then, start the broker running the source-topic topic:

$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
source-topic

The preceding window is where the input messages are typed.

In the fourth command-line Terminal, start a consumer script listening to good-topic:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic good-topic

In the fifth command-line Terminal, start a consumer script listening to bad-topic:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic bad-topic

In the sixth command-line Terminal, start up the processing application. Go to the project
root directory (where the Gradle jar command was executed) and run the following:

$ java -jar ./build/libs/doubloon-0.1.0.jar localhost:9092
vipConsumersGroup source-topic good-topic bad-topic

Go to the fourth command-line Terminal (the console producer) and send the following
three messages (remember to press Enter between messages, and execute each one in just
one line):

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "86689427", "name":
"Edward S.", "ipAddress": "95.31.18.119"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-03T12:00:35Z"}

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "18313440", "name":
"Julian A.", "ipAddress": "185.86.151.11"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-04T15:00:35Z"}

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "56886468", "name":
"Lindsay M.", "ipAddress": "186.46.129.15"}, "currency": {"name":
"bitcoin", "price": "USD"}, "timestamp": "2017-07-11T19:00:35Z"}

Message Validation Chapter 3

[81]

As these are cool messages, the messages typed in the console-producer should be
appearing in the good-topic console-consumer window.

Now try sending bad messages. First, try messages that are not in JSON format:

I am not JSON, I am IT. [enter]
Hello! [enter]

This message should be received in the bad messages topic:

{"error": "JsonParseException: Unrecognized token ' I am not JSON, I am
IT.': was expecting 'null','true', 'false' or NaN
at [Source: I am not JSON, I am IT.; line: 1, column: 4]"}

Then try something more complex, such as the first message without a timestamp:

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "86689427", "name":
"Edward S.", "ipAddress": "95.31.18.119"}, "currency": {"name": "bitcoin",
"price": "USD"}}

This message should be received in the bad messages topic:

{"error": "timestamp is missing."}

There's more...
This recipe completes our validation. As one can see there is more validation to do, for
example, validation against JSON schemas, but this is covered in subsequent chapters.

See also
The validation architecture is detailed in the first diagram of this chapter and in
the next chapter it will be enriched
In the next chapter, the architecture of this chapter will be redesigned to
incorporate message enrichment

4
Message Enrichment

In this chapter, we will cover the following recipes:

Geolocation extractor
Geolocation enricher
Currency price extractor
Currency price enricher
Running the currency price enricher
Modeling the events
Setting up the project
Open weather extractor
Location temperature enricher
Running the location temperature enricher

Introduction
The previous chapter focused on how to perform message validation with Kafka. This
chapter is about message enrichment and the following chapter is about message
composition. This chapter continues modeling the systems of Doubloon, the fictional
company dedicated to cryptocurrency exchange.

Here, a new company is introduced, Treu Technologies. Treu is a fictional company
dedicated to energy production and distribution. To operate, Treu uses a lot of Internet of
Things (IoT) devices.

Message Enrichment Chapter 4

[83]

Treu also wants to implement an enterprise service bus with Apache Kafka. The goal is to
manage all the messages received every minute from the machines and sensors. Treu has
hundreds of machines sending thousands of messages per minute of different kinds to the
enterprise service bus.

In the last chapter, the validation of the Doubloon messages was implemented. In this
chapter we add enrichment. In this context, enriching means adding extra information to
the messages. In the following recipes, the messages are enriched with the customer's
geographical location using the geolocation database of MaxMind and a simple but effective
example.

Each of the messages includes the IP address of the computer that our customer is using. To
meet our business requirements, a company called MaxMind provides a free-to-use
database that maps the IP addresses to geographical locations. In this context, the program
looks up the customer's IP address in the MaxMind GeoIP database to determine where the
customer is located at the point of the request. The use of algorithms or external sources to
add extra data to a message is called enriching the messages.

Geolocation extractor
In Doubloon, there is a service that validates that the messages are well formed. But now,
the business indicates that there should be validation at the customer's location. This is very
simple, there is a term called a bit license, which limits virtual currency activities to a
geographical area. At the time of writing, the regulations are limited to New York residents.
For this purpose, those that reside, are located, have a place of business, or are conducting
business, in the state of New York count as New York residents.

Getting ready
The execution of the recipes in Chapter 3, Message Validation is needed.

How to do it...
The first step is to open the build.gradle file on the Doubloon project created1.
in Chapter 3, Message Validation, and add the lines in the following code:

apply plugin: 'java'
apply plugin: 'application'

Message Enrichment Chapter 4

[84]

sourceCompatibility = '1.8'

mainClassName = 'doubloon.ProcessingApp'

repositories {
 mavenCentral()
}

version = '0.2.0'

dependencies {
 compile 'org.apache.kafka:kafka-clients:0.11.0.1'
 compile 'com.maxmind.geoip:geoip-api:1.2.14'
 compile 'com.fasterxml.jackson.core:jackson-databind:2.6.3'
}

jar {
 manifest {
 attributes 'Main-Class': mainClassName
 }

 from {
 configurations.compile.collect {
 it.isDirectory() ? it : zipTree(it)
 }
 } {
 exclude "META-INF/*.SF"
 exclude "META-INF/*.DSA"
 exclude "META-INF/*.RSA"
 }
}

The first change is to switch from the 0.1.0 to the 0.2.0 version. The second
change adds the MaxMind GeoIP API to the project.

To rebuild the app, from the project root directory run the following command:2.

$ gradle jar

The output is something like the following:

...
BUILD SUCCESSFUL
Total time: 24.234 secs

Message Enrichment Chapter 4

[85]

The next step is to download a free copy of the MaxMind GeoIP database, with3.
this command:

$ wget
"http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat
.gz"

To decompress the file, type this command:4.

$ gunzip GeoLiteCity.dat.gz

Put the GeoLiteCity.dat file in a location that can be accessed by our program

As the next step, create a file called GeoIP.java in the5.
src/main/java/doubloon/extractors directory with the following contents:

package doubloon.extractors;

import com.maxmind.geoip.Location;
import com.maxmind.geoip.LookupService;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class GeoIP {

 private static final String MAXMINDDB = "/path to GeoLiteCity.dat
file";

 public Location getLocation(String ipAddress) {

 try {
 LookupService maxmind = new LookupService(MAXMINDDB,
LookupService.GEOIP_MEMORY_CACHE);
 Location location = maxmind.getLocation(ipAddress);
 return location;
 } catch (IOException ex) {
 Logger.getLogger(GeoIP.class.getName()).log(Level.SEVERE,
null, ex);
 }

 return null;
 }

}

Message Enrichment Chapter 4

[86]

How it works...
The GeoIP class has a public getLocation method that receives a string with the IP
address and looks for that IP address in the GeoIP location database. The method returns a
Location object with the geo-localization of that specific IP address.

There's more...
If for some reason downloading the database is not viable, MaxMind also exposes their
services through an API. To read how to use this API, go to https://dev.maxmind.com/.

MaxMind also has interesting solutions to detect online fraud.

See also
The MaxMind site: https:/ ​/ ​www.​maxmind. ​com/ ​

To learn more about the bit license regulatory framework, visit:
http://www.dfs.ny.gov/legal/regulations/bitlicense_reg_framework.htm

Geolocation enricher
Let's remember the Doubloon project requirements for the stream processing app. The
customer sees BTC price event happens in the customer's web browser and is dispatched to
Kafka via an HTTP event collector. The second step is to enrich the messages with the
geolocation information. Remember from the previous chapter that defective messages
result in bad data, so they are filtered.

Getting ready
Putting it all together, the specification is to create a stream application that does the
following:

Reads individual messages from a Kafka topic called raw-messages
Validates the message, sending any invalid message to a dedicated Kafka topic
called invalid-messages

https://dev.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
https://www.maxmind.com/
http://www.dfs.ny.gov/legal/regulations/bitlicense_reg_framework.htm

Message Enrichment Chapter 4

[87]

Enriches the message with the geolocation information
Writes the enriched messages in a Kafka topic called valid-messages

All this is detailed in the following diagram and is the second version of the stream
processing application:

Figure 4.1: The processing application reads events from the raw-messages topic, validates the messages, routes the errors to the invalid-messages topic, enriches the messages with
geolocation, and then writes them to the valid-messages topic

How to do it...
Create a file called Enricher.java in the src/main/java/doubloon/ directory with the
following contents:

package doubloon;

import com.fasterxml.jackson.databind.*;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.maxmind.geoip.Location;
import doubloon.extractors.GeoIP;

import java.io.IOException;

import org.apache.kafka.clients.producer.*;

public class Enricher implements Producer {

Message Enrichment Chapter 4

[88]

 private final KafkaProducer<String, String> producer;
 private final String goodTopic;
 private final String badTopic;

 protected static final ObjectMapper MAPPER = new ObjectMapper();

 public Enricher(String servers, String goodTopic,
 String badTopic) {
 this.producer = new KafkaProducer(
 Producer.createConfig(servers));
 this.goodTopic = goodTopic;
 this.badTopic = badTopic;
 }

 @Override
 public void process(String message) {

 try {
 JsonNode root = MAPPER.readTree(message);
 JsonNode ipAddressNode = root.path("customer").path("ipAddress");
 if (ipAddressNode.isMissingNode()) {
//1
 Producer.write(this.producer, this.badTopic,
 "{\"error\": \"customer.ipAddress is missing\"}");
 } else {
 String ipAddress = ipAddressNode.textValue();

 Location location = new GeoIP().getLocation(ipAddress);
//2
 ((ObjectNode) root).with("customer").put("country",
location.countryName);
//3
 ((ObjectNode) root).with("customer").put("city", location.city);
 Producer.write(this.producer, this.goodTopic,
 MAPPER.writeValueAsString(root));
//4
 }
 } catch (IOException e) {
 Producer.write(this.producer, this.badTopic, "{\"error\": \""
 + e.getClass().getSimpleName() + ": " + e.getMessage() +
"\"}");
 }
 }

}

Message Enrichment Chapter 4

[89]

How it works...
The Enricher implements the Producer interface. So, the Enricher is a Kafka producer.

If the message does not have an IP address under customer, the message is
automatically sent to the invalid-messages queue
The Enricher calls the getLocation method of the GeoIP class
The country and the city of the Location are added to the customer node
The enriched message is written to the valid-messages topic

There's more...
Now we have our enricher, in the following recipes let's code the next version.

See also
Note that the Location object has more information; in this example only the
country and the city are extracted. But, what happens if more precision is
required?
Also note that here we have a very simple validation. Think about which
validations are needed to warrant the correct operation of this system.

Currency price extractor
Okay, now in Doubloon there is a service that validates that the messages are well-formed.
Also, the service enriches the messages with the customer's geolocation. Now the business
indicates that they need a service that properly returns the requested currency price.

Getting ready
The execution of the previous recipes in this chapter is needed.

Message Enrichment Chapter 4

[90]

How to do it...
Go to the Open Exchange Rates page at: https://openexchangerates.org/. Register for a
free plan to obtain your free API key. This key is needed to access the free API.

Create a file called OpenExchange.java in the src/main/java/doubloon/extractors
directory with the following contents:

package doubloon.extractors;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OpenExchange {
 private static final String API_KEY = "API_KEY_VALUE";
//1
 protected static final ObjectMapper MAPPER = new ObjectMapper();
 public double getPrice(String currency) {
 try {
 URL url = new
URL("https://openexchangerates.org/api/latest.json?app_id=" + API_KEY);
//2
 JsonNode root = MAPPER.readTree(url);
 JsonNode node = root.path("rates").path(currency);
//3
 return Double.parseDouble(node.toString());
//4
 } catch (MalformedURLException ex) {
 Logger.getLogger(OpenExchange.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (IOException ex) {
 Logger.getLogger(OpenExchange.class.getName()).log(Level.SEVERE,
null, ex);
 }
 return 0;
 }
}

https://openexchangerates.org/

Message Enrichment Chapter 4

[91]

How it works...
The OpenExchange class has a public getPrice method that receives a string with the
currency and returns the price in dollars for that currency. Specifically:

To use the open exchange API, an API key is needed. Registration is free and
gives 1,000 requests per month. Replace the code with your API key value.
To check the prices of currencies at the moment, go to this URL: https:/ ​/
openexchangerates. ​org/ ​api/ ​latest. ​json? ​app_ ​id=​YOUR_ ​API_ ​KEY.
The JSON returned by the URL is parsed looking for the specific currency.
The requested price (in US dollars) is returned.

There's more...
Open Exchange Rates also expose their services through an API, to read how to use this
API, go to: https://docs.openexchangerates.org/.

See also
There are different ways to parse JSON, and there are entire books related to this
topic. For this example, Jackson was used to parse JSON. To find more
information, go to: https://github.com/FasterXML.
Remember that this example uses the Open Exchange Rates free plan. If you need
more precise or non-limited API requests, check the plans at:
https://openexchangerates.org/signup.

Currency price enricher
The customer sees BTC price event happens in the customer's web browser and is dispatched
to Kafka via an HTTP event collector. The second step is to enrich the messages with the
geolocation information. The third step is to enrich the message with the currency price.

https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://openexchangerates.org/api/latest.json?app_id=YOUR_API_KEY
https://docs.openexchangerates.org/
https://github.com/FasterXML
https://openexchangerates.org/signup

Message Enrichment Chapter 4

[92]

Getting ready
Recapitulating, the specification is to create a stream application that does the following:

Reads individual messages from a Kafka topic called raw-messages
Validates the messages, sending any invalid messages to a dedicated Kafka topic
called invalid-messages
Enriches the messages with the geolocation information and the currency price
Writes the enriched messages in a Kafka topic called valid-messages

All this is detailed in the following diagram, which is the final version of the stream
processing application:

Figure 4.2: The processing application reads events from the raw-messages topic, validates the messages, routes the errors to the invalid-messages topic, enriches the messages with
geolocation and prices, and finally, writes them to the valid-messages topic

Message Enrichment Chapter 4

[93]

How to do it...
Modify the Enricher.java file in the src/main/java/doubloon/ directory with the
following contents:

package doubloon;

import com.fasterxml.jackson.databind.*;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.maxmind.geoip.Location;
import doubloon.extractors.GeoIP;
import doubloon.extractors.OpenExchange;

import java.io.IOException;

import org.apache.kafka.clients.producer.*;

public class Enricher implements Producer {

 private final KafkaProducer<String, String> producer;
 private final String goodTopic;
 private final String badTopic;

 protected static final ObjectMapper MAPPER = new ObjectMapper();

 public Enricher(String servers, String goodTopic,
 String badTopic) {
 this.producer = new KafkaProducer(
 Producer.createConfig(servers));
 this.goodTopic = goodTopic;
 this.badTopic = badTopic;
 }

 @Override
 public void process(String message) {

 try {
 JsonNode root = MAPPER.readTree(message);
 JsonNode ipAddressNode = root.path("customer").path("ipAddress");
 if (ipAddressNode.isMissingNode()) {
//1
 Producer.write(this.producer, this.badTopic,
 "{\"error\": \"customer.ipAddress is missing\"}");
 } else {
 String ipAddress = ipAddressNode.textValue();

 Location location = new GeoIP().getLocation(ipAddress);

Message Enrichment Chapter 4

[94]

 ((ObjectNode) root).with("customer").put("country",
location.countryName);
 ((ObjectNode) root).with("customer").put("city", location.city);

 OpenExchange oe = new OpenExchange();
//2
 ((ObjectNode) root).with("currency").put("rate",
oe.getPrice("BTC"));
//3
 Producer.write(this.producer, this.goodTopic,
 MAPPER.writeValueAsString(root));
//4
 }
 } catch (IOException e) {
 Producer.write(this.producer, this.badTopic, "{\"error\": \""
 + e.getClass().getSimpleName() + ": " + e.getMessage() +
"\"}");
 }
 }
}

How it works...
The Enricher implements the Producer interface. So, the Enricher is a Kafka producer:

If the message does not have an IP address under the customer, the message is
automatically sent to the invalid-messages queue
The Enricher generates an instance of the OpenExchange class as an extractor
The Enricher calls the getPrice method of the OpenExchange class
The price of the currency BTC is added to the currency node in the price
leaf
The enriched message is written to the valid-messages topic

There's more...
This is the final enricher for Doubloon. As can be seen, this pipeline architecture uses the
extractors as input for the enrichers. The following recipe shows how to run the whole
project.

Message Enrichment Chapter 4

[95]

See also
Note that the JSON response has more information, for this example only the
BTC price is used. The open data initiatives are free and provide a lot of free
databases with online and historical data.

Running the currency price enricher
In the previous recipe, the final version of the Enricher class was coded. Now, in this
recipe, everything is compiled and executed.

Getting ready
The execution of the previous recipes in this chapter is needed.

How to do it...
The ProcessingApp class coordinates the Reader and Writer classes. It contains the main
method to execute them. Create a new file called
src/main/java/doubloon/ProcessingApp.java and fill it with the following code:

package doubloon;

import java.io.IOException;

public class ProcessingApp {

 public static void main(String[] args) throws IOException{
 String servers = args[0];
 String groupId = args[1];
 String sourceTopic = args[2];
 String goodTopic = args[3];
 String badTopic = args[4];
 Reader reader = new Reader(servers, groupId, sourceTopic);
 Enricher enricher = new Enricher(servers, goodTopic, badTopic);
 reader.run(enricher);
 }
}

Message Enrichment Chapter 4

[96]

How it works...
The ProcessingApp receives five arguments from the command line:

args[0] servers: This specifies the host and port of the Kafka broker
args[1] group id: This specifies that the consumer belongs to this Kafka
consumer group
args[2] source topic: This is the topic that the reader will read from
args[3] good topic: This is the topic where good messages will be sent
args[4] bad topic: This the topic where bad messages will be sent

To build the project from the Doubloon directory, run the following command:

$ gradle jar

If everything is okay, the output should be as follows:

...
BUILD SUCCESSFUL
Total time: ...

To run the project, we have the six different command-line windows from the previous
recipes. The following diagram shows how the arrangement of command-line windows
should look:

Figure 4.3: The six terminals to test the processing application including ZooKeeper, Kafka broker, Message producer, Good Message consumer, Bad Message consumer, and the
application itself

Message Enrichment Chapter 4

[97]

In the first command-line Terminal, run ZooKeeper on the Kafka directory:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

In the second command-line Terminal, run the broker on the Kafka directory:

$ bin/kafka-server-start.sh config/server.properties

In the third command-line Terminal, go to the Kafka installation directory and generate the
two necessary topics:

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic good-topic

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic bad-topic

Then, start the broker running the source-topic topic:

$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
source-topic

This window is where the input messages are typed.

In the fourth command-line Terminal, start a consumer script listening to good-topic:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic good-topic

In the fifth command-line Terminal, start a consumer script listening to bad-topic:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic bad-topic

In the sixth command-line Terminal, start up the processing application. Go the project root
directory (where the Gradle jar commands were executed) and run the following:

$ java -jar ./build/libs/doubloon-0.2.0.jar localhost:9092
vipConsumersGroup source-topic good-topic bad-topic

Go to the fourth command-line Terminal (the console-producer) and send the following
three messages (remember to press enter between messages and execute each one in just
one line):

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "86689427", "name":
"Edward S.", "ipAddress": "95.31.18.119"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-03T12:00:35Z"}

Message Enrichment Chapter 4

[98]

{"event": "CUSTOMER_SEES_BTCPRICE", "customer": {"id": "18313440", "name":
"Julian A.", "ipAddress": "185.86.151.11"}, "currency": {"name": "bitcoin",
"price": "USD"}, "timestamp": "2017-07-04T15:00:35Z"}

As these are correct messages, the messages typed in the console-producer should be
appearing enriched in the good-topic console-consumer window:

{"event":"CUSTOMER_SEES_BTCPRICE","customer":{"id":"86689427","name":"Edwar
d S.","ipAddress":"95.31.18.119","country":"Russian
Federation","city":"Moscow"},"currency":{"name":"bitcoin","price":"USD","ra
te":1.2132252E-4},"timestamp":"2017-07-03T12:00:35Z"}

{"event":"CUSTOMER_SEES_BTCPRICE","customer":{"id":"18313440","name":"Julia
n A.","ipAddress":"185.86.151.11","country":"United
Kingdom","city":"London"},"currency":{"name":"bitcoin","price":"USD","rate"
:1.2132252E-4},"timestamp":"2017-07-04T15:00:35Z"}

{"event":"CUSTOMER_SEES_BTCPRICE","customer":{"id":"56886468","name":"Linds
ay
M.","ipAddress":"186.46.129.15","country":"Ecuador","city":"Quito"},"curren
cy":{"name":"bitcoin","price":"USD","rate":1.2132252E-4},"timestamp":"2017-
07-11T19:00:35Z"}

Modeling the events
This recipe shows how to model the Treu messages in JSON format.

Getting ready
For this recipe, basic knowledge of JSON is required.

How to do it...
As mentioned, Treu Technologies has a lot of IoT machines that continuously send
messages about their status to the control center.

These machines are used to generate electricity. So, it is very important for Treu to know the
exact temperature of the machine and its state (running, shutdown, starting, shutting down,
and so on).

Message Enrichment Chapter 4

[99]

Treu needs to know the weather forecast, because the machine should not operate over
certain temperatures. These machines have different behaviors based on the temperature. It
is different starting a machine in the cold than in warm conditions. The startup time also
depends on the temperature. To warrant the electricity supply, the information has to be
precise.

In a nutshell, it is always better to face an electrical power failure having to start the
machines from warm than from cold.

The following code shows the representation of a machine status event in JSON:

{
 "event": "HEALTH_CHECK",
 "factory": "Hierve el agua, OAX",
 "serialNumber": " C3PO-R2D2",
 "type": "combined cycle",
 "status": "RUNNING",
 "lastStartedAt": 1511115511,
 "temperature": 34.56,
 "ipAddress": 192.168.210.11
}

How it works...
The proposed representation of this message in JSON has the following properties:

event: This a string with the name of the message
factory: This is the name of the factory where the machine is located
serialNumber: This represents the machine serial number
type: This represents the machine's type
status: This a string that could be: RUNNING, SHUT-DOWN, STARTING,
and SHUTTING-DOWN
lastStartedAt: This is the time in Unix representation of the last start time
temperature: This a double representing the machine's temperature in Celsius
grades
ipAddress: This is the machine's IP address

As one can see, this message can be read and understood by a human.

Message Enrichment Chapter 4

[100]

There's more...
To represent this message's schema, the template of all the messages of this type in Avro
would be as follows:

{ "name": "health_check",
 "namespace": "treutec.avro",
 "type": "record",
 "fields": [
 { "name": "event", "type": "string" },
 { "name": "factory", "type": "string" },
 { "name": "serialNumber", "type": "string" },
 { "name": "type", "type": "string" },
 { "name": "status", "type": {
 "type": "enum", "symbols": ["STARTING", "RUNNING",
 "SHUTTING_DOWN", "SHUT-DOWN"]},
 { "name": "lastStartedAt", "type": "long",
 "logicalType": "timestamp-millis"},
 { "name": "temperature", "type": "float" },
 { "name": "ipAddress", "type": "string" }
]
}

See also
For more information about schemas, check the Apache Avro specification at:
http://avro.apache.org/docs/current/spec.html

Setting up the project
Before writing code, let's recall the project requirements for the Treu Technologies stream
processing app.

http://avro.apache.org/docs/current/spec.html

Message Enrichment Chapter 4

[101]

Getting ready
Putting it all together, the specification is to create a stream application that does the
following:

Reads individual messages from a Kafka topic called raw-messages
Enriches the messages with the geolocalization of the machine's IP address
Enriches the messages with the weather information of the geolocalization
Writes the correct events in a Kafka topic called enriched-messages

All these processes are detailed in the following diagram, which is the Treu stream
processing application:

Figure 4.4: The processing application reads events from the raw-messages topic, enriches the messages with geolocalization and weather temperature information, and writes to
the enriched-messages queue

How to do it...
The first step is to create our project with Gradle, which will be called1.
ProcessingApp. Create a directory called treu, go to that directory, and execute
the following:

$ gradle init --type java-library

Message Enrichment Chapter 4

[102]

The output is something like the following:

...
BUILD SUCCESSFUL
...

Gradle creates a skeleton project in the directory, with two Java files called2.
Library.java and LibraryTest.java. Feel free to delete both files. Your
directory should be similar to the following:

 - build.gradle
 - gradle
 -- wrapper
 --- gradle-wrapper.jar
 --- gradle-vreapper.properties
 - gradlew
 - gradle.bat
 - settings.gradle
 - src
 -- main
 --- java
 ----- Library.java
 -- test
 --- java
 ----- LibraryTest.java

Now, modify the build.gradle file and replace it with the following:3.

apply plugin: 'java'
apply plugin: 'application'

sourceCompatibility = '1.8'

mainClassName = 'treu.ProcessingApp'

repositories {
 mavenCentral()
}

version = '0.1.0'

dependencies {
 compile 'org.apache.kafka':'kafka-clients':0.11.0.1'
 compile 'com.maxmind.geoip:geoip-api:1.2.14'
 compile 'com.fasterxml.jackson.core:jackson-databind:2.6.3'
}

Message Enrichment Chapter 4

[103]

jar {
 manifest {
 attributes 'Main-Class': mainClassName
 }
 from {
 configurations.compile.collect {
 it.isDirectory() ? it : zipTree(it)
 }
}
{
 exclude "META-INF/*.SF"
 exclude "META-INF/*.DSA"
 exclude "META-INF/*.RSA"
}
}

How it works...
Some library dependencies were added to the application:

kafka_2.11: These are the necessary dependencies for Apache Kafka
geoip-api1.2: These are the necessary dependencies for MaxMind GeoIP
jackson-databind: This is the library for JSON parsing and manipulation

To compile the sources and download the required libraries, type the following command:

$ gradle compileJava

The output should be as follows:

...
BUILD SUCCESSFUL
...

There's more...
The project can be created with Maven or SBT, even from the IDE. But for simplicity, here
we created it with Gradle.

Message Enrichment Chapter 4

[104]

See also
Gradle's main page: http:/ ​/ ​www.​gradle. ​org

Maven's main page: http:/ ​/ ​maven. ​apache. ​org

SBT's main page: http://www.scala-sbt.org/

Open weather extractor
We have solved the problem of obtaining the geolocation from the IP address in this
chapter. As the business requested, we also need to know the current temperature given a
geolocation.

Getting ready
The execution of the previous recipe is needed.

How to do it...
Go to the OpenWeatherMap page at: https://openweathermap.org/. Register for a free
plan to obtain your free API key, that key is needed to access the free API.

Create a file called OpenWeather.java in the src/main/java/treu/extractors
directory with the following contents:

package treu.extractors;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import doubloon.extractors.OpenExchange;
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OpenWeather {
 private static final String API_KEY = "API_KEY_VALUE";
//1
 protected static final ObjectMapper MAPPER = new ObjectMapper();

http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://www.gradle.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://www.scala-sbt.org/
https://openweathermap.org/

Message Enrichment Chapter 4

[105]

 public double getTemperature(String lat, String lon) {
 try {
 URL url = new
URL("http://api.openweathermap.org/data/2.5/weather?lat=" + lat + "&lon="+
lon + "&units=metric&appid=" + API_KEY);
 JsonNode root = MAPPER.readTree(url);
 JsonNode node = root.path("main").path("temp");
 return Double.parseDouble(node.toString());
 } catch (MalformedURLException ex) {
 Logger.getLogger(OpenExchange.class.getName()).log(Level.SEVERE,
null, ex);
 } catch (IOException ex) {
 Logger.getLogger(OpenExchange.class.getName()).log(Level.SEVERE,
null, ex);
 }
 return 0;
 }
}

How it works...
The OpenWeather class has a public getTemperature method that receives two string
values with the latitude and longitude and returns the current temperature for those
coordinates. Specifically:

To use the OpenWeather API, an API key is needed, the registry is free and gives
1,000 requests per month. Replace the code with your API key value.
To check the prices of the currencies at the moment, go to: http:/ ​/​api.
openweathermap. ​org/ ​data/ ​2. ​5/ ​weather? ​lat= ​YOUR_ ​LAT ​lon= ​YOUR_ ​LONG​units=
metric​appid= ​YOUR_ ​API_ ​KEY.
The JSON returned by the URL is parsed looking for the temperature.
The requested temperature (in degrees Celsius) is returned.

There's more...
OpenWeatherMap also exposes their services through an API, to read how to use this API
go to: https://openweathermap.org/api.

http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
http://api.openweathermap.org/data/2.5/weather?lat=YOUR_LAT&lon=YOUR_LONG&units=metric&appid=YOUR_API_KEY
https://openweathermap.org/api

Message Enrichment Chapter 4

[106]

See also
There are different ways to parse JSON, and there are entire books related to this
topic. For this example, Jackson was used to parse the JSON, to find more
information go to: https://github.com/FasterXML.

Location temperature enricher
The next step is to enrich the messages with the geolocation information. The third step is to
enrich the message with the temperature.

Getting ready
Recapitulating, the specification is to create a stream application that does the following:

Reads individual messages from a Kafka topic called raw-messages
Enriches the messages with the geolocalization of the machine's IP address
Enriches the messages with the weather information of the geolocalization
Writes the correct events in a Kafka topic called enriched-messages

How to do it...
Modify the Enricher.java file in the src/main/java/treu/ directory with the
following contents:

package treu;

import com.fasterxml.jackson.databind.*;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.maxmind.geoip.Location;
import treu.extractors.GeoIP;
import treu.extractors.OpenWeather;

import java.io.IOException;

import org.apache.kafka.clients.producer.*;

public class Enricher implements Producer {

https://github.com/FasterXML

Message Enrichment Chapter 4

[107]

 private final KafkaProducer<String, String> producer;
 private final String enrichedTopic;

 protected static final ObjectMapper MAPPER = new ObjectMapper();

 public Enricher(String servers, String enrichedTopic) {
 this.producer = new KafkaProducer(Producer.createConfig(servers));
 this.enrichedTopic = enrichedTopic;
 }

 @Override
 public void process(String message) {

 try {
 JsonNode root = MAPPER.readTree(message);
 JsonNode ipAddressNode = root.path("ipAddress");
 if (!ipAddressNode.isMissingNode()) {
 String ipAddress = ipAddressNode.textValue();

 Location location = new GeoIP().getLocation(ipAddress);
//1

 OpenWeather ow = new OpenWeather();
//2
 ((ObjectNode) root).with("location").put("temperature",
 ow.getTemperature(location.latitude + "",
 location.longitude + ""));
//3
 Producer.write(this.producer, this.enrichedTopic,
 MAPPER.writeValueAsString(root));
//4
 }
 } catch (IOException e) {
 // deal with exception
 }
 }

}

Message Enrichment Chapter 4

[108]

How it works...
The Enricher implements the Producer interface. So, the Enricher is a Kafka producer:

The Enricher generates an instance of the GeoIP class and obtains the location
based on the IP address
The Enricher generates an instance of the OpenWeather class and obtains the
temperature based on the location
The Enricher calls the getTemperature method of the OpenWeather class
The temperature of the location is added to the location node in the
temperature leaf

There's more...
This is the final enricher for Treu. As can be seen, this pipeline architecture uses the
extractors as input for the enrichers. The following recipe shows how to run the project.

See also
Note that both JSON responses have so much more information.
OpenWeatherMap has more historical information and forecasts about the
weather.

Running the location temperature enricher
In the previous recipe, the final version of the Enricher class was coded. Now, in this
recipe, everything is compiled and executed.

Getting ready
The execution of the previous recipe in this chapter is needed.

Message Enrichment Chapter 4

[109]

How to do it...
The ProcessingApp class coordinates the Reader and Writer classes. It contains the main
method to execute them. Create a new file called
src/main/java/treu/ProcessingApp.java and fill it with the following code:

package treu;

import java.io.IOException;

public class ProcessingApp {

 public static void main(String[] args) throws IOException{
 String servers = args[0];
 String groupId = args[1];
 String sourceTopic = args[2];
 String enrichedTopic = args[3];
 Reader reader = new Reader(servers, groupId, sourceTopic);
 Enricher enricher = new Enricher(servers, goodTopic, enrichedTopic);
 reader.run(enricher);
 }
}

How it works...
The ProcessingApp receives four arguments from the command line:

args[0] servers: This specifies the host and port of the Kafka broker
args[1] group id: This specifies that the consumer belongs to this Kafka
consumer group
args[2] source topic: This is the topic the reader will read from
args[3] good topic: This is the topic where enriched messages will be sent

To build the project from the treu directory, run the following command:

$ gradle jar

If everything is okay, the output should be as follows:

...
BUILD SUCCESSFUL
Total time: ...

Message Enrichment Chapter 4

[110]

To run the project, we have the five different command-line windows from the previous
recipes. The following diagram shows how the arrangement of command-line windows
should look:

Figure 4.5: The five terminals to test the processing application including ZooKeeper, Kafka broker, Message producer, Message consumer, and the application itself

In the first command-line Terminal, start ZooKeeper in the Kafka directory:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

In the second command-line Terminal, start the broker in the Kafka directory:

$ bin/kafka-server-start.sh config/server.properties

In the third command-line Terminal, go to the Kafka installation directory and generate the
two necessary topics:

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic raw-messages

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1 --partitions 1 --topic enriched-messages

Then, start the broker running the raw-messages topic:

$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic raw-
messages

Message Enrichment Chapter 4

[111]

This window is where the input messages are typed.

In the fourth command-line Terminal, start a consumer script listening to enriched-
messages:

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-
beginning --topic enriched-messages

In the fifth command-line Terminal, start up the processing application. Go the project root
directory (where the Gradle jar commands were executed) and run:

$ java -jar ./build/libs/treu-0.1.0.jar localhost:9092 vipConsumersGroup
raw-messages enriched-messages

Go to the third command-line Terminal (the console-producer) and send the following
message (remember to execute it in just one line):

{
 "event": "HEALTH_CHECK",
 "factory": "Hierve el agua, OAX",
 "serialNumber": " C3PO-R2D2",
 "type": "combined cycle",
 "status": "RUNNING",
 "lastStartedAt": 1511115511,
 "temperature": 34.56,
 "ipAddress": 192.168.210.11
}

As this is a well-formed message, the messages typed in the console-producer should be
appearing enriched in the enriched-messages console-consumer window:

{
 "event": "HEALTH_CHECK",
 "factory": "Hierve el agua, OAX",
 "serialNumber": " C3PO-R2D2",
 "type": "combined cycle",
 "status": "RUNNING",
 "lastStartedAt": 1511115511,
 "temperature": 34.56,
 "ipAddress": 192.168.210.11,
 "location": {
 "temperature": 20.12
 }
}

5
The Confluent Platform

This chapter covers the following recipes:

Installing the Confluent Platform
Using Kafka operations
Monitoring with the Confluent Control Center
Using the Schema Registry
Using the Kafka REST Proxy
Using Kafka Connect

Introduction
The Confluent Platform is a full stream data system. It enables you to organize and manage
data from several sources in one high-performance and reliable system. As mentioned in
the first few chapters, the goal of an enterprise service bus is not only to provide the system
a means to transport messages and data but also to provide all the tools that are required to
connect the data origins (data sources), applications, and data destinations (data sinks) to
the platform.

The Confluent Platform has these parts:

Confluent Platform open source
Confluent Platform enterprise
Confluent Cloud

The Confluent Platform Chapter 5

[113]

The Confluent Platform open source has the following components:

Apache Kafka core
Kafka Streams
Kafka Connect
Kafka clients
Kafka REST Proxy
Kafka Schema Registry

The Confluent Platform enterprise has the following components:

Confluent Control Center
Confluent support, professional services, and consulting

All the components are open source except the Confluent Control Center, which is a
proprietary of Confluent Inc.

An explanation of each component is as follows:

Kafka core: The Kafka brokers discussed at the moment in this book.
Kafka Streams: The Kafka library used to build stream processing systems.
Kafka Connect: The framework used to connect Kafka with databases, stores,
and filesystems.
Kafka clients: The libraries for writing/reading messages to/from Kafka. Note
that there clients for these languages: Java, Scala, C/C++, Python, and Go.
Kafka REST Proxy: If the application doesn't run in the Kafka clients'
programming languages, this proxy allows connecting to Kafka through HTTP.
Kafka Schema Registry: Recall that an enterprise service bus should have a
message template repository. The Schema Registry is the repository of all the
schemas and their historical versions, made to ensure that if an endpoint changes,
then all the involved parts are acknowledged.
Confluent Control Center: A powerful web graphic user interface for managing
and monitoring Kafka systems.
Confluent Cloud: Kafka as a service—a cloud service to reduce the burden of
operations.

The Confluent Platform Chapter 5

[114]

Installing the Confluent Platform
In order to use the REST proxy and the Schema Registry, we need to install the Confluent
Platform. Also, the Confluent Platform has important administration, operation, and
monitoring features fundamental for modern Kafka production systems.

Getting ready
At the time of writing this book, the Confluent Platform Version is 4.0.0.

Currently, the supported operating systems are:

Debian 8
Red Hat Enterprise Linux
CentOS 6.8 or 7.2
Ubuntu 14.04 LTS and 16.04 LTS

macOS currently is just supported for testing and development purposes, not for
production environments. Windows is not yet supported. Oracle Java 1.7 or higher is
required.

The default ports for the components are:

2181: Apache ZooKeeper
8081: Schema Registry (REST API)
8082: Kafka REST Proxy
8083: Kafka Connect (REST API)
9021: Confluent Control Center
9092: Apache Kafka brokers

It is important to have these ports, or the ports where the components are going to run,
open.

The Confluent Platform Chapter 5

[115]

How to do it...
There are two ways to install: downloading the compressed files or with apt-get
command.

To install the compressed files:

Download the Confluent open source v4.0 or Confluent Enterprise v4.0 TAR files1.
from https://www.confluent.io/download/
Uncompress the archive file (the recommended path for installation is under2.
/opt)
To start the Confluent Platform, run this command:3.

$ <confluent-path>/bin/confluent start

The output should be as follows:

Starting zookeeper
zookeeper is [UP]
Starting kafka
kafka is [UP]
Starting schema-registry
schema-registry is [UP]
Starting kafka-rest
kafka-rest is [UP]
Starting connect
connect is [UP]

To install with the apt-get command (in Debian and Ubuntu):

Install the Confluent public key used to sign the packages in the APT repository:1.

$ wget -qO - http://packages.confluent.io/deb/4.0/archive.key |
sudo apt-key add -

Add the repository to the sources list:2.

$ sudo add-apt-repository "deb [arch=amd64]
http://packages.confluent.io/deb/4.0 stable main"

Finally, run the apt-get update to install the Confluent Platform3.
To install Confluent open source:4.

$ sudo apt-get update && sudo apt-get install confluent-platform-
oss-2.11

https://www.confluent.io/download/

The Confluent Platform Chapter 5

[116]

To install Confluent Enterprise:5.

$ sudo apt-get update && sudo apt-get install confluent-
platform-2.11

The end of the package name specifies the Scala version. Currently, the
supported versions are 2.11 (recommended) and 2.10.

There's more...
The Confluent Platform provides the system and component packages. The commands in
this recipe are for installing all components of the platform. To install individual
components, follow the instructions on this
page: https://docs.confluent.io/current/installation/available_packages.html#ava
ilable-packages.

See also
In modern environments, the Confluent Platform can also be installed using
Docker images; for more information, visit the following
link: https://docs.confluent.io/current/installation/docker/docs/index.h
tml#cpdocker-intro.

Using Kafka operations
With the Confluent Platform installed, the administration, operation, and monitoring of
Kafka become very simple. Let's review how to operate Kafka with the Confluent Platform.

Getting ready
For this recipe, Confluent should be installed, up, and running.

https://docs.confluent.io/current/installation/available_packages.html#available-packages
https://docs.confluent.io/current/installation/available_packages.html#available-packages
https://docs.confluent.io/current/installation/docker/docs/index.html#cpdocker-intro
https://docs.confluent.io/current/installation/docker/docs/index.html#cpdocker-intro

The Confluent Platform Chapter 5

[117]

How to do it...
The commands in this section should be executed from the directory where the Confluent
Platform is installed:

To start ZooKeeper, Kafka, and the Schema Registry with one command, run:1.

$ confluent start schema-registry

The output of this command should be:

Starting zookeeper
zookeeper is [UP]
Starting kafka
kafka is [UP]
Starting schema-registry
schema-registry is [UP]

To execute the commands outside the installation directory, add
Confluent's bin directory to PATH:
export PATH=<path_to_confluent>/bin:$PATH

To manually start each service with its own command, run:2.

$./bin/zookeeper-server-start ./etc/kafka/zookeeper.properties
$./bin/kafka-server-start ./etc/kafka/server.properties
$./bin/schema-registry-start ./etc/schema-registry/schema-
registry.properties

Note that the syntax of all the commands is exactly the same as always but
without the .sh extension.

To create a topic called test_topic, run the following command:3.

$./bin/kafka-topics --zookeeper localhost:2181 --create --topic
test_topic --partitions 1 --replication-factor 1

To send an Avro message to test_topic in the broker without writing a single4.
line of code, use the following command:

$./bin/kafka-avro-console-producer --broker-list localhost:9092
 --topic test_topic --property
value.schema='{"name":"person","type":"record",
"fields":[{"name":"name","type":"string"},{"name":"age","type":"int
"}]}'

The Confluent Platform Chapter 5

[118]

Send some messages and press Enter after each line:5.

{"name": "Alice", "age": 27}
{"name": "Bob", "age": 30}
{"name": "Charles", "age":57}

Enter with an empty line is interpreted as null. To shut down the process, press6.
Ctrl + C.
To consume the Avro messages from test_topic since the beginning, type:7.

$./bin/kafka-avro-console-consumer --topic test_topic --zookeeper
localhost:2181 --from-beginning

The messages created in the previous step will be written to the console in the
format they were introduced.

To shut down the consumer, press Ctrl + C.8.
To test the Avro schema validation, try to produce data on the same topic using9.
an incompatible schema, for example, with this producer:

$./bin/kafka-avro-console-producer --broker-list localhost:9092
 --topic test_topic --property value.schema='{"type":"string"}'

After you've hit Enter on the first message, the following exception is raised:10.

org.apache.kafka.common.errors.SerializationException: Error
registering Avro schema: "string"
Caused by:
io.confluent.kafka.schemaregistry.client.rest.exceptions.RestClient
Exception: Schema being registered is incompatible with the latest
schema; error code: 409
 at
io.confluent.kafka.schemaregistry.client.rest.utils.RestUtils.httpR
equest(RestUtils.java:146)

To shut down the services (Schema Registry, broker, and ZooKeeper) run:11.

confluent stop

To delete all the producer messages stored in the broker, run this:12.

confluent destroy

The Confluent Platform Chapter 5

[119]

There's more...
With the Confluent Platform, it is possible to manage all of the Kafka system through the
Kafka operations, which are classified as follows:

Production deployment: Hardware configuration, file descriptors, and
ZooKeeper configuration
Post deployment: Admin operations, rolling restart, backup, and restoration
Auto data balancing: Rebalancer execution and decommissioning brokers
Monitoring: Metrics for each concept—broker, ZooKeeper, topics, producers,
and consumers
Metrics reporter: Message size, security, authentication, authorization, and
verification

See also
To see the complete list of Kafka operations available, check out this URL:
https://docs.confluent.io/current/kafka/operations.html

Monitoring with the Confluent Control
Center
This recipe shows you how to use the metrics reporter of the Confluent Control Center.

Getting ready
The execution of the previous recipe is needed.

Before starting the Control Center, configure the metrics reporter:

Back up the server.properties file located at:1.

<confluent_path>/etc/kafka/server.properties

https://docs.confluent.io/current/kafka/operations.html

The Confluent Platform Chapter 5

[120]

In the server.properties file, uncomment the following lines:2.

metric.reporters=io.confluent.metrics.reporter.ConfluentMetricsRepo
rter
confluent.metrics.reporter.bootstrap.servers=localhost:9092
confluent.metrics.reporter.topic.replicas=1

Back up the Kafka Connect configuration located in:3.

<confluent_path>/etc/schema-registry/connect-avro-
distributed.properties

Add the following lines at the end of the connect-avro-4.
distributed.properties file:

consumer.interceptor.classes=io.confluent.monitoring.clients.interc
eptor.MonitoringConsumerInterceptor
producer.interceptor.classes=io.confluent.monitoring.clients.interc
eptor.MonitoringProducerInterceptor

Start the Confluent Platform:5.

$ <confluent_path>/bin/confluent start

Before starting the Control Center, change its configuration:

Back up the control-center.properties file located in:6.

<confluent_path>/etc/confluent-control-center/control-
center.properties

Add the following lines at the end of the control-center.properties file:7.

confluent.controlcenter.internal.topics.partitions=1
confluent.controlcenter.internal.topics.replication=1
confluent.controlcenter.command.topic.replication=1
confluent.monitoring.interceptor.topic.partitions=1
confluent.monitoring.interceptor.topic.replication=1
confluent.metrics.topic.partitions=1
confluent.metrics.topic.replication=1

Start the Control Center:8.

<confluent_path>/bin/control-center-start

The Confluent Platform Chapter 5

[121]

How to do it...
Open the Control Center web graphic user interface at the following1.
URL: http://localhost:9021/.
The test_topic created in the previous recipe is needed:2.

$ <confluent_path>/bin/kafka-topics --zookeeper localhost:2181 --
create --test_topic --partitions 1 --replication-factor 1

From the Control Center, click on the Kafka Connect button on the left. Click on3.
the New source button:

From the connector class, drop down the menu and select4.
SchemaSourceConnector. Specify Connection Name as Schema-Avro-Source.
In the topic name, specify test_topic.5.
Click on Continue, and then click on the Save & Finish button to apply the6.
configuration.

The Confluent Platform Chapter 5

[122]

To create a new sink follow these steps:

From Kafka Connect, click on the SINKS button and then on the New sink1.
button:

From the topics list, choose test_topic and click on the Continue button2.
In the SINKS tab, set the connection class to SchemaSourceConnector; specify3.
Connection Name as Schema-Avro-Source
Click on the Continue button and then on Save & Finish to apply the new4.
configuration

The Confluent Platform Chapter 5

[123]

How it works...
Click on the Data streams tab and a chart shows the total number of messages produced
and consumed on the cluster:

There's more...
To see the full documentation of the Control Center monitoring Kafka, visit this
URL: https://docs.confluent.io/current/kafka/monitoring.html.

Using the Schema Registry
The Schema Registry is a repository. It is a metadata-serving layer for schemas. It provides a
REST interface for storing and retrieving Avro schemas. It has a versioned history of
schemas and provides compatibility analysis to leverage schema evolution based on that
compatibility.

https://docs.confluent.io/current/kafka/monitoring.html

The Confluent Platform Chapter 5

[124]

Remember that the Schema Registry has a REST interface; so, in this recipe, we use Java to
make HTTP requests, but it is precisely a REST interface used to promote language and
platform neutrality.

Getting ready
The Confluent Platform should be up and running:

$ confluent start schema-registry

How to do it...
Remember the Customer sees BTC price Avro schema of Doubloon:

{ "name": "customer_sees_btcprice",
 "namespace": "doubloon.avro",
 "type": "record",
 "fields": [
 { "name": "event", "type": "string" },
 { "name": "customer",
 "type": {
 "name": "id", "type": "long",
 "name": "name", "type": "string",
 "name": "ipAddress", "type": "string"
 }
 },
 { "name": "currency",
 "type": {
 "name": "name", "type": "string",
 "name": "price", "type": {
 "type": "enum", "namespace": "doubloon.avro",
 "name": "priceEnum", "symbols": ["USD", "EUR"]}
 }
 },
 { "name": "timestamp", "type": "long",
 "logicalType": "timestamp-millis"
 }
]
}

The Confluent Platform Chapter 5

[125]

Let's use the Schema Registry from Java:

Store the content of the Avro schema in a String variable:1.

String CSBP_SCHEMA = " "{n" + ""schema": "" + .../*content here*/ +
"}";

To interact with HTTP, this example uses the okhttp3 Java library:2.

import okhttp3.*;
...

Declare this variable:3.

OkHttpClient client = new OkHttpClient();

To manipulate the content type schemas, declare this variable:4.

private final static MediaType SCHEMA_CONTENT =
MediaType.parse("application/vnd.schemaregistry.v1+json");

This is an equivalent of the following in HTTP:5.

"Content-Type: application/vnd.schemaregistry.v1+json"

To post (add) this new schema to the Schema Registry:6.

Request request = new Request.Builder()
 .post(RequestBody.create(SCHEMA_CONTENT, CSBP_SCHEMA))
 .url("http://localhost:8081/subjects/CSBP/versions")
 .build();

String output = client.newCall(request).execute().body().string();

To list all the schemas stored in the Schema Registry:7.

request = new Request.Builder()
 .url("http://localhost:8081/subjects")
 .build();

output = client.newCall(request).execute().body().string();

The Confluent Platform Chapter 5

[126]

To display all versions of the CSBP schema:8.

request = new Request.Builder()
 .url("http://localhost:8081/subjects/CSBP/versions/")
 .build();

output = client.newCall(request).execute().body().string();

To display version 2 of the CSBP schema:9.

request = new Request.Builder()
 .url("http://localhost:8081/subjects/CSBP/versions/2")
 .build();

output = client.newCall(request).execute().body().string();

To display the schema with ID 5:10.

request = new Request.Builder()
 .url("http://localhost:8081/schemas/ids/5")
 .build();

output = client.newCall(request).execute().body().string();

To display the latest version of CSBP:11.

request = new Request.Builder()
.url("http://localhost:8081/subjects/CSBP/versions/latest")
 .build();

output = client.newCall(request).execute().body().string();

To check whether a schema is registered:12.

request = new Request.Builder()
 .post(RequestBody.create(SCHEMA_CONTENT, CSBP_SCHEMA))
 .url("http://localhost:8081/subjects/CSBP")
 .build();

output = client.newCall(request).execute().body().string();

The Confluent Platform Chapter 5

[127]

To test the schema compatibility:13.

request = new Request.Builder()
 .post(RequestBody.create(SCHEMA_CONTENT,
CSBP_SCHEMA))
.url("http://localhost:8081/compatibility/subjects/CSBP/versions/la
test")
 .build();

output = client.newCall(request).execute().body().string();

To display the top-level compatibility:14.

request = new Request.Builder()
 .url("http://localhost:8081/config")
 .build();

output = client.newCall(request).execute().body().string();

To set a top-level compatibility configuration, the possible values are none,15.
backward, forward, and full:

request = new Request.Builder()
 .put(RequestBody.create(SCHEMA_CONTENT,
"{"compatibility": "none"}"))
 .url("http://localhost:8081/config")
 .build();

output = client.newCall(request).execute().body().string();

To set the compatibility configuration for CSBP, the possible values are none,16.
backward, forward, and full:

request = new Request.Builder()
 .put(RequestBody.create(SCHEMA_CONTENT,
"{"compatibility": "backward"}"))
 .url("http://localhost:8081/config/CSBP")
 .build();

output = client.newCall(request).execute().body().string();

The Confluent Platform Chapter 5

[128]

See also
To see the full documentation of the Schema Registry, visit this URL:
https://docs.confluent.io/current/schema-registry/docs/index.html

Using the Kafka REST Proxy
What happens if we want to use Kafka in an environment that is not yet supported? Think
in terms of something such as JavaScript, PHP, and so on.

For this and other programming challenges, the Kafka REST Proxy provides a RESTful
interface to a Kafka cluster.

From a REST interface, one can produce and consume messages, view the state of the
cluster, and perform administrative actions without using the native Kafka protocol or
clients.

The example use cases are:

Sending data to Kafka from a frontend app built in a non-supported language
(yes, think of the JavaScript and PHP fronts, for example).
The need to communicate with Kafka from an environment that doesn't support
Kafka (think in terms of mainframes and legacy systems).
Scripting administrative actions. Think of a DevOps team in charge of a Kafka
system and a sysadmin who doesn't know the supported languages (Java, Scala,
Python, Go, or C/C++).

Getting ready
The Confluent Platform should be up and running:

$ confluent start kafka-rest

https://docs.confluent.io/current/schema-registry/docs/index.html

The Confluent Platform Chapter 5

[129]

How to do it...
The examples in this recipe are written using the curl command to empathize language
and platform independence. It could have been coded in JavaScript and PHP, but neutrality
is empathized.

To send the {"employee":1234} JSON message to the open_topic topic:1.

$ curl -X POST -H "Content-Type:
application/vnd.kafka.json.v2+json"
 -H "Accept: application/vnd.kafka.v2+json"
 --data '{"records":[{"value":{"employee":1234}}]}'
"http://localhost:8082/topics/open_topic"
{"offsets":[{"partition":0,"offset":0,"error_code":null,"error":nul
l}],"key_schema_id":null,"value_schema_id":null}

To create a consumer for JSON data:2.

$ curl -X POST -H "Content-Type: application/vnd.kafka.v2+json"
 --data '{"name": "powerful_consumer_instance", "format":
"json", "auto.offset.reset": "earliest"}'
 http://localhost:8082/consumers/powerful_json_consumer
 {"instance_id":"powerful_consumer_instance",
"base_uri":"http://localhost:8082/consumers/powerful_json_consumer/
instances/powerful_consumer_instance"}

To subscribe powerful_consumer to the open_topic topic:3.

$ curl -X POST -H "Content-Type: application/vnd.kafka.v2+json" --
data '{"topics":["open_topic"]}'
http://localhost:8082/consumers/powerful_json_consumer/instances/po
werful_consumer_instance/subscription

There is no content in the response.

To consume some data using the base URL in the first response:4.

$ curl -X GET -H "Accept: application/vnd.kafka.json.v2+json"
http://localhost:8082/consumers/powerful_json_consumer/instances/po
werful_consumer_instance/records
[{"key":null,"value":{"employee":"1234"},"partition":0,"offset":0,"
topic":"open_topic"}]

The Confluent Platform Chapter 5

[130]

To close the consumer:5.

$ curl -X DELETE -H "Content-Type: application/vnd.kafka.v2+json"
http://localhost:8082/consumers/powerful_json_consumer/instances/po
werful_consumer_instance

There is no content in the response.

There's more...
Here are some administrative tasks, for example, to inspect metadata:

To get the list of topics:1.

$ curl "http://localhost:8082/topics"
["__consumer_offsets","_schemas","open_topic"]

To get info on one topic:2.

$ curl "http://localhost:8082/topics/open_topic"
{"name":"open_topic","configs":{},"partitions":[{"partition":0,"lea
der":0,"replicas":[{"broker":0,"leader":true,"in_sync":true}]}]}

To get info about a topic's partitions:3.

$ curl "http://localhost:8082/topics/open_topic/partitions"
[{"partition":0,"leader":0,"replicas":[{"broker":0,"leader":true,"i
n_sync":true}]}]

See also
To see the full documentation of the Kafka REST Proxy, visit this URL:
https://docs.confluent.io/current/kafka-rest/docs/intro.html

Using Kafka Connect
As mentioned, Kafka Connect is a framework used to connect Kafka with external systems
such as key-value stores (think of Riak, Coherence, and Dynamo), databases (Cassandra),
search indexes (Elastic), and filesystems (HDFS).

https://docs.confluent.io/current/kafka-rest/docs/intro.html

The Confluent Platform Chapter 5

[131]

In this book, there is a whole chapter about Kafka connectors, but this recipe is part of the
Confluent Platform.

Getting ready
The Confluent Platform should be up and running:

$ confluent log connect

How to do it...
To read a data file with Kafka Connect:

To list the installed connectors:1.

$ confluent list connectors
Bundled Predefined Connectors (edit configuration under etc/):
 elasticsearch-sink
 file-source
 file-sink
 jdbc-source
 jdbc-sink
 hdfs-sink
 s3-sink

The configuration file is located at ./etc/kafka/connect-file-2.
source.properties. It has these values:

The instance name:

name=file_source

The implementer class:

connector.class=FileStreamSource

The number of tasks of this connector instance:

tasks.max=1

The Confluent Platform Chapter 5

[132]

The input file:

file=continuous.txt

The name of the output topic:

topic=connector-test

Edit continuous.txt; add the following content:3.

This is the line 1
This is the line 2
This is the line 3
This is the line 4

Load the file:4.

$ confluent load file-source
{
 "name": "file_source",
 "config": {
 "connector.class": "FileStreamSource",
 "tasks.max": "1",
 "file": "continuous.txt",
 "topics": "connector-test",
 "name": "file-source"
 },
 "tasks": []
}

Check whether the connector is OK:5.

$ confluent status connectors
[
 "file-source"
]

Check the status of the task:6.

$ confluent status file-source
{
 "name": "file-source",
 "connector": {
 "state": "RUNNING",
 "worker_id": "10.110.30.20:8083"
 },
 "tasks": [

The Confluent Platform Chapter 5

[133]

 {
 "state": "RUNNING",
 "id": 0,
 "worker_id": "10.110.30.20:8083"
 }
]
}

Finally, check the topic with a consumer to see the messages in the file:7.

$ kafka-console-consumer --bootstrap-server localhost:9092 --topic
connector-test --from-beginning

This is the line 1
This is the line 2
This is the line 3
This is the line 4

There's more...
To write a data file with Kafka Connect, the configuration file is located
at ./etc/kafka/connect-file-sink.properties. It has the following values:

The instance name:

name=file_sink

The implementer class:

connector.class=FileStreamSink

The number of tasks of this connector instance:

tasks.max=1

The output file:

file=the_sink.txt

The name of the output topic:

topic=connector-test

The Confluent Platform Chapter 5

[134]

Let's follow these steps:

Load the file:1.

$ confluent load file-sink
{
 "name": "file-sink",
 "config": {
 "connector.class": "FileStreamSink",
 "tasks.max": "1",
 "file": "the_sink.txt",
 "topics": "connector-test",
 "name": "file-sink"
 },
 "tasks": []
}

Check whether the connector is OK:2.

$ confluent status connectors
[
 "file-source",
 "file-sink"
]

Check the status of the task:3.

$ confluent status file-sink
{
 "name": "file-sink",
 "connector": {
 "state": "RUNNING",
 "worker_id": "10.110.30.20:8083"
 },
 "tasks": [
 {
 "state": "RUNNING",
 "id": 0,
 "worker_id": "10.110.30.20:8083"
 }
]
}

The Confluent Platform Chapter 5

[135]

Finally, modify/add more content to the continous.txt file and see the result in4.
the_sink.txt

To unload the connectors, run the following:5.

$ confluent unload file-source
$ confluent unload file-sink

To stop Kafka Connect and the worker:6.

$ confluent stop connect
The output is:
Stopping connect
connect is [DOWN]

See also
To see the full documentation of Kafka Connect, visit this URL:
https://docs.confluent.io/current/connect/index.html

https://docs.confluent.io/current/connect/index.html

6
Kafka Streams

This chapter covers the following recipes:

Setting up the project
Running the streaming application

Introduction
Life is not discrete; it is a continuous flow. The first four chapters were focused on how to
deal with a data pipeline manipulating every message individually. But what happens
when we need to find a pattern or make a calculation over a subset of messages?

In the data world, a stream is linked to the most important abstractions. A stream depicts a
continuously updating and unbounded process. Here, unbounded means unlimited size. By
definition, a stream is a fault-tolerant, replayable, and ordered sequence of immutable data
records. A data record is defined as a key-value pair.

Before we proceed, some concepts need to be defined:

Stream processing application: Any program that utilizes the Kafka streams
library is known as a stream processing application.
Processor topology: This is a topology that defines the computational logic of the
data processing that a stream processing application requires to be performed. A
topology is a graph of stream processors (nodes) connected by streams (edges).

There are two ways to define a topology:

Via the low-level processor API
Via the Kafka streams DSL

Kafka Streams Chapter 6

[137]

Stream processor: This is a node present in the processor topology. It represents a
processing step in a topology and is used to transform data in streams. The
standard operations—filter, join, map, and aggregations—are examples of stream
processors available in Kafka streams.
Windowing: Sometimes, data records are divided into time buckets by a stream
processor to window the stream by time. This is usually required for aggregation
and join operations.
Join: When two or more streams are merged based on the keys of their data
records, a new stream is generated. The operation that generates this new stream
is called a join. A join over record streams is usually required to be performed on
a windowing basis.
Aggregation: A new stream is generated by combining multiple input records
into a single output record, by taking one input stream. The operation that creates
this new stream is known as aggregation. Examples of aggregations are sums
and counts.

Setting up the project
This recipe sets the project to use Kafka streams in the Treu application project.

Getting ready
The project generated in the first four chapters is needed.

How to do it...
Open the build.gradle file on the Treu project generated in Chapter 4, Message1.
Enrichment, and add these lines:

apply plugin: 'java'
apply plugin: 'application'

sourceCompatibility = '1.8'

mainClassName = 'treu.StreamingApp'

repositories {
 mavenCentral()

Kafka Streams Chapter 6

[138]

}

version = '0.1.0'

dependencies {
 compile 'org.apache.kafka:kafka-clients:1.0.0'
 compile 'org.apache.kafka:kafka-streams:1.0.0'
 compile 'org.apache.avro:avro:1.7.7'
}

jar {
 manifest {
 attributes 'Main-Class': mainClassName
 }

 from {
 configurations.compile.collect {
 it.isDirectory() ? it : zipTree(it)
 }
 } {
 exclude "META-INF/*.SF"
 exclude "META-INF/*.DSA"
 exclude "META-INF/*.RSA"
 }
}

To rebuild the app, from the project root directory, run this command:2.

$ gradle jar

The output is something like:

...
BUILD SUCCESSFUL
Total time: 24.234 secs

As the next step, create a file called StreamingApp.java in the3.
src/main/java/treu directory with the following contents:

package treu;

import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.Topology;

import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsConfig;

Kafka Streams Chapter 6

[139]

import org.apache.kafka.streams.kstream.KStream;

import java.util.Properties;

public class StreamingApp {

 public static void main(String[] args) throws Exception {

 Properties props = new Properties();
 props.put(StreamsConfig.APPLICATION_ID_CONFIG,
"streaming_app_id");// 1
 props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:9092"); //2

 StreamsConfig config = new StreamsConfig(props); // 3
 StreamsBuilder builder = new StreamsBuilder(); //4

 Topology topology = builder.build();

 KafkaStreams streams = new KafkaStreams(topology, config);

 KStream<String, String> simpleFirstStream =
builder.stream("src-topic"); //5

 KStream<String, String> upperCasedStream =
simpleFirstStream.mapValues(String::toUpperCase); //6

 upperCasedStream.to("out-topic"); //7

 System.out.println("Streaming App Started");
 streams.start();
 Thread.sleep(30000); //8
 System.out.println("Shutting down the Streaming App");
 streams.close();
 }
}

How it works...
Follow the comments in the code:

In line //1, the APPLICATION_ID_CONFIG is an identifier for the app inside the
broker
In line //2, the BOOTSTRAP_SERVERS_CONFIG specifies the broker to use

Kafka Streams Chapter 6

[140]

In line //3, the StreamsConfig object is created, it is built with the properties
specified
In line //4, the StreamsBuilder object is created, it is used to build a topology
In line //5, when KStream is created, the input topic is specified
In line //6, another KStream is created with the contents of the src-topic but
in uppercase
In line //7, the uppercase stream should write the output to out-topic
In line //8, the application will run for 30 seconds

Running the streaming application
In the previous recipe, the first version of the streaming app was coded. Now, in this recipe,
everything is compiled and executed.

Getting ready
The execution of the previous recipe of this chapter is needed.

How to do it...
The streaming app doesn't receive arguments from the command line:

To build the project, from the treu directory, run the following command:1.

$ gradle jar

If everything is OK, the output should be:

...
BUILD SUCCESSFUL
Total time: ...

Kafka Streams Chapter 6

[141]

To run the project, we have four different command-line windows. The following2.
diagram shows what the arrangement of command-line windows should look
like:

Figure 6.1: The four Terminals to test the streaming application—Confluent Control Center, Message producer, Message consumer, and the application itself

In the first command-line Terminal, run the control center:3.

$ <confluent-path>/bin/confluent start

In the second command-line Terminal, create the two topics needed:4.

$ bin/kafka-topics --create --topic src-topic --zookeeper
localhost:2181 --partitions 1 --replication-factor 1
$ bin/kafka-topics --create --topic out-topic --zookeeper
localhost:2181 --partitions 1 --replication-factor 1

In that command-line Terminal, start the producer:5.

$ bin/kafka-console-producer --broker-list localhost:9092 --topic
src-topic

This window is where the input messages are typed.

Kafka Streams Chapter 6

[142]

In the third command-line Terminal, start a consumer script listening to out-6.
topic:

$ bin/kafka-console-consumer --bootstrap-server localhost:9092 --
from-beginning --topic out-topic

In the fourth command-line Terminal, start up the processing application. Go the7.
project root directory (where the Gradle jar command was executed) and run:

$ java -jar ./build/libs/treu-0.1.0.jar localhost:9092

Go to the second command-line Terminal (console-producer) and send the8.
following three messages (remember to press Enter between messages and
execute each one in just one line):

$> Hello [Enter]
$> Kafka [Enter]
$> Streams [Enter]

The messages typed in console-producer should appear uppercase in the out-9.
topic console consumer window:

> HELLO
> KAFKA
> STREAMS

7
Managing Kafka

This chapter covers the following topics:

Managing consumer groups
Dumping log segments
Importing ZooKeeper offsets
Using the GetOffsetShell
Using the JMX tool
Using the MirrorMaker tool
Replaying log producer
Using state change log merger

Introduction
Managing an Apache Kafka cluster in production can be a difficult task. The Kafka authors
have developed some command-line tools to make a DevOps team's life easier for
debugging, testing, and running a Kafka cluster. This chapter covers some of these tools.

Managing consumer groups
The ConsumerGroupCommand tool is valuable when debugging consumer groups. This tool
allows us to list, describe, and delete consumer groups.

Managing Kafka Chapter 7

[144]

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, the broker running, and some
topics created on it. The topics should have produced some messages and have some
consumers created in a consumer group. The point here is to get some information about
the running consumers.

How to do it...
From the Kafka installation directory, run the following command:1.

$ bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --
list

The output is something like the following:

Note: This will only show information about consumers that use the
Java consumer API (non-ZooKeeper-based consumers).
 console-consumer-10354
 vipConsumersGroup
 console-consumer-44233

To see the offsets, use describe on the consumer group as follows:2.

$ bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --
describe --group vipConsumersGroup
Note: This will only show information about consumers that use the
Java consumer API (non-ZooKeeper-based consumers).
 TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG
CONSUMER-ID HOST CLIENT-ID
 source-topic 0 1 1 0
consumer-1-be 4c31-e197-455b-89fb-cce53e380a26 /192.168.1.87
consumer-1

As the command says, if old high-level consumers are used and the group3.
metadata is stored in ZooKeeper (with the offsets.storage =zookeeper
flag), specify zookeeper instead of bootstrap-server, as follows:

$ bin/kafka-consumer-groups.sh --zookeeper localhost:2181 --list

Managing Kafka Chapter 7

[145]

How it works...
The ConsumerGroupCommand takes the following arguments:

--group <String: consumer group>: This is the consumer group to
manipulate
--bootstrap-server <String: server to connect>: This is the server to
connect to (for consumer groups based on a non-old consumer)
--zookeeper <String: urls>: This is the ZooKeeper connection specified as
a comma-separated list with elements in the form host:port (for consumer
groups based on old consumers)
--topic <String: topic>: This the topic that contains the consumer group
information to manipulate
--list: This lists all the consumer groups of the broker
--describe: This describes the consumer group and lists the offset lag (number
of messages not yet processed) on a given group
--reset-offsets: This resets the offsets of the consumer group
--delete: This is passed in a group to delete topic partition offsets and
ownership information on the entire consumer group

Dumping log segments
This tool is for debugging the Kafka log data for various purposes, such as reviewing how
the logs have been written and to see the status of the segments. Also, it is useful for
reviewing the log files generated by Kafka.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, broker running and some
topics created on it. The topics should have produced some messages and have some
consumers created in a consumer group. The point here is to have some information in the
Kafka log segments, for debugging, auditing, or back up, as well as for checking log
segment health.

Managing Kafka Chapter 7

[146]

How to do it...
From the Kafka installation directory, run the following command:1.

$ bin/kafka-run-class.sh kafka.tools.DumpLogSegments --deep-
iteration --files /tmp/kafka-logs/your-
topic-0/00000000000000000000.log

The output is something like the following:

Dumping /tmp/kafka-logs/source-topic-0/00000000000000000000.log
Starting offset: 0
offset: 0 position: 0 CreateTime: 1511661360150 isvalid: true
keysize: -1 valuesize: 4 magic: 2 compresscodec: NONE producerId:
-1 sequence: -1 isTransactional: false headerKeys: []

How it works...
The DumpLogSegments command parses the log file and dumps its contents to the console;
it is useful for debugging a seemingly corrupt log segment.

The DumpLogSegments command takes the following arguments:

--deep-iteration: If set, it uses deep iteration (complete audit) instead of
shallow iteration (superficial audit) to examine the log files.
--files <String: file1, file2, ...>: This is a mandatory parameter.
The comma-separated list of data log files to be dumped.
--max-message-size <Integer: size>: This is used to offset the size of the
largest message. The default value is 5242880.
--print-data-log: If it is set, the messages' content will be printed when
dumping data logs.
--verify-index-only: If it is set, this process just verifies the index log without
printing its content.

Importing ZooKeeper offsets
Now we have a backup of the offsets contained in ZooKeeper at some point in time, one can
restore them. This tool is handy for restoring the status of the offsets to the point when they
were taken.

Managing Kafka Chapter 7

[147]

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, broker running, and some
topics created on it. The topics should have produced some messages and have some
consumers created. A file with the ZooKeeper offset previously exported is needed.

How to do it...
Let's assume that we have our offset status in the file, /temp/zkoffset.txt.

From the Kafka installation directory, run the following command:

$ bin/kafka-run-class.sh kafka.tools.ImportZkOffsets --inputfile
/tmp/zkoffset.txt --zkconnect localhost:2181

How it works...
The preceding command takes the following arguments:

--zkconnect: This specifies the ZooKeeper connect string. It is a comma-
separated list in the host:port format.
--input-file: This specifies the file to import ZooKeeper offsets from.
--help: This prints the help message.

Using the GetOffsetShell
When debugging an Apache Kafka project, it is sometimes useful to obtain the offset values
of the topics. For this purpose, this tool comes in handy.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, broker running, and some
topics created on it. The topics should have produced some messages and have some
consumers created.

Managing Kafka Chapter 7

[148]

How to do it...
From the Kafka installation directory, run the following command:

$ bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list
localhost:9092 --topic source-topic --time -1

The output is something like the following:

source-topic:0:0
source-topic:1:0
source-topic:2:6
source-topic:3:0

How it works...
The GetOffsetShell is an interactive shell to get the consumer offsets and takes the
following options:

--broker-list <String: hostname:port>: This specifies the list of server
ports to connect to in a comma-separated list in the host:port format.
--max-wait-ms <Integer: ms>: This specifies the maximum amount of time
each fetch request has to wait. The default value is 1000, that is 1 second.
--offsets <Integer: count>: This specifies the number of offsets returned.
By default 1, only one offset.
--partitions <String: partition ids>: It is a comma-separated list of
partition IDs. If it is not specified, it fetches the offsets for all the partitions.
--time <Long: timestamp>: It specifies the timestamp of the offsets fetched.
-1 for the latest and -2 for the earliest.
--topic <String: topic>: This is mandatory and it specifies the topic to fetch
the offset.

Using the JMX tool
JMX is Java management extensions. For the seasoned Java user, JMX is a technology that
provides the tools for managing and monitoring the JVM. Kafka has its own JMX tool to get
the JMX reports in an easy way.

Managing Kafka Chapter 7

[149]

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, broker running, and some
topics created on it. The topics should have produced some messages and have some
consumers created.

How to do it...
From the Kafka installation directory, run the following command:

$ bin/kafka-run-class.sh kafka.tools.JmxTool --jmx-url
service:jmx:rmi:///jndi/rmi://:9999/jmxrmi

How it works...
The JMX tool dumps the JMX values to standard output. The JMX tool takes the following
parameters:

--attributes <String: name>: This is a comma-separated list of objects with
a whitelist of attributes to be queried. All the objects are reported if none are
mentioned.
--date-format <String: format>: This specifies the data format to be used
for the time field. The available options are the same as those for
java.text.SimpleDateFormat.
--help: This prints the help message.
--jmx-url <String: service-url>: This specifies the URL to connect to the
poll JMX data. The default value is:
service:jmx:rmi:///jndi/rmi://:9999/jmxrmi.
--object-name <String: name>: This specifies the JMX object name to be
used as a query, it can contain wild cards. If no objects are specified, all the
objects will be queried.
--reporting-interval <Integer: ms>: This specifies the interval in
milliseconds with the poll JMX stats. The default value is 2000, that is 2 seconds.

Managing Kafka Chapter 7

[150]

There's more...
JMX is a vast topic and beyond the scope of this book. To view JMX data, there is a popular
tool called JConsole. To use JConsole, just type the command $ jconsole in a machine
with Java installed.

For more information, visit the JConsole
page: https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole
.html.

Using the MirrorMaker tool
The MirrorMaker tool is useful when we need to replicate the same data in a different
cluster. The MirrorMaker tool continuously copies data between two Kafka clusters.

Getting ready
For this recipe, we need two different instances of Kafka running in different clusters. The
objective is to replicate the data from one to the other.

How to do it...
From the Kafka installation directory, run this command:

$ bin/kafka-run-class.sh kafka.tools.MirrorMaker --consumer.config
config/consumer.config --producer.config config/producer.config --whitelist
source-topic

How it works...
The MirrorMaker tool takes the following parameters:

--blacklist <String: Java regex(String)>: This specifies the blacklist of
topics to be mirrored. This can be a regular expression as well.
--consumer.config <String: config file>: This specifies the path to the
consumer configuration file to consume from a source cluster. Multiple files may
be specified.

https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html

Managing Kafka Chapter 7

[151]

--help: This prints the help message.
--new.consumer: This is used to create a new consumer in MirrorMaker (it is set
by default).
--num.streams <Integer: Number of threads>: This indicates the number
of consumption streams (default: 1).
--producer.config <String: config file>: This specifies the path to the
embedded producer configuration file.
--whitelist <String: Java regex(String)>: This specifies the whitelist of
topics to be mirrored.

There's more...
To understand how Kafka mirroring works,
visit: https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330.

See also
This page contains a comparison between MirrorMaker and the confluent
replicator: https://docs.confluent.io/current/multi-dc/mirrormaker.html

Replaying log producer
The ReplayLogProducer tool is used to move data from one topic to another.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, broker running, and some
topics created on it. The topics should have produced some messages. The source topic and
the destination topic are required.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330
https://docs.confluent.io/current/multi-dc/mirrormaker.html

Managing Kafka Chapter 7

[152]

How to do it...
From the Kafka installation directory, run this command:

$ bin/kafka-run-class.sh kafka.tools.ReplayLogProducer --sync --broker-list
localhost:9092 --inputtopic source-topic --outputtopic good-topic --
zookeeper localhost:2181

How it works...
The ReplayLogProducer takes the following parameters:

--broker-list <String: hostname:port>: This is a mandatory parameter.
It specifies the broker list.
--inputtopic <String: input-topic>: This is a mandatory parameter. It
specifies the source topic.
--messages <Integer: count>: This specifies the number of messages to
send. The default value is -1, meaning infinite.
--outputtopic <String: output-topic>: This is a mandatory parameter. It
specifies the destination topic.
--reporting-interval <Integer: ms>: This specifies the interval in
milliseconds to print the progress information. The default value is five seconds.
--threads <Integer: threads>: This specifies the number of working
threads. By default, just one thread is used.
--sync: If it is specified, the messages are sent synchronously, if not they are sent
asynchronously.
--zookeeper <String: zookeeper url>: This is a mandatory parameter. It
specifies the connection string for the ZooKeeper connection in the host:port
format. Specify multiple URLs to allow a fail-over mechanism.

Using state change log merger
The StateChangeLogMerger tool merges the state change logs from different brokers for
easy posterior analysis. It is a tool for merging the log files from several brokers to rebuild a
unified history of what happened.

Managing Kafka Chapter 7

[153]

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, brokers running, and some
topics created on it. The topics should have produced some messages. It is better if there are
several days' worth of broker information.

How to do it...
From the Kafka installation directory, run this command:

$ bin/kafka-run-class.sh kafka.tools.StateChangeLogMerger --log-regex
/tmp/state-change.log* --partitions 0,1,2 --topic source-topic

How it works...
The StateChangeLogMerger command takes the following parameters:

--end-time <String: end>: This specifies the latest timestamp of state change
entries to be merged in java.text.SimpleDateFormat
--logs <String: file1, file2, ...>: This is used to specify a comma-
separated list of state change logs or regex for the log filenames
--logs-regex <String: regex>: This is used to specify a regex to match the
state change log files to be merged
--partitions <String: 0, 1, 2, ...>: This specifies a comma-separated
list of partition IDs whose state change logs should be merged
--start-time <String: start>: This specifies the earliest timestamp of state
change entries to be merged in java.text.SimpleDateFormat
--topic <String: topic>: This specifies the topic whose state change logs
should be merged

This chapter has covered some system tools to manage Apache Kafka. The source code for
these tools can be found
at: https://github.com/apache/kafka/tree/1.0/core/src/main/scala/kafka/tools.

A brief description of these tools can be found
at: https://cwiki.apache.org/confluence/display/KAFKA/System+Tools.

https://github.com/apache/kafka/tree/1.0/core/src/main/scala/kafka/tools
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools

8
Operating Kafka

This chapter covers the following topics:

Adding or removing topics
Modifying message topics
Implementing a graceful shutdown
Balancing leadership
Expanding clusters
Increasing the replication factor
Decommissioning brokers
Checking the consumer position

Introduction
This chapter explains the different operations that can be done on a Kafka cluster. These
tools cannot be used daily, but they help the DevOps team manage the Kafka clusters.

Adding or removing topics
The first chapters explained how to create a topic. The power behind the tool is that it can
add topics programmatically or manually, and can enable the Kafka option to automatically
add topics. In production, it is recommended that you disable automatic topic creation to
eliminate programming errors where data is accidentally pushed to a topic that it didn't
mean to create at the beginning.

Operating Kafka Chapter 8

[155]

Getting ready
For this recipe, Kafka must be installed, ZooKeeper should be running, and the broker
should be running with some topics created on it.

How to do it...
Go to the Kafka installation directory and create a topic called test-topic:1.

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --topic
test-topic --partitions 5 --replication-factor 2

The output should be as follows:

Created topic "test-topic".

Describe the test-topic topic with the following command:2.

$ bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic
test-topic

The output should be as follows:

topic:test-topic PartitionCount:10 ReplicationFactor:2
Configs:
 Topic: test-topic Partition: 0 Leader: 0 Replicas:
0 Isr: 0
 Topic: test-topic Partition: 1 Leader: 0 Replicas:
0 Isr: 0
 Topic: test-topic Partition: 2 Leader: 0 Replicas:
0 Isr: 0
 Topic: test-topic Partition: 3 Leader: 0 Replicas:
0 Isr: 0
 Topic: test-topic Partition: 4 Leader: 0 Replicas:
0 Isr: 0

Delete the test-topic with the following command:3.

$ bin/kafka-topics.sh --delete --zookeeper localhost:2181 --topic
test-topic

Operating Kafka Chapter 8

[156]

The output should be as follows:

Topic test-topic is marked for deletion.
Note: This command will not have impact if delete.topic.enable in
configuration file is not set to true.

How it works...
The replication factor indicates how many servers replicate each message that is written.
For example, if the replication factor is four, it indicates that three servers can fail before the
data is lost. It is recommended to use a replication factor greater than one to reboot the
machines without interrupting the service.

The partition number indicates how many logs the topic will be divided into. Remember
that each partition must fit entirely on a single server. It is clear that if four partitions are
specified, the topic will be handled by no more than four servers. The partition number also
impacts the parallelism of the consumers.

Each partition has its own directory under the Kafka log directory. This directory name
(log.dir and log.dirs are specified in the config/server.properties) consists of the
topic name followed by a dash and the partition ID. The directory name cannot be over 255
characters long, limiting the topic name length.

The kafka-topics shell takes parameters; some are explained as follows:

--create: This is specified to create a topic.
--delete: This is specified to delete a topic. The server configuration must have
delete.topic.enable=true. By default, this is set as true. When it is false, the
topic cannot be deleted.
--describe: This lists the details for the given topics.
--if-exists: This parameter is used when altering or deleting topics; the action
will only execute if the topic exists.
--if-not-exists: This parameter is used when creating topics; the action will
only execute if the topic does not already exist.
--list: This is specified to list all topics.
--topic <String: name>: This specifies the topic name.
--partitions <Integer: num>: This is used to specify the number of
partitions to be created for the topic.

Operating Kafka Chapter 8

[157]

--replication-factor <Integer: num>: This specifies the number of
replicas to be created for the topic. As explained, this number must be less than
the number of nodes in the cluster.
--zookeeper <String: urls>: This specifies the ZooKeeper connect string; it
is a comma-separated list in the format, host:port.

Other configurations needed for the topic can be specified by using the following
conventions:

--config <String: name=value>: This is used to override the default
properties set on the server
--delete-config <String: name>: This specifies that a topic configuration
override be removed for an existing topic

There's more...
Many more configuration options are available. These have been detailed
at http://kafka.apache.org/documentation/#configuration.

See also
Check broker configuration in Chapter 1, Configuring Kafka, for how to set topic
defaults at the broker level

Modifying message topics
Once created, topics can be modified. For example, when a new node is added to the cluster
or a different parallelism is needed. Sometimes, deleting the topic and starting over is not
the correct solution.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper should be running, and the broker
should be running with some topics created on it.

http://kafka.apache.org/documentation/#configuration

Operating Kafka Chapter 8

[158]

How to do it...
Run the following command from the Kafka installation directory:1.

$ bin/kafka-topics.sh --zookeeper localhost:2181/chroot --alter --
topic test-topic --partitions 40 --config delete.retention.ms=10000
--delete-config retention.ms

This command changes the delete.retention.ms to 10 seconds and deletes the
configuration retention.ms

Kafka does not support reducing the number of partitions for a topic.

There is the kafka-configs shell; the syntax to add and remove is as follows:

To add a config to a topic, run the following:2.

$ bin/kafka-configs.sh --zookeeper host:port/chroot --entity-type
topics --entity-name topic_name --alter --add-config x=y

To remove a config from a topic, run the following:3.

$ bin/kafka-configs.sh --zookeeper host:port/chroot --entity-type
topics --entity-name topic_name --alter --delete-config x

How it works...
So, there are two shells to change a topic configuration. The first is kafka-topics
(explained in a previous recipe), and the second is kafka-configs.

The kafka-configs shell takes parameters; some are explained here:

--add-config<String>: This is the configuration to add, in a comma-separated
list in the format k1=v1,k2=[v1,v2,v2],k3=v3.
--alter: This is used to modify a configuration for an entity.
--delete-config <String>: This is the configuration to be removed (comma-
separated list).

Operating Kafka Chapter 8

[159]

--describe: This parameter lists the current configurations for the given entity.
--entity-name <String>: This is the name of the entity.
--entity-type <String>: This is the type of the entity; it could be topics,
clients, users, or brokers.
--zookeeper <String: urls>: This is a mandatory parameter and specifies
the ZooKeeper connect string. It is a comma-separated list in the format
host:port.

There's more...
Recall that kafka-configs.sh is not just for topics; it can also be used to modify the
configuration of clients, users, and brokers.

See also
More configuration options are available. These have been detailed
at http://kafka.apache.org/documentation/#topicconfigs.

Implementing a graceful shutdown
In production, you may experience an abrupt shutdown caused by inevitable
circumstances; for example, a power outage or a sudden machine reboot. But more often,
there are planned shutdowns for machine maintenance or configuration changes. In these
situations, the smooth shutdown of a node in the cluster is desirable, maintaining the
cluster up and running without data loss.

Getting ready
For this recipe, Kafka must be installed.

http://kafka.apache.org/documentation/#topicconfigs

Operating Kafka Chapter 8

[160]

How to do it...
First, edit the Kafka configuration file in config/server.properties and add1.
the following line:

controlled.shutdown.enable=true

Start all the nodes2.
With all the cluster nodes running, shut down one broker with the following3.
command in the Kafka installation directory:

$ bin/kafka-server-stop.sh

How it works...
If the setting for a controlled shutdown is enabled, it ensures that a server shutdown
happens properly as follows:

It writes all the logs to disk so that there are no issues with logs when you restart
the broker
If this node is the leader, it makes sure that another node becomes the leader for a
partition

This ensures that each partition's downtime is reduced considerably.

It is important to say that a controlled shutdown will only succeed if all the partitions
hosted on the broker have replicas (a replication factor greater than one and at least one
replica alive).

Balancing leadership
A leader broker of a topic partition can be crashed or stopped, and then the leadership is
transferred to another replica. This might produce an imbalance in the lead Kafka brokers
(an imbalance is when the leader is dead or unreachable). To recover from this imbalance,
we need balancing leadership.

Operating Kafka Chapter 8

[161]

Getting ready
For this recipe, a Kafka cluster setup with several nodes is needed. One of the Kafka nodes
is down, and subsequently, it is restored.

How to do it...
Run the following command from the Kafka installation directory:

$ bin/kafka-preferred-replica-election.sh --zookeeperlocalhost:2181/chroot

How it works...
If the list of replicas for a partition is [3, 5, 8], then node 3 is preferred as the leader, rather
than nodes 5 or 8. This is because it is earlier in the replica list. By running this command,
we tell the Kafka cluster to try to restore leadership to the restored replicas.

To explain how it works, suppose that after the leader stops, new Kafka nodes join the
cluster. This command avoids running them as slaves without direct operations assigned
and redistributes the load among the available nodes.

The command takes the following parameter:

--zookeeper <String: urls>: This is the mandatory parameter. It specifies
the ZooKeeper connect string and is a comma-separated list in the format
host:port. This parameter is useful if you have more than one Kafka cluster
using the same ZooKeeper cluster.

There's more...
So we don't have to execute this command continuously, configure Kafka to do this
automatically by turning this flag on in the configuration:

auto.leader.rebalance.enable = true

Operating Kafka Chapter 8

[162]

Expanding clusters
Adding nodes to an existing cluster is not the same as building a new Kafka cluster. Adding
nodes to an existing cluster is easy. We do this by assigning them a unique broker ID, but
they are not going to receive data automatically. A cluster reconfiguration is needed to
indicate which partition replicas go where. Then, the partitions will move to the newly
added nodes. This recipe shows how to do that.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper should be running, and the broker
should be running with some topics created on it.

How to do it...
This recipe moves all partitions for existing topics: topic_1 and topic_2. The1.
newly generated brokers are broker_7 and broker_8 (suppose that brokers 1 to
6 already exist). After finishing the movement, all partitions for topic_1 and
topic_2 will exist only in broker_7 and broker_8.
The tool only accepts JSON files as input; let's create the JSON file as follows:2.

$ cat to_reassign.json

{"topics": [{"topic": "topic_1"},
 {"topic": "topic_2"}],
"version":1
}

When the JSON file is ready, use the partition reassignment tool to generate the3.
assignment (note it will not be executed yet) with the following command:

$ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --
topics-to-move-json-file to_reassign.json --broker-list "7,8" --
generate

Operating Kafka Chapter 8

[163]

The output is something like this:

 Current partition replica assignment
 {"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[1,2]},

{"topic":"topic_1","partition":1,"replicas":[3,4]},

{"topic":"topic_1","partition":2,"replicas":[5,6]},

{"topic":"topic_2","partition":0,"replicas":[1,2]},

{"topic":"topic_2","partition":1,"replicas":[3,4]},

{"topic":"topic_2","partition":2,"replicas":[5,6]}]
 }
 Proposed partition reassignment configuration
 {"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[7,8]},

{"topic":"topic_1","partition":1,"replicas":[7,8]},

{"topic":"topic_1","partition":2,"replicas":[7,8]},

{"topic":"topic_2","partition":0,"replicas":[7,8]},

{"topic":"topic_2","partition":1,"replicas":[7,8]},

{"topic":"topic_2","partition":2,"replicas":[7,8]}]
 }

Remember that it is just a proposal; no changes have been made to the cluster yet.
The final reassignment should be specified in a new JSON file.

Once we have generated a new configuration, make some changes from the4.
proposal. Create a new JSON file with the output of the previous step. Modify the
destinations of the different partitions.
Write a JSON file (custom-assignment.json) to move each particular partition5.
to each specific node as needed:

{"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[7,8]},

{"topic":"topic_1","partition":1,"replicas":[7,8]},

{"topic":"topic_1","partition":2,"replicas":[7,8]},

Operating Kafka Chapter 8

[164]

{"topic":"topic_2","partition":0,"replicas":[7,8]},

{"topic":"topic_2","partition":1,"replicas":[7,8]}]

{"topic":"topic_2","partition":2,"replicas":[7,8]},
 }

Now, to execute the reassignment, run the following command from the Kafka6.
installation directory:

$ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --
reassignment-json-file custom-assignment.json --execute

The output is something like this:

 Save this to use as the --reassignment-json-file option during
rollback
 Successfully started reassignment of partitions
 {"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[7,8]},

{"topic":"topic_1","partition":1,"replicas":[7,8]},

{"topic":"topic_1","partition":2,"replicas":[7,8]},

{"topic":"topic_2","partition":0,"replicas":[7,8]},

{"topic":"topic_2","partition":1,"replicas":[7,8]}]

{"topic":"topic_2","partition":2,"replicas":[7,8]},
 }

Now, run the same command to verify the partition assignment:7.

 $ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 -
-reassignment-json-file custom-assignment.json --verify

The output is something like this:

 Status of partition reassignment:
 Reassignment of partition [topic_1,0] completed successfully
 Reassignment of partition [topic_1,1] completed successfully
 Reassignment of partition [topic_1,2] is in progress
 Reassignment of partition [topic_2,0] completed successfully
 Reassignment of partition [topic_2,1] is in progress
 Reassignment of partition [topic_2,2] is in progress

Operating Kafka Chapter 8

[165]

How it works...
The first step creates a JSON file with the topics to reassign.

The second step generates a candidate configuration for the specified Kafka topics using the
reassign partitions tool. This tool takes the following parameters:

--broker-list <String: brokerlist>: These are the brokers to which the
partitions need to be reassigned, in the form 0, 1, 2. Required if --topics-to-
move-json-file is used to generate reassignment configuration.
--execute: This is used to start the reassignment, as specified in --
reassignment-json-file.
--generate: This is used to generate a candidate partition reassignment
configuration. As seen, it does not execute it.
--reassignment-json-file <String: file>: This is the JSON filename of
the partition reassignment configuration.
--topics-to-move-json-file <String: file>: This is used to generate a
new assignment configuration, moving the partitions of the specified topics to the
list of brokers indicated by the --broker-list option.
--verify: This is used to verify whether the new assignment has completed as
specified in the --reassignment-json-file.
--zookeeper <String: urls>: This is a mandatory parameter: the connection
string for the ZooKeeper connection, in the form host:port. Multiple URLs
mean allowing fail-over.

The execute step will start moving data from the original replica to the new ones. It will
take time, based on how much data is being moved. Finally, to check the status of the
movement, run the verify command. It will display the current status of the different
partitions.

There's more...
To perform a rollback, just save the configuration generated in step 2 and apply this recipe,
moving the topics to the original configuration.

Operating Kafka Chapter 8

[166]

Increasing the replication factor
In cases where more machines are added to the Kafka cluster, increasing the replication
factor means moving replicas for a topic to these new machines.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, and the broker running with
some topics created on it with some replicas. Start new nodes and add them to this cluster.

How to do it...
This example increases the replication factor of partition 0 of the topic topic_1 from 2 to 4.
Before the increment, the partition's only replica existed on brokers 3 and 4. This example
adds more replicas on brokers 5 and 6.

Create a JSON file named increase-replication.json with this code:1.

 $cat increase-replication.json
 {"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[3,4,5,6]
}]}

Then, run the following command:2.

$ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --
reassignment-json-file increase-replication-factor.json --execute

How it works...
At the beginning, topic_1 was created, with replication factor 2. The cluster has the
brokers 3 and 4. Now, we have added more brokers to the cluster, called 5 and 6.

The JSON file we created indicates the partitions to be modified. In the JSON file, we
indicated the topic, partition ID, and the list of replica brokers. Once it executes, the new
Kafka brokers will start replicating the topic.

The parameters this command takes are indicated in the previous recipe.

Operating Kafka Chapter 8

[167]

There's more...
To verify the status of the reassignment, run the following command:

$ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --
reassignment-json-file increase-replication.json --verify

Decommissioning brokers
As Kafka clusters can be expanded, they can also be shortened. There are cases where it is
necessary to remove some nodes. Removing some Kafka nodes from a cluster is called
decommissioning. Decommissioning is not automatic; some reassignment must be applied
to allow replicas to move to the live brokers.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, and a Kafka cluster running
with at least three nodes. A topic called topic_1 with replication factor 3 should be
running on the cluster.

How to do it...
First, gracefully shut down the broker to be removed1.
Once it is shut down, create a JSON file named change-replication.json2.
with the following content:

{"version":1,
"partitions":[{"topic":"topic_1","partition":0,"replicas":[1,2]}]}

Reassign the topic to the two living brokers with the reassign-partitions3.
command:

$ bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --
reassignment-json-file change-replication.json --execute

Operating Kafka Chapter 8

[168]

How it works...
After shutting down the node, proceed with the decommission of the partitions of that
broker.

Internally, the shutdown steps are as follows:

The logs for all the lead partitions on that node are flushed to disk1.
After the lead is transferred, the node is finally shut down2.

In the JSON file, we specify which partition must be part of which replica. Obviously, we
are removing all references to the decommissioned node.

Running the command will update the partition replication information in the Kafka cluster
with the instructions in the JSON file.

Checking the consumer position
Sometimes, it is useful to check the customer's offset position. Here is a tool to check how
much the consumers are lagging from the produced messages.

Getting ready
For this recipe, Kafka must be installed, ZooKeeper running, and the broker running with
some topics created on it. Also, a consumer must be running to read from this topic.

How to do it...
Run the following command from the Kafka directory:

$ bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe
--group vipConsumersGroup

The output is something like the following:

 TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID
HOST CLIENT-ID
 source-topic 0 1 1
0 consumer-1-beff4c31-e197-455b-89fb-cce53e380a26 /192.168.1.87
consumer-1

Operating Kafka Chapter 8

[169]

How it works...
The Kafka-Consumer-Groups command takes the following arguments:

--group <String: consumer group>: This is the consumer group to
manipulate
--bootstrap-server <String: server to connect>: This is the server to
connect to (for consumer groups based on non-old consumers)
--zookeeper <String: urls>: This is the ZooKeeper connection, specified as
a comma-separated list with elements in the form host:port (for consumer
groups based on old consumers)
--topic <String: topic>: This is the topic whose consumer group
information we manipulate
--list : This lists all the consumer groups of the broker
--describe: This describes the consumer group and lists the offset lag (number
of messages not yet processed) on a given group
--reset-offsets: This resets the offsets of the consumer group
--delete: This is passed into a group to delete topic partition offsets and
ownership information on the entire consumer group

This chapter has covered some system tools to operate Apache Kafka. The following
chapter is about how to implement monitoring and security in Kafka.

9
Monitoring and Security

This chapter covers the following topics:

Monitoring server statistics
Monitoring producer statistics
Monitoring consumer statistics
Monitoring with the help of Graphite
Monitoring with the help of Ganglia
Implementing authentication using SSL
Implementing authentication using SASL/Kerberos

Introduction
This chapter covers two important themes: monitoring and security. Knowing whether a
Kafka cluster is working correctly in production is critical. Sometimes, just knowing that the
cluster is up is enough, but checking throughput and latencies is also important. Kafka
exposes important statistics for monitoring purposes. The first part of the chapter talks
about various statistics and how they are exposed, as well as how to monitor them with
tools such as Graphite and Ganglia.

The second part of the chapter is about security: in a nutshell, how to implement SSL
authentication, SASL/Kerberos authentication, and SASL/plain authentication.

Monitoring and Security Chapter 9

[171]

Monitoring server statistics
Kafka exposes monitoring statistics using Yammer metrics. Yammer metrics is a protocol
that exposes six types of metrics: gauges, counters, meters, histograms, timers, and health
checks. This recipe shows how to monitor the metrics exposed by Kafka from the server
side. In the following recipes, we cover the producer and consumer related metrics.

Getting ready
For this recipe, we just need a Kafka broker up and running.

To set the JMX port, from the Kafka installation directory start the broker using the
following command:

$ JMX_PORT=10101 bin/kafka-server-start.sh config/server.properties

Also, JConsole must be installed, check the installation with the following command:

$ jconsole

How to do it...
Run JConsole using the following command:1.

$ jconsole 127.0.0.1:10101

Monitoring and Security Chapter 9

[172]

In the following screenshot, we can see all the different parameters plotted over2.
time:

Figure 9.1: JConsole after executing command: jconsole 127.0.0.1:10101

Monitoring and Security Chapter 9

[173]

Switch to the MBeans tab and expand the Kafka server metrics:3.

Figure 9.2: JConsole MBeans tab with the Kafka server metrics

The values of all the Kafka metrics are available for analysis.

Monitoring and Security Chapter 9

[174]

How it works...
The JConsole application connects to the JMX port exposed by Kafka. Using JConsole, all
the metrics can be read. The details of the metrics exposed by Kafka with the MBean object
name are as follows:

kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec: This
gives the number of messages inserted in Kafka per second. It has the attribute
values given as counts: minute rate, 5 minute rate, 15 minute rate, and mean rate.
kafka.server:type=ReplicaManager,name=UnderReplicatedPartition:
This specifies the number of partitions for the number of replica criteria not met.
If this value is greater than zero, it means the cluster has issues replicating the
partitions as planned.
kafka.controller:type=KafkaController,name=ActiveControllerCoun

t: This gives the number of active Kafka controllers for reelection.
kafka.controller:type=ControllerStats,name=LeaderElectionRateAn

dTimeMs: This gives values of the rate at which leader election takes place and
the latencies involved in that process. It gives latencies as percentiles: 50, 75, 95,
98, 99, and 99.9. It also gives the time taken for leader election as: minute rate, 5
minute rate, and 15 minute rate. It also gives the count.
kafka.controller:type=ControllerStats,name=UncleanLeader

ElectionsPerSec: This gives statistics of unclean leader election. It can give
these values as a mean, 1 minute rate, 5 minute rate, and 15 minute rate. It also
gives the count.
kafka.server:type=ReplicaManager,name=PartitionCount: This gives
the total number of partitions in that particular Kafka node.
kafka.server:type=ReplicaManager,name=LeaderCount: This gives the
total number of leader partitions in that particular Kafka node.
kafka.server:type=ReplicaManager,name=IsrShrinksPerSec:
This specifies the rate at which in-sync replicas shrink. It can give these values as
a mean, minute rate, 5 minute rate, and 15 minute rate. It also gives the count of
events.
kafka.server:type=ReplicaManager,name=IsrExpandsPerSec:
This specifies the rate at which in-sync replicas expand. It can give these values as
a mean, minute rate, 5 minute rate, and 15 minute rate. It also gives the count of
events.
kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Re

plica: This specifies the maximum lag between the leader and the replicas.

Monitoring and Security Chapter 9

[175]

See also
Under the JConsole MBean tab we can see all the different Kafka MBeans
available for monitoring

Monitoring producer statistics
As well as server metrics, there are also producer metrics.

Getting ready
For this recipe, we just need a Kafka broker up and running and JConsole installed.

How to do it...
Start the console producer for test_topic with the JMX parameters enabled1.
with the following command:

$ JMX_PORT=10102 bin/kafka-console-producer.sh --broker-list
localhost:9092 --topic test_topic

Run JConsole using the following command:2.

$ jconsole 127.0.0.1:10102

Monitoring and Security Chapter 9

[176]

In the following screenshot, see the MBeans tab with the Kafka producer metrics:3.

Figure 9.3: MBeans tab showing the Kafka producer metrics

Monitoring and Security Chapter 9

[177]

How it works...
Switch to the MBeans tab in JConsole; there are several producer metrics. Some of them are
as follows:

kafka.producer:type=ProducerRequestMetrics,name=ProducerRequest

RateAndTimeMs,clientId=console-producer: This gives values for the rate
of producer requests taking place as the latencies involved. It gives latencies as a
percentile: 50, 75, 95, 98, 99, and 99.9. It also gives the time to produce the data as
a mean, minute average, 5 minute average, and 15 minute average. It also gives
the count.
kafka.producer:type=ProducerRequestMetrics,name=ProducerRequest

Size,clientId=console-producer: This gives the request size for the
producer. It gives: count, mean, max, min, standard deviation, and the request
size percentile: 50, 75, 95, 98, 99, and 99.9.
kafka.producer:type=ProducerStats,name=FailedSendsPerSec,client

Id=console-producer: This gives the number of failed sends per second. It also
gives the value of counts, the mean rate, minute average, 5 minute average, and
15 minute average value of the failed requests per second.
kafka.producer:type=ProducerStats,name=SerializationErrorsPerSe

c,clientId=console-producer: This gives the number of serialization errors
per second. It also gives the value of counts, mean rate, minute average, 5 minute
average, and 15 minute average value of the serialization errors per second.
kafka.producer:type=ProducerTopicMetrics,name=MessagesPerSec,cl

ientId=console-producer: This gives the number of messages produced per
second. It also gives the value of counts, mean rate, minute average, 5 minute
average, and 15 minute average of the messages produced per second.

Monitoring and Security Chapter 9

[178]

See also
More details of the producer metrics are available
at: https://kafka.apache.org/documentation.html#monitoring

Monitoring consumer statistics
As well as producer metrics, there are also consumer metrics.

Getting ready
For this recipe, we just need a Kafka broker up and running and JConsole installed.

How to do it...
Start a console consumer for test_topic with the JMX parameters enabled:1.

$ JMX_PORT=10103 bin/kafka-console-consumer.sh --bootstrap-server
localhost:9092 --from-beginning --topic test_topic

Run JConsole using the following command:2.

$ jconsole 127.0.0.1:10103

https://kafka.apache.org/documentation.html#monitoring

Monitoring and Security Chapter 9

[179]

In the following screenshot, see the MBeans tab with the Kafka consumer3.
metrics:

Figure 9.4: MBeans tab showing the Kafka consumer metrics

Monitoring and Security Chapter 9

[180]

How it works...
Switch to the MBeans tab in JConsole; there are several consumer metrics. They are as
follows:

kafka.consumer:type=ConsumerFetcherManager,name=MaxLag,clientId

=test-consumer-group: This tells us by how many messages the consumer is
lagging behind the producer.
kafka.consumer:type=ConsumerFetcherManager,name=MinFetchRate,cl

ientId=test-consumer-group: This gives the minimum rate at which the
consumer sends fetch requests to the broker. With a consumer dead, this value
becomes close to zero.
kafka.consumer:type=ConsumerTopicMetrics,name=BytesPerSec,clien

tId=test-consumer-group: This gives the number of bytes consumed per
second. It gives values of count, mean rate, minute average, 5 minutes average,
and 15 minutes average of the bytes consumed per second.
kafka.consumer:type=ConsumerTopicMetrics,name=MessagesPerSec,cl

ientId=test-consumer-group: This gives the number of messages consumed
per second. It gives the value of count, mean rate, minute average, 5 minutes
average, and 15 minutes average of the messages consumed per second.
kafka.consumer:type=FetchRequestAndResponseMetrics,name=FetchRe

questRateAndTimeMs,clientId=test-consumer-group: This gives values
for the rate at which the consumer fetches the requests and the latencies involved
in that process. It gives latency percentiles as: 50, 75, 95, 98, 99, and 99.9. It also
gives the time taken to consume the data as a mean, minute rate, 5 minutes rate,
and 15 minutes rate. It also gives the count.
kafka.consumer:type=FetchRequestAndResponseMetrics,name=FetchRe

sponseSize,clientId=test-consumer-group: This gives the fetch size for
the consumer. It gives the count, mean, max, min, standard deviation, request
size percentile: 50, 75, 95, 98, 99, and 99.9.
kafka.consumer:type=ZookeeperConsumerConnector,name=FetchQueueS

ize,clientId=test-consumer-group,topic=mytesttopic,threadId=0:
This gives the queue size for the fetch request for the client ID, thread ID, and
topic requested.
kafka.consumer:type=ZookeeperConsumerConnector,name=KafkaCommit

sPerSec,clientId=test-consumer-group: This gives the fetch size for the
Kafka commits per second. It gives the count, mean, minute average, 5 minutes
average, and 15 minutes average rate of Kafka commits per second.

Monitoring and Security Chapter 9

[181]

kafka.consumer:type=ZookeeperConsumerConnector,name=RebalanceRa

teAndTime,clientId=test-consumer-group: This gives the latency and rate
of rebalance for the consumer. It gives latencies as latency percentiles: 50, 75, 95,
98, 99, and 99.9. It also gives the time taken to rebalance as a mean, minute rate, 5
minutes rate, and 15 minutes average. It also gives the count.
kafka.consumer:type=ZookeeperConsumerConnector,name=ZooKeeperCo

mmitsPerSec,clientId=test-consumer-group: This gives the fetch size for
the ZooKeeper commits per second. It gives the count, mean, minute average, 5
minutes average, and 15 minutes average rate of ZooKeeper commits per second.

See also
More details on consumer metrics are available at:
https://kafka.apache.org/documentation.html#monitoring

Connecting with the help of Graphite
Graphite is a tool for diagnosing data systems in real time. Graphite has the ability to
connect and get graphs of the system performance for a period of time. This recipe shows
how to get system performance data from Kafka.

Getting ready
For this recipe, we just need a Kafka broker up and running and the Graphite server up and
running.

How to do it...
Download the code for Kafka Graphite metrics reporter using the following link:1.
https:/​/ ​github. ​com/ ​damienclaveau/ ​kafka- ​Graphite/ ​archive/ ​master. ​zip.
Unzip the file using the following command:2.

$ unzip master.zip

https://kafka.apache.org/documentation.html#monitoring
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip
https://github.com/damienclaveau/kafka-Graphite/archive/master.zip

Monitoring and Security Chapter 9

[182]

Execute the Maven clean package command on the unzipped directory:3.

$ mvn clean package

The previous command should have generated kafka-Graphite-1.0.0.jar in4.
the ./target directory.
In the .m2/repository/com/yammer/metrics Maven directory, this file5.
should be generated: /metrics-Graphite-2.2.0.jar.
Copy both files to the /libs directory of the Kafka installation.6.
Add these lines to the server.properties file:7.

kafka.metrics.reporters=com.criteo.kafka.kafkaGraphiteMetricsReport
er
kafka.graphite.metrics.reporter.enabled=true
kafka.graphite.metrics.host=localhost
kafka.graphite.metrics.port=8649
kafka.graphite.metrics.group=kafka

Start the Kafka node. The Graphite system should start receiving the metrics from8.
Kafka.
Create the Graphite graphs to monitor Kafka parameters as mentioned in the9.
previous recipes.

How it works...
The first step downloads the code for Kafka Graphite metrics reporter. Next, Maven builds
the package file for it.

By moving the two generated JAR files (kafka-Graphite-1.0.0.jar and metrics-
Graphite-2.2.0.jar) to the lib directory, it allows Kafka to load them when it starts.

The entries in the server.properties:

kafka.metrics.reporters: This tells Kafka the classes to load as metrics
reporter. As mentioned in the first recipe of this chapter, Kafka makes use of
Yammer metrics. One can have multiple metrics reports mentioned by listing
their class names here in comma-separated form. For Kafka Graphite metrics
reporter, the class to mention
is: com.criteo.kafka.KafkaGraphiteMetricsReporter.

Monitoring and Security Chapter 9

[183]

kafka.Graphite.metrics.reporter.enabled: This tells Kafka to enable
Graphite metrics. If the value for this is true, the metrics are reported.
kafka.Graphite.metrics.host: This the Graphite system hostname.
kafka.Graphite.metrics.port: This the Graphite system port number.
kafka.Graphite.metrics.group: This is the group name used to report
metrics from this Kafka instance to Graphite.

See also
The source code and more details on Kafka Graphite metrics reporter are
available at: https:/ ​/ ​github. ​com/ ​damienclaveau/ ​kafka- ​graphite

Monitoring with the help of Ganglia
Ganglia is another important monitoring framework used to monitor Kafka. This recipe
shows how to configure Kafka to report statistics in Ganglia.

Getting ready
Install Kafka on your machine.

How to do it...
Download the code for Kafka Ganglia metrics reporter using the following link:1.
https:/​/ ​github. ​com/ ​criteo/ ​kafka- ​ganglia/ ​archive/ ​master. ​zip.
Unzip the file using the following command:2.

$ unzip master.zip

Execute the Maven clean package command on the unzipped directory:3.

$ mvn clean package

https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/damienclaveau/kafka-graphite
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip
https://github.com/criteo/kafka-ganglia/archive/master.zip

Monitoring and Security Chapter 9

[184]

The previous command should have generated kafka-ganglia-1.0.0.jar in4.
the ./target directory.
In the .m2/repository/com/yammer/metrics Maven directory, this file5.
should be generated: /metrics-ganglia-2.2.0.jar
Copy both files to the /libs directory of the Kafka installation.6.
Add these lines to the server.properties file:7.

kafka.metrics.reporters=com.criteo.kafka.kafkaGangliaMetricsReporte
r
kafka.ganglia.metrics.reporter.enabled=true
kafka.ganglia.metrics.host=localhost
kafka.ganglia.metrics.port=8649
kafka.ganglia.metrics.group=kafka

Start the Kafka node. The Ganglia reporter system should start receiving the8.
metrics from Kafka.
Create the Ganglia dashboard to monitor the Kafka metrics. Next, you have to9.
start the Kafka node on that machine.

How it works...
The first step downloads the code for the Kafka Ganglia reporter system. Next, Maven
builds the package file for it.

By moving the two generated JAR files (kafka-ganglia-1.0.0.jar and metrics-
ganglia-2.2.0.jar) to the lib directory, it allows Kafka to load them when it starts.

The entries in the server.properties:

kafka.metrics.reporters: This tells Kafka which classes to load in the
metrics reporter. As mentioned in the first recipe of this chapter, Kafka makes use
of Yammer metrics. One can have multiple metrics reports mentioned by listing
their class names here in comma-separated form. For Kafka Ganglia metrics
reporter, the class to mention is
com.criteo.kafka.KafkaGangliaMetricsReporter.
kafka.ganglia.metrics.reporter.enabled tells Kafka to enable Ganglia
metrics. If the value for this is true, the metrics are reported.

Monitoring and Security Chapter 9

[185]

kafka.ganglia.metrics.host: This the Ganglia system hostname.
kafka.ganglia.metrics.port: This is the Ganglia system port number.
kafka.ganglia.metrics.group: This the group name used to report metrics
from this Kafka instance to Ganglia.

See also
The source code and more details on Kafka Ganglia metrics reporter are available
at: https://github.com/criteo/kafka-ganglia
Other JMX reporters available for Kafka are mentioned at this link:
https://cwiki.apache.org/confluence/display/KAFKA/JMX+Reporters

Implementing authentication using SSL
The communication between clients and brokers is allowed over SSL using a dedicated
port. This port is not enabled by default. This recipe shows how to enable encryption using
SSL.

How to do it...
Use the Java keytool to generate an SSL key on each machine with the following1.
command:

keytool -keystore kafka.server.keystore.jks -alias localhost -
validity {validity} -genkey

For this command, validity is the valid time of the certificate in days.

To create your own Certificate Authority (CA), run the following command:2.

openssl req -new -x509 -keyout ca-key -out ca-cert -days {validity}

https://github.com/criteo/kafka-ganglia
https://cwiki.apache.org/confluence/display/KAFKA/JMX+Reporters

Monitoring and Security Chapter 9

[186]

To add the generated CA to the clients' trust store, run the following command:3.

keytool -keystore kafka.client.truststore.jks -alias CARoot -import
-file ca-cert

To sign the certificates in the keystore with the CA we generated, export the4.
certificate from the keystore as follows:

keytool -keystore kafka.server.keystore.jks -alias localhost -
certreq -file cert-file

Sign it with the CA:5.

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out
cert-signed -days {validity} -CAcreateserial -passin pass:{ca-
password}

Import both the certificate of the CA and the signed certificate into the keystore:6.

keytool -keystore kafka.server.keystore.jks -alias CARoot -import -
file ca-cert
keytool -keystore kafka.server.keystore.jks -alias localhost -
import -file cert-signed

The following SSL configurations are needed for the broker configuration:7.

ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password=your_keystore_password
ssl.key.password=your_key_password
ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jk
s
ssl.truststore.password=your_truststore_password

To enable SSL for inter-broker communication, change the following line in the8.
broker properties file:

security.inter.broker.protocol = SSL

If client authentication is not required by the broker, the following is the9.
configuration:

security.protocol=SSL
ssl.truststore.location=/var/private/ssl/kafka.client.truststore.jk
s
ssl.truststore.password=your_truststore_password
ssl.keystore.location=/var/private/ssl/kafka.client.keystore.jks

Monitoring and Security Chapter 9

[187]

ssl.keystore.password=your_keystore_password
ssl.key.password=your_key_password

Finally, to enable SSL logging, add the following line in the bin/kafka-run-10.
class.sh file:

-Djavax.net.debug=all

Add the preceding line in the following section:

if [-z "$KAFKA_JMX_OPTS"]; then
KAFKA_JMX_OPTS="add here" -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false "
fi

See also
The official documentation for SSL authentication is at: https:/ ​/​docs.
confluent. ​io/ ​current/ ​kafka/ ​ssl.​html

Implementing authentication using
SASL/Kerberos
Currently, the supported mechanisms are Generic Security Services API (GSSAPI) or
Kerberos and PLAIN.

How to do it...
To configure SASL authentication on the brokers perform the following:

Select one or more mechanisms to enable in the broker: GSSAPI or PLAIN1.
Add the JAAS config file location as a JVM parameter to each Kafka broker:2.

-Djava.security.auth.login.config=/etc/kafka/kafka_server_jaas.conf

https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html
https://docs.confluent.io/current/kafka/ssl.html

Monitoring and Security Chapter 9

[188]

Configure an SASL port in server.properties by adding at least one of3.
SASL_PLAINTEXT or SASL_SSL to the listeners, and
optionally, advertised.listeners properties, each of which should contain
one or more comma-separated values:

listeners=SASL_PLAINTEXT://host.name:port
advertised.listeners=SASL_PLAINTEXT://host.name:port
security.inter.broker.protocol=SASL_PLAINTEXT (or SASL_SSL)

Enable one or more SASL mechanisms in server.properties and configure4.
the SASL mechanism for inter-broker communication if using SASL for inter-
broker communication:

sasl.enabled.mechanisms=GSSAPI,PLAIN
sasl.mechanism.inter.broker.protocol=GSSAPI (or PLAIN)

To configure SASL authentication on the clients:

Select an SASL mechanism for authentication and add a JAAS config file for the1.
selected mechanism, GSSAPI (Kerberos) or PLAIN
Add the JAAS config file location as a JVM parameter to each client JVM:2.

-Djava.security.auth.login.config=/etc/kafka/kafka_client_jaas.conf

Configure the following properties in producer.properties or3.
consumer.properties:

security.protocol=SASL_PLAINTEXT (or SASL_SSL)
sasl.mechanism=GSSAPI (or PLAIN)

See also
The official documentation for SASL authentication is at: https:/ ​/​docs.
confluent. ​io/ ​current/ ​kafka/ ​sasl. ​html

https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html
https://docs.confluent.io/current/kafka/sasl.html

10
Third-Party Tool Integration

This chapter covers the following topics: 1 x 1

Moving data between Kafka nodes with Flume
Writing to an HDFS cluster with Gobblin
Moving data from Kafka to Elastic with Logstash
Connecting Spark streams and Kafka
Ingesting data from Kafka to Storm
Pushing data from Kafka to Elastic
Inserting data from Kafka to SolrCloud
Building a Kafka producer with Akka
Building a Kafka consumer with Akka
Storing data in Cassandra
Running Kafka on Mesos
Reading Kafka with Apache Beam
Writing to Kafka from Apache Beam

Introduction
As well as integration, this chapter also talks about real-time data processing tools and how
to make a data processing pipeline with them. Tools such as Hadoop, Flume, Gobblin,
Elastic, Logstash, Spark, Storm, Solr, Akka, Cassandra, Mesos, and Beam can read from and
write to Kafka. Recently, the integration with Spark, Mesos, Akka, and Cassandra have
transformed the reference stack for fast data processing.

Third-Party Tool Integration Chapter 10

[190]

Moving data between Kafka nodes with
Flume
Apache Flume is a reliable, highly available, distributed service for collecting, aggregating,
and moving large amounts of data logs into data storage solutions. The data storage
destination might be HDFS, Kafka, Hive, or any of the various sinks that Flume supports.

Apache Flume can also be used to transfer data between Kafka nodes. The following recipe
shows how to do that.

Getting ready
For this recipe, it is necessary to have two different Kafka brokers up and running, one to
publish data (source-topic) and the other (target-topic) to receive data.

The installation of Apache Flume is also required. Follow the instructions on this
page: https:/​/​flume. ​apache. ​org/ ​download. ​html.

How to do it...
In the conf folder, create a Flume configuration file called flume.conf with this1.
content:

flume1.sources = kafka-source-1
flume1.channels = mem-channel-1
flume1.sinks = kafka-sink-1

flume1.sources.kafka-
source-1.type=org.apache.flume.source.kafka.KafkaSource
flume1.sources.kafka-source-1.zookeeperConnect = localhost:2181
flume1.sources.kafka-source-1.topic = source-topic
flume1.sources.kafka-source-1.batchSize = 100
flume1.sources.kafka-source-1.channels = mem-channel-1

flume1.channels.mem-channel-1.type = memory

flume1.sinks.kafka-sink-1.type =
org.apache.flume.sink.kafka.KafkaSink
flume1.sinks.kafka-sink-1.brokerList = localhost:9092
flume1.sinks.kafka-sink-1.topic = target-topic

https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html

Third-Party Tool Integration Chapter 10

[191]

flume1.sinks.kafka-sink-1.batchSize = 50
flume1.sinks.kafka-sink-1.channel = mem-channel-1

With this configuration file, start the Flume agent to start consuming data from2.
source-topic and push the data to the target-topic with the following
command (make sure the Flume bin folder is set in the PATH env variable):

$ flume-ng agent --conf-file flume.conf --name flume1

How it works...
In this context, Flume has three actors: a source where the data is extracted (here called
source-1), a sink in Flume where the data is written (here called sink-1), and the channel
(here called channel-1), which passes data between source and sink.

First, declare flume1 as a Flume instance. The first three lines declare the names of the
source (source-1), channel (channel-1), and sink (sink-1).

The following five lines declare the configuration of the source:

org.apache.flume.source.kafka.KafkaSource: This is the source type.
zookeeperConnect: This specifies the ZooKeeper connection string, a comma-
separated list in the format host:port.
topic: This specifies the topic which the source will read from. At the time of
writing, Flume supports only one Kafka topic per source.
batchSize: This specifies the maximum number of messages at each time that
might be fetched from Kafka and written into a channel. The default value is
1000. This value is determined by the amount of data the channel can process in
one fetch.
batchDurationMillis: This specifies the maximum time in milliseconds the
system will wait before writing the batch into the channel. If batchSize is
exceeded before this time, the batch will be written to the channel. The default
value is 1000.

Third-Party Tool Integration Chapter 10

[192]

The following line defines the channel between the source and sink. In this example,
memory is used to hold the data, so it is a memory channel. The following values are used
to configure a channel:

type: This is set as memory to indicate the use of the memory channel. A channel
could be of type memory, JDBC, file, or Kafka channel (without buffering).
capacity: This is the maximum number of messages stored in memory. Declare
it based on the memory capacity and message size. Its default value is 100.
transactionCapacity: This is the maximum number of messages to take from
the source or sink in a single transaction.

The following five lines declare the sink settings:

org.apache.flume.sink.kafka.KafkaSink: This the first line that declares
the sink type.
brokerList: This specifies the list of Kafka cluster brokers to write the messages.
The broker address is a comma-separated list in the format host:port.
topic: This specifies the Kafka topic to write the messages.
batchSize: This specifies the number of messages to write at one time.
channel: This declares the name of the channel from which we collect the data.

See also
More information on Apache Flume can be found in the user guide at:
https://flume.apache.org/FlumeUserGuide.html

Writing to an HDFS cluster with Gobblin
Gobblin is a universal data ingestion framework for the extract, transform, and load (ETL)
of large volumes of data from a variety of data sources, such as files, databases, and
Hadoop.

Gobblin also performs regular data ETL operations, such as job/task scheduling, state
management, task partitioning, error handling, data quality checking, and data publishing.

Some features that make Gobblin very attractive are auto scalability, extensibility, fault
tolerance, data quality assurance, and the ability to handle data model evolution.

https://flume.apache.org/FlumeUserGuide.html

Third-Party Tool Integration Chapter 10

[193]

Getting ready
For this recipe, it is necessary to have a Kafka cluster up and running. We also need an
HDFS cluster up and running, into which we write the data.

The installation of Gobblin is also required. Follow the instructions on this
page: http://gobblin.readthedocs.io/en/latest/Getting-Started.

How to do it...
Edit a file called kafkagobblin.conf with the following contents; the1.
instructions to read from Kafka and write into HDFS:

job.name=KafkaGobblinTest
job.group=kafkaGoblinGroup
job.description=Kafka Gobblin connection
job.lock.enabled=false

source.class=gobblin.source.extractor.extract.kafka.KafkaAvroSource
extract.namespace=gobblin.extract.kafka

writer.destination.type=HDFS
writer.output.format=AVRO
writer.fs.uri=file://localhost/
writer.partition.level=hourly
writer.partition.pattern=YYYY/MM/dd/HH
writer.builder.class=gobblin.writer.AvroTimePartitionedWriterBuilde
r
writer.file.path.type=tablename
writer.partition.column.name=header.time

data.publisher.type=gobblin.publisher.TimePartitionedDataPublisher

topic.whitelist=source-topic
bootstrap.with.offset=earliest

kafka.brokers=localhost:2181
mr.job.max.mappers=20

extract.limit.enabled=true
extract.limit.type=time
extract.limit.time.limit=15
extract.limit.time.limit.timeunit=minutes

http://gobblin.readthedocs.io/en/latest/Getting-Started

Third-Party Tool Integration Chapter 10

[194]

Start Gobblin as follows:2.

$ gobblin-standalone.sh start --workdir gobblinWorkDir --conffile
kafkagobblin.conf

How it works...
The configuration file tells Gobblin how to create the Gobblin job.

The first three lines declare the job metadata:

job.name: This specifies the job name
job.group: This specifies the job group name
job.description: This gives the job a description

The following line declares the class to use as the data source, source.class:

If Kafka and the Avro file format is used, set the type to:
gobblin.source.extractor.extract.Kafka.KafkaAvroSource

If Kafka is used but not the Avro format, set the type to:
gobblin.source.extractor.extract.Kafka.KafkaSimpleSources

There are other types of source classes. See the Gobblin GitHub repository
at: https://github.com/apache/incubator-gobblin/tree/master/gobblin-core/src/mai
n/java/org/apache/gobblin/source/extractor/extract:

extract.namespace: This specifies that the namespace for the extracted data
will be a part of the default filename of the data written out

The following lines specify the writer properties:

writer.destination.type: This specifies the destination type for the writer
task. At the time of writing only HDFS is supported.
writer.output.format: This specifies the output format. At the time of writing
only the Avro format is supported.
writer.fs.uri: This specifies the URI of the file system to write into.
writer.partition.level: This specifies the partitioning level for the writer.
The default value is daily.

https://github.com/apache/incubator-gobblin/tree/master/gobblin-core/src/main/java/org/apache/gobblin/source/extractor/extract
https://github.com/apache/incubator-gobblin/tree/master/gobblin-core/src/main/java/org/apache/gobblin/source/extractor/extract

Third-Party Tool Integration Chapter 10

[195]

writer.partition.pattern: This specifies the pattern for partitioning the
written data.
writer.builder.class: This is the class name of the writer builder.
writer.file.path.type: This is the file path type, in this case tablename.
writer.partition.column.name: This is the column name of the partition.

Some other properties are as follows:

data.publisher.type: This is the name of the DataPublisher class that will
publish the task data once everything has been completed
topic.whitelist: This is the white list of topics from which data is read
bootstrap.with.offset: This is the property in which offset Gobblin will start
reading the Kafka data
kafka.brokers: This is the comma-separated Kafka brokers to read data from
mr.job.max.mappers: This is used to specify the number of tasks to launch
extract.limit.enabled: If this is true, the extract task specifies a limit
extract.limit.type: This is the type of limit, by time, rate, count, or pool
extract.limit.time.limit: This specifies the limit on the tasks
extract.limit.time.limit.timeunit: This specifies the units to be used for
the limit

See also
More information on Gobblin is available
at: http://gobblin.readthedocs.io/en/latest/

Moving data from Kafka to Elastic with
Logstash
Logstash is a tool from Elastic (http://www.elastic.co/). Logstash simplifies log extraction
from any source with Elasticsearch. It also allows centralizing data processing and
normalizing schemas and formats for several data types. This recipe shows how to read
with Logstash from Kafka and push the data to Elastic.

http://gobblin.readthedocs.io/en/latest/
http://www.elastic.co/

Third-Party Tool Integration Chapter 10

[196]

Getting ready
Have a Kafka cluster up and running. To install Elasticsearch follow the instructions on this
page: https://www.elastic.co/guide/en/elasticsearch/reference/current/_installat
ion.html.

To install Logstash follow the instructions on this page: https:/ ​/​www. ​elastic. ​co/​guide/
en/​logstash/​current/ ​installing- ​logstash. ​html.

How to do it...
To read data from Kafka and write it into Elasticsearch with Logstash:

Write a file named kafkalogstash.conf with this content:1.

input {
 kafka {
 bootstrap_servers => "localhost:9092"
 topics => ["source-topic"]
 }
}
output {
 elasticsearch {
 host => localhost
 }
}

Start Logstash with the following command.2.

$ bin/logstash -f kafkalogstash.conf

How it works...
The config file defines the input and output for Logstash. For input, Kafka is used; for
output, Elasticsearch.

Some of the properties of the configuration file are:

bootstrap_servers: The brokers to connect to, in the host:port format.
topics: This is an array of source topics that is read from.

https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html

Third-Party Tool Integration Chapter 10

[197]

client_id: This is the consumer ID to be used when reading from Kafka. If it is
not specified it is automatically generated.
group_id: This is the group ID to be used by the Logstash Kafka consumer. If it
is not specified it is set to logstash.
fetch_max_bytes: This is the maximum number of bytes fetched from the
Kafka topic in each fetch request. It helps to control the memory used by
Logstash while storing the message.

There's more...
The Kafka input plugin for Logstash has more interesting settings. For more info
visit: https:/​/​www. ​elastic. ​co/ ​guide/ ​en/ ​logstash/ ​current/ ​plugins- ​inputs- ​kafka. ​html.

See also
There is a Kafka output plugin for Logstash. For more info visit: https:/ ​/​www.
elastic. ​co/ ​guide/ ​en/ ​logstash/ ​current/ ​plugins- ​outputs- ​kafka. ​html

Connecting Spark streams and Kafka
Apache Spark is an open source computer framework. Spark's in-memory processing
performs up to 100 times faster for certain traditional applications. It is used for making
distributed real-time data analytics. Spark has very good integration with Kafka for reading
and writing data processed by Kafka.

Getting ready
For this recipe a running Kafka cluster is needed. To install Apache Spark follow the
instructions on this page: https://spark.apache.org/downloads.html.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html
https://spark.apache.org/downloads.html

Third-Party Tool Integration Chapter 10

[198]

How to do it...
Spark has a simple utility class to create the data stream to be read from Kafka.

The first thing in any Spark project is to create Spark configuration and the Spark1.
streaming context:

SparkConf sparkConf = new SparkConf().setAppName("KafkaSparkTest");
JavaStreamingContext jssc =
 new JavaStreamingContext(sparkConf, Durations.seconds(10));

Then, create the HashSet for the topic and the Kafka consumer parameters:2.

HashSet<String> topicsSet = new HashSet<String>();
topicsSet.add("source-topic");
HashMap<String, String> kafkaParams = new HashMap<String,
String>();
kafkaParams.put("metadata.broker.list", "localhost:9092");

Create a direct Kafka stream with brokers and topics:3.

JavaPairInputDStream<String, String> messages =
KafkaUtils.createDirectStream(
 jssc,
 String.class,
 String.class,
 StringDecoder.class,
 StringDecoder.class,
 kafkaParams,
 topicsSet
);

With this stream, run the Spark data processing.4.

How it works...
In the second line, the Java streaming context is created that sets up the input for all the
processing functionality; the duration of the batch interval is set to 10 seconds.

In the next line, a HashSet is created to read from the Kafka topic.

Third-Party Tool Integration Chapter 10

[199]

The next line sets the parameters for the Kafka producer using a HashMap. This map has a
value for metadata.broker.list, which is a comma-separated list in the format
host:port.

Finally, the input DStream is created using the KafkaUtils class.

When the DStream is ready, the data algorithms can be applied.

There's more...
The Apache Spark programming guide is available at: http:/ ​/ ​spark. ​apache. ​org/ ​docs/
latest/​streaming- ​programming- ​guide. ​html.

Ingesting data from Kafka to Storm
Apache Storm is a real-time, distributed stream-processing system. Storm simplifies real-
time data processing, Kafka can work as the source for this data streaming.

Getting ready
Have a Kafka cluster up and running. To install Apache Storm follow the instructions on
this page: http:/​/ ​storm. ​apache. ​org/ ​downloads. ​html.

How to do it...
Storm has a built-in KafkaSpout to easily ingest data from Kafka to the Storm topology:

The first step is to create the ZkHosts object with the ZooKeeper address in1.
host:port format:

BrokerHosts hosts = new ZkHosts("127.0.0.1:2181");

Next, create the SpoutConfig object that contains the parameters needed for2.
KafkaSpout:

SpoutConfig kafkaConf = new SpoutConfig(hosts,"source-topic",
"/brokers", "kafkaStormTest");

http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html
http://storm.apache.org/downloads.html

Third-Party Tool Integration Chapter 10

[200]

Then, declare the scheme for the KafkaSpout config:3.

kafkaConf.scheme = new SchemeAsMultiScheme(new StringScheme());

Using this scheme, create a KafkaSpout object:4.

KafkaSpout kafkaSpout = new KafkaSpout(kafkaConf);

Build that topology with this KafkaSpout and run it:5.

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", kafkaSpout, 10);

After this, connect some Storm bolts to process the data.6.

How it works...
The first step is to create the ZkHosts object with the ZooKeeper address in a1.
comma-separated list in the format host:port.
Initialize the SpoutConfig object. This configuration object takes the ZkHosts2.
object, the Kafka topic to obtain the data, the root directory in ZooKeeper (where
topics and partition information is stored), and a unique spout identifier.
Create a new SpoutConfig scheme.3.
Create the KafkaSpout object. This is needed to initialize the Storm topology.4.
To build a Storm topology, a TopologyBuilder class object is instantiated.5.
Set the spout for the TopologyBuilder using the function setSpout, which6.
takes the spout name, the spout object, and the parallelism hint as input.
The parallelism hint is the number of threads created for the spout. This should7.
be a multiple of the existing Kafka partitions (in this case 10).

There's more...
The Storm Javadoc contains more information about the configurations for the Kafka
consumer.

At the time of writing, this is the latest
version: http://storm.apache.org/releases/1.1.1/javadocs/index.html.

http://storm.apache.org/releases/1.1.1/javadocs/index.html

Third-Party Tool Integration Chapter 10

[201]

See also
For more information on Storm, visit the home page: http:/ ​/​storm. ​apache. ​org/
releases/ ​1. ​1. ​1/​index. ​html

Pushing data from Kafka to Elastic
As mentioned, Elasticsearch is a distributed, full-text search engine that supports a RESTful
web interface and schema-free JSON documents. Elasticsearch was built with distributed
searches in mind. There are several ways to push data into Elasticsearch. In this recipe, the
plugin that enables data pushing from Kafka to Elasticsearch is analyzed.

Getting ready
For this recipe, a Kafka cluster must be up and running and a confluent platform is needed.
To install Elasticsearch follow the instructions on this page: https:/ ​/​www. ​elastic. ​co/
guide/​en/​elasticsearch/ ​reference/ ​current/ ​_ ​installation. ​html.

How to do it...
The Elasticsearch connector is needed. Before starting the connector, the configuration is in

etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties.

This must be properly set to the Elasticsearch configuration: connection.url points to the
correct HTTP address.

To start the Elasticsearch connector, use the following command:

$./bin/connect-standalone etc/schema-registry/connect-avro-
standalone.properties \
etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties

$ confluent load elasticsearch-sink
{
 "name": "elasticsearch-sink",
 "config": {
 "connector.class":
"io.confluent.connect.elasticsearch.ElasticsearchSinkConnector",
 "tasks.max": "1",

http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html

Third-Party Tool Integration Chapter 10

[202]

 "topics": "topic-elastic-sink",
 "key.ignore": "true",
 "connection.url": "http://localhost:9200",
 "type.name": "kafka-connect",
 "name": "elasticsearch-sink"
 },
 "tasks": []
}

How it works...
To check that the data is available in Elasticsearch, we perform the following:

$ curl -XGET 'http://localhost:9200/topic-elastic-sink/_search?pretty'
{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "topic-elastic-sink",
 "_type" : "kafka-connect",
 "_id" : "test-elasticsearch-sink+0+0",
 "_score" : 1.0,
 "_source" : {
 "f1" : "value1"
 }
 }]
 }
}

See also
Check the confluent's Elasticsearch Kafka connector page at: https:/ ​/​docs.
confluent. ​io/ ​current/ ​connect/ ​connect- ​elasticsearch/ ​docs/ ​elasticsearch_
connector. ​html

https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html
https://docs.confluent.io/current/connect/connect-elasticsearch/docs/elasticsearch_connector.html

Third-Party Tool Integration Chapter 10

[203]

Inserting data from Kafka to SolrCloud
Solr is a highly-available, fault-tolerant environment for distributing indexed content and
query requests across multiple servers. It is not possible to insert data into Solr directly; a
tool like Flume is needed.

Getting ready
For this recipe a Kafka cluster must be up and running.

To install Solr follow the instructions on this page: https:/ ​/​lucene. ​apache. ​org/ ​solr/
guide/​6_​6/​installing- ​solr. ​html.

The installation of Apache Flume is also required, follow the instructions on this
page: https:/​/​flume. ​apache. ​org/ ​download. ​html.

How to do it...
Create a Flume configuration file called flume.conf with this content:1.

flume1.sources = kafka-source-1
flume1.channels = mem-channel-1
flume1.sinks = solr-sink-1

flume1.sources.kafka-
source-1.type=org.apache.flume.source.kafka.KafkaSource
flume1.sources.kafka-source-1.zookeeperConnect = localhost:2181
flume1.sources.kafka-source-1.topic = source-topic
flume1.sources.kafka-source-1.batchSize = 100
flume1.sources.kafka-source-1.channels = mem-channel-1

flume1.channels.mem-channel-1.type = memory

flume1.sinks.solr-sink-1.type=
org.apache.flume.sink.solr.morphline.MorphlineSolrSink
flume1.sinks.solr-sink-1.brokerList = localhost:9092
flume1.sinks.solr-sink-1.batchSize = 100
flume1.sinks.solr-sink-1.channel = mem-channel-1

flume1.sinks.solr-sink-1.batchDurationMillis = 1000
flume1.sinks.solr-sink-1.morphlineFile = /etc/flume-
ng/conf/morphline.conf

https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://lucene.apache.org/solr/guide/6_6/installing-solr.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html
https://flume.apache.org/download.html

Third-Party Tool Integration Chapter 10

[204]

flume1.sinks.solr-sink-1.morphlineId = morphline1

Run Flume using the configuration file created:2.

$ flume-ng agent --conf-file flume.conf --name flume1

How it works...
The Kafka configurations are the same as those used in the first recipe of this chapter with
some changes.

The Solr sink has the following characteristics:

type: This is the Solr type and is defined as
org.apache.flume.sink.solr.morphline.MorphlineSolrSink

batchSize: This specifies the number of messages processed in one fetch
batchDurationMillis: If the number of messages to be processed crosses the
batch size number, this number specifies the milliseconds to wait till all the
messages are processed
morphlineFile: This specifies the path to the morphline configuration file
morphlineId This is the identifier for the morphline configuration file if the
configuration file has multiple files

See also
More information on Apache Flume is in the Flume user guide at: https:/ ​/
flume.​apache. ​org/ ​FlumeUserGuide. ​html.

Building a Kafka producer with Akka
According to the definition, Akka is a free and open source toolkit and runtime that
simplifies the construction of concurrent and distributed applications for the JVM. There is
a big infrastructure for connecting both projects.

In this recipe, a Kafka producer is built with Akka.

https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html

Third-Party Tool Integration Chapter 10

[205]

Getting ready
The Akka connector is available at Maven Central for Scala 2.11 at the following Maven
coordinates:

libraryDependencies += "com.typesafe.akka" %% "akka-stream-kafka" % "0.11-
M4"

How to do it...
A producer publishes messages to Kafka topics. The message itself contains information
about what topic and partition to publish. One can publish to different topics with the same
producer. The underlying implementation uses the Kafka producer.

When creating a producer stream, specify the ProducerSettings defining the following:

Kafka cluster bootstrap server
Serializers for the keys and values
Tuning parameters

The imports necessary for ProducerSettings are as follows:

import akka.kafka._
import akka.kafka.scaladsl._
import org.apache.kafka.common.serialization.StringSerializer
import org.apache.kafka.common.serialization.ByteArraySerializer

To declare and define the ProducerSettings:

val producerSettings = ProducerSettings(system, new ByteArraySerializer,
new StringSerializer).withBootstrapServers("localhost:9092")

The easiest way to publish messages is through Producer.plainSink. The sink consumes
ProducerRecord elements, which contain a topic name to send the messages, an optional
partition number, and an optional key and value.

Third-Party Tool Integration Chapter 10

[206]

How it works...
For example, to produce 10,000 messages we perform the following:

Source(1 to 10000)
 .map(_.toString)
 .map(elem => new ProducerRecord[Array[Byte], String]("sink-topic", elem))
 .to(Producer.plainSink(producerSettings))

There's more...
To produce the same 10,000 messages but using flow, we perform the following:

Source(1 to 10000).map(elem => ProducerMessage.Message(new
ProducerRecord[Array[Byte], String]("sink-topic", elem.toString), elem))
 .via(Producer.flow(producerSettings))
 .map { result =>
 val record = result.message.record
 println(s"${record.topic}/${record.partition} ${result.offset}:
${record.value} (${result.message.passThrough}")
 result
 }

Building a Kafka consumer with Akka
In this recipe, a Kafka consumer is built with Akka.

Getting ready
The Akka connector is available at Maven Central for Scala 2.11 at the following Maven
coordinates:

libraryDependencies += "com.typesafe.akka" %% "akka-stream-kafka" % "0.11-
M4"

Third-Party Tool Integration Chapter 10

[207]

How to do it...
When creating a consumer stream, specify the ProducerSettings defining the following:

Kafka cluster bootstrap server
Serializers for the keys and values
Tuning parameters

The imports necessary for ConsumerSettings are as follows:

import akka.kafka._
import akka.kafka.scaladsl._
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.kafka.common.serialization.ByteArrayDeserializer
import org.apache.kafka.clients.consumer.ConsumerConfig

To declare and define the ConsumerSettings:

val consumerSettings = ConsumerSettings(system, new ByteArrayDeserializer,
new StringDeserializer)
 .withBootstrapServers("localhost:9092")
 .withGroupId("group1")
 .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")

This example consumes messages and stores a representation including the offset:

db.loadOffset().foreach {
 fromOffset => val subscription =
 Subscriptions.assignmentWithOffset(
 new TopicPartition("source-topic", 1) -> fromOffset)
 Consumer.plainSource(consumerSettings, subscription)
 .mapAsync(1)(db.save)
}

This example consumes messages in at-most-once form:

Consumer.atMostOnceSource(consumerSettings.withClientId("client-1"),
Subscriptions.topics("source-topic"))
 .mapAsync(1) { record =>
 rocket.launch(record.value)
}

Third-Party Tool Integration Chapter 10

[208]

This example consumes messages in at-least-once form:

Consumer.committableSource(consumerSettings.withClientId("client-1"),
Subscriptions.topics("source-topic"))
 .mapAsync(1) {
 msg => db.update(msg.value).flatMap(_ =>
 msg.committableOffset.commitScaladsl())
}

This example connects the consumer with the producer in the previous recipe:

Consumer.committableSource(consumerSettings.withClientId("client-1"))
 .map(msg => ProducerMessage.Message(
 new ProducerRecord[Array[Byte], String]("source-topic", msg.value),
 msg.committableOffset))
 .to(Producer.commitableSink(producerSettings))

This example consumes messages in at-least-once form, and commits in batches:

Consumer.committableSource(consumerSettings.withClientId("client-1"),
Subscriptions.topics("source-topic"))
 .mapAsync(1) { msg =>
 db.update(msg.value).map(_ => msg.committableOffset)
 }
 .batch(max = 10, first =>
 CommittableOffsetBatch.empty.updated(first)) { (batch, elem) =>
 batch.updated(elem)
 }.mapAsync(1)(_.commitScaladsl())

How to make a Kafka consumer Akka actor:

val consumer:
 ActorRef = system.actorOf(KafkaConsumerActor.props(consumerSettings))

This example assigns two topic partitions to the consumer manually:

val streamP1 = Consumer
 .plainExternalSource[Array[Byte], String](consumer,
Subscriptions.assignment(new TopicPartition("source-topic", 1)))
 .via(business)
 .to(Sink.ignore)

val streamP2 = Consumer
 .plainExternalSource[Array[Byte], String](consumer,
Subscriptions.assignment(new TopicPartition("source-topic", 2)))
 .via(business)
 .to(Sink.ignore)

Third-Party Tool Integration Chapter 10

[209]

This example uses a consumer group:

val consumerGroup = Consumer.committablePartitionedSource(
 consumerSettings.withClientId("client-1"),
 Subscriptions.topics("source-topic"))
 consumerGroup.map {
 case (topicPartition, source) =>
 source
 .via(business)
 .toMat(Sink.ignore)(Keep.both)
 .run()
 }.mapAsyncUnordered(maxPartitions)(_._2)

Storing data in Cassandra
According to the definition, Apache Cassandra is a free and open source, distributed
NoSQL database management system designed to handle large amounts of data across
many commodity servers, providing high availability with no single point of failure. This
recipe shows how to connect Kafka and Cassandra.

Getting ready
This recipe uses a Kafka-Cassandra connector published on Maven Central by Tuplejump.

It can be defined as a dependency in the build file. For example, with SBT:

libraryDependencies += "com.tuplejump" %% "kafka-connect-cassandra" %
"0.0.7"

How to do it...
Data can be fetched from Cassandra in two modes:

Bulk
Timestamp-based

The modes change automatically based on the query. For example, bulk:

SELECT * FROM userlog;

Third-Party Tool Integration Chapter 10

[210]

For example, timestamp-based:

SELECT * FROM userlog WHERE ts > previousTime();
SELECT * FROM userlog WHERE ts = currentTime();
SELECT * FROM userlog WHERE ts >= previousTime() AND ts <= currentTime() ;

How it works...
Cassandra sink stores Kafka sink records in Cassandra tables. At the time of writing, it only
supports the STRUCT type in the sink record. The STRUCT can have multiple fields with
primitive field types. Assume one-to-one mapping between the column names in the
Cassandra sink table and the field names.

The sink records have this STRUCT value:

{ 'id': 1,
 'username': 'Edward',
 'text': 'This is my first message'
}

The library doesn't create the Cassandra tables, the user must create them before starting
the sink.

Running Kafka on Mesos
According to the definition, Apache Mesos is an open source project to manage computer
clusters. This recipe shows how to run the Kafka on Mesos framework.

Getting ready
The following applications must be available on the machine:

Java version 7 or later (http://openjdk.java.net/install/)
Gradle (http://gradle.org/installation)

http://openjdk.java.net/install/
http://gradle.org/installation

Third-Party Tool Integration Chapter 10

[211]

How to do it...
To download the Kafka on Mesos project from the repository, type the following1.
command:

 $ git clone https://github.com/mesos/kafka
 $ cd kafka
 $./gradlew jar

The following command downloads the Kafka executor:2.

$ wget
https://archive.apache.org/dist/kafka/0.11.0.0/kafka_2.11-0.11.0.0.
tgz

Set this environment variable pointing to the libmesos.so file:3.

 $ export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so

Use the kafka-mesos.sh script to launch and configure Kafka on Mesos, but4.
first create the kafka-mesos.properties file containing this:

storage=file:kafka-mesos.json
master=zk://master:2181/mesos
zk=master:2181
api=http://master:7000

These properties are used to configure kafka-mesos.sh, so we don't need to pass
continuous arguments to the scheduler. The scheduler supports the following command-
line arguments:

--api: This is the API URL, for example http://master:7000.
--bind-address: This is the scheduler bind address, for example: master,
0.0.0.0, 192.168.50.*, if:eth1). Default value: all.
--debug <Boolean>: This is the debug mode. Default value: false.
--framework-name: This is the framework name. Default value: kafka.
--framework-role: This is the framework role. Default value: *.
--framework-timeout: This is the framework timeout, for example: 30s, 1m, or
1h. Default value: 30d.

Third-Party Tool Integration Chapter 10

[212]

--jre: This is the JRE ZIP file (jre-7-openjdk.zip). Default value: none.
--log: This is the log file to use. Default value: stdout.
--master: These are the master connection settings. Some examples are as
follows:

master:5050
master:5050,master2:5050
zk://master:2181/mesos
zk://master:2181,master2:2181/mesos
zk://username:password@master:2181

--principal: This is the username used to register the framework. Default
value: none.
--secret: This is the password used to register the framework. Default value:
none.
--storage: This is the storage for the cluster state. Default value: file:kafka-
mesos.json. Example values are as follows:

file:kafka-mesos.json
zk:/kafka-mesos

--user: This is the Mesos user to run tasks. Default value: none.
--zk: This is the Kafka ZooKeeper connect. For example:

master:2181
master:2181,master2:2181

How it works...
To start the Kafka scheduler, run the following command:

$./kafka-mesos.sh scheduler

To start the Kafka broker with the default settings, run the following command:

$./kafka-mesos.sh broker add 0

To check the brokers in the cluster, run the following command:

$./kafka-mesos.sh broker list

Third-Party Tool Integration Chapter 10

[213]

To start the broker, run the following command:

$./kafka-mesos.sh broker start 0

To test this setup, use the kafkacat command. To install the kafkacat run the following
command:

$ sudo apt-get install kafkacat
$ echo "test" | kafkacat -P -b "10.213.128.5:31000" -t source-topic -p 0

To read the messages pushed to the broker with kafkacat use the following command:

$ kafkacat -C -b "10.213.128.5:31000" -t source-topic -p 0 -e test

To add more brokers to the cluster with just one command:

$./kafka-mesos.sh broker add 0..2 --heap 1024 --mem 2048

To start the three brokers added, run the following command:

$./kafka-mesos.sh broker start 0..2

To stop one broker, use the following command:

$./kafka-mesos.sh broker stop 0

To change the Kafka logs location of the stopped broker, use the following command:

$./kafka-mesos.sh broker update 0 --options log.dirs=/mnt/kafka/broker0

There's more...
To get the last 100 lines of the logs (stdout, default, and stderr) run the following
command:

$./kafka-mesos.sh broker log 0

Use the following command to read from the stderr file:

$./kafka-mesos.sh broker log 0 --name stderr

To read a file in the */log/directory, for example, the server-1.log file, use the
following command:

$./kafka-mesos.sh broker log 0 --name server-1.log

Third-Party Tool Integration Chapter 10

[214]

To read a number of lines use the --lines option:

$./kafka-mesos.sh broker log 0 --name server.log --lines 200

Reading Kafka with Apache Beam
According to the definition, Apache Beam is an open source unified programming model to
define and execute data processing pipelines, including ETL, batch, and stream processing.
This recipe shows how to read Kafka with Apache Beam.

Getting ready
To install Apache Beam, follow the instructions at: https:/ ​/​beam. ​apache. ​org/ ​get-
started/​quickstart- ​py/ ​.

How to do it...
The following code shows how to write a Beam pipeline to read from Kafka. The example
illustrates various options for configuring the Beam source:

pipeline
 .apply(KafkaIO.read()
 .withBootstrapServers("broker_1:9092,broker_2:9092")
 .withTopics(ImmutableList.of("topic_1", "topic_2"))

 .withKeyCoder(BigEndianLongCoder.of())
 .withValueCoder(StringUtf8Coder.of())
 .updateConsumerProperties(
 ImmutableMap.of("receive.buffer.bytes", 1024 * 1024))

 .withTimestampFn(new CustomTypestampFunction())
 .withWatermarkFn(new CustomWatermarkFunction())
 .withoutMetadata()
)
 .apply(Values.<String>create())

https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/

Third-Party Tool Integration Chapter 10

[215]

How it works...
The KafkaIO returns an unbounded collection of Kafka records as
PCollection<KafkaRecord<K, V>>. A Kafka record includes basic metadata such as
topic, partition, and offset, with keys and values associated with a Kafka record.

Most applications consume a single topic. The source can be configured to consume
multiple topics or even a specific set of topic partitions.

To configure a Kafka source, specify the Kafka bootstrap servers and one or more topics to
consume.

There's more...
Kafka partitions are evenly distributed among splits (workers). Data flow check pointing is
fully supported and each split can resume from the previous checkpoint.

When the pipeline starts for the first time without any checkpoint, the source starts
consuming from the latest offsets. This behavior can be overridden to consume from the
beginning, by setting appropriate properties in consumer configuration, through
KafkaIO.Read.updateConsumerProperties(Map).

See also
Check the official Apache Beam documentation page at: https:/ ​/​beam. ​apache.
org/​documentation/ ​sdks/ ​javadoc/ ​0. ​4.​0/ ​org/​apache/ ​beam/ ​sdk/ ​io/​kafka/ ​

Writing to Kafka from Apache Beam
This recipe shows how to write to Kafka with Apache Beam.

Getting ready
To install Apache Beam, follow the instructions at: https:/ ​/​beam. ​apache. ​org/ ​get-
started/​quickstart- ​py/ ​.

https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/documentation/sdks/javadoc/0.4.0/org/apache/beam/sdk/io/kafka/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/
https://beam.apache.org/get-started/quickstart-py/

Third-Party Tool Integration Chapter 10

[216]

How to do it...
The following code shows how to write a Beam pipeline to write to Kafka. The example
illustrates various options for configuring the Beam sink:

 PCollection<KV<Long, String>> kvColl = ...;
 kvColl.apply(KafkaIO.write()
 .withBootstrapServers("broker_1:9092, broker_2:9092")
 .withTopic("destination-topic")

 .withKeyCoder(BigEndianLongCoder.of())
 .withValueCoder(StringUtf8Coder.of())

 .updateProducerProperties(
 ImmutableMap.of("compression.type", "gzip"))
);

How it works...
The KafkaIO sink supports writing key value pairs to a Kafka topic. To configure a Kafka
sink, specify the Kafka bootstrap servers and the topic to write to.

The KafakIO allows setting most of the properties in the consumer configuration for
source, or in the producer configuration for sink. For example, to enable offset auto commit
(for external monitoring), set group.id, enable.auto.commit, and so on.

There's more...
To only write values without any keys to Kafka, use values() to write records with the
default empty(null) key:

 PCollection<String> strings = ...;
 strings.apply(KafkaIO.write()
 .withBootstrapServers("broker_1:9092, broker_2:9092")
 .withTopic("results")
 .withValueCoder(StringUtf8Coder.of())
 .values()
);

Third-Party Tool Integration Chapter 10

[217]

See also
To read about the Apache Beam project go to: https://beam.apache.org

https://beam.apache.org

Index

A
aggregation 137
Akka
 Kafka consumer, building 206, 207, 208, 209
 Kafka producer, building 204
Apache Avro specification
 reference 60
Apache Beam project
 reference 217
Apache Beam
 Kafka, reading with 214, 215
 reference 214, 215
Apache Kafka download page
 reference 16
authentication
 implementing, SASL/Kerberos used 187, 188
 implementing, SSL used 185, 186

B
balancing leadership 160, 161
bit license 83
bit license regulatory framework
 reference 86
brew
 about 13
 reference 16
broker settings
 configuring 28, 29
broker
 about 9
 decommissioning 167, 168
 reference, for configurations 39

C
Cassandra

 data, storing in 209, 210
clusters
 about 9
 expanding 162, 164, 165
Confluent Cloud 113
Confluent Control Center
 about 113
 monitoring with 119, 120, 121, 122, 123
 reference 123
Confluent Enterprise v4.0 TAR files
 reference 115
Confluent open source v4.0
 download link 115
Confluent Platform open source
 components 113
Confluent Platform
 about 112
 enterprise, components 113
 installing 114, 115
 reference 116
consumer 9
consumer groups
 managing 143, 144, 145
consumer position
 checking 168, 169
consumer statistics
 monitoring 178, 179, 180, 181
ConsumerGroupCommand tool
 about 143
 arguments 145
currency price enricher
 about 91, 93, 94
 running 95, 96, 97
currency price extractor 89, 91

[219]

D
data
 ingestion, from Kafka to Storm 199, 200
 inserting, from Kafka to SolrCloud 203
 moving, between Kafka nodes 190, 192
 pushing, from Kafka to Elastic 201
 storing, in Cassandra 209, 210
decommissioning 167
DumpLogSegments command
 arguments 146

E
Elastic
 reference 195
Elasticsearch
 installation link 201
enriched-messages 106
events
 modeling 57, 58, 59, 98, 99
extract, transform, and load (ETL) 192

F
Flume
 data, moving between Kafka nodes 190, 192
 reference 190, 192

G
Ganglia
 about 183
 monitoring capability 183, 184
Generic Security Services API (GSSAPI) 187
geolocation enricher 86, 87, 89
geolocation extractor 83, 84, 86
GetOffsetShell
 options 148
 using 147
Gobblin
 about 192
 reference 195
 used, for writing to HDFS cluster 192, 193, 194
graceful shutdown
 implementing 159, 160
Gradle

 download link 62
Graphite
 connection ability 181, 182

H
high watermark (HW) 35

I
Internet of Things (IoT) 83
ISR (in-sync replicas) 23

J
Java
 installing, in Linux 12
JMX reporters, for Kafka
 reference 185
JMX tool
 parameters 149
 using 148
join 137

K
Kafka brokers, properties
 reference 55
Kafka brokers
 configuring 17, 18, 19
Kafka clients 113
Kafka Connect
 about 113
 reference 135
 using 130, 132, 133
Kafka consumer API
 reference 68
Kafka consumer
 building, with Akka 206, 207, 208, 209
Kafka core 113
Kafka Ganglia metrics reporter
 reference 185
Kafka Graphite metrics reporter
 reference 183
Kafka input plugin, for Logstash
 reference 197
Kafka mirroring
 reference 151

[220]

Kafka nodes
 data, moving between 190, 192
Kafka operations
 reference 119
 using 116, 118
Kafka output plugin, for Logstash
 reference 197
Kafka Producer API
 reference 70
Kafka producer
 building, with Akka 204
Kafka REST Proxy
 about 113
 reference 130
 using 128, 129
Kafka Schema Registry 113
Kafka Streams 113
Kafka topics
 configuring 20, 21
kafka-configs shell
 parameters 158
kafka-console-producer program
 parameters 25
Kafka-Consumer-Groups command
 arguments 169
kafka-topics shell
 parameters 156, 157
Kafka
 about 9
 cluster types 10
 installing 10, 11
 installing, in Linux 13
 messages, reading from 65, 66
 messages, writing to 68, 70
 reading, with Apache Beam 214, 215
 running 16
 running, on Mesos 210, 211, 212, 213
 Spark streams, connecting to 197, 198
 writing to 215, 216
Kerberos
 used, for implementing authentication 187, 188

L
Linux
 Java, installing in 12

 Kafka, installing in 13
 Scala, installing in 12
location temperature enricher
 about 106
 running 108, 109
log compaction 10
log partitions 9
log producer
 replaying 151
log segments
 dumping 145, 146
log settings
 configuring 31, 32
Logstash
 about 195
 data, moving from Kafka to Elastic 196, 197
 installation link 196

M
MaxMind
 reference 86
Mesos
 Kafka, running on 210, 211, 212, 213
message broker 9
message console consumer
 creating 26
message console producer
 creating 24, 25
message router 9
message topics
 modifying 157, 158
message, Avro schema 59, 60
messages
 reading, from Kafka 65, 66
 writing, to Kafka 68, 70
MirrorMaker tool
 parameters 150
 using 150
MirrorMaker, versus confluent replicator
 reference 151
miscellaneous parameters
 configuring 37, 38
multiple-node multiple-broker (MNMB) cluster
 configuring 54, 55

[221]

O
offset 9
Open Exchange Rates page
 reference 90
open weather extractor 104, 105
OpenWeatherMap page
 reference 104

P
parallelism 17
partition 9
performance
 configuring 30
ProcessingApp
 running 70, 71, 72, 74
processor topology 136
producer 9
producer statistics
 monitoring 175, 176, 177
project
 setting up 61, 62, 63, 64, 65, 100, 102, 137,

140

R
raw-messages 106
redundancy 17
ReplayLogProducer tool
 about 151
 parameters 152
replica settings
 configuring 34, 35
replication factor
 increasing 166
retention period 9

S
SASL
 reference, for authentication 188
 used, for implementing authentication 187, 188
Scala
 installing, in Linux 12
Schema Registry
 reference 128

 using 123, 124, 126
schemas
 reference 100
server statistics
 monitoring 171, 172, 173, 174
server.properties template
 reference 20
single-node multiple-broker (SNMB) cluster
 configuring 48, 49
 consumer, starting 52
 producer, starting 52
 topic, creating 51
single-node single-broker (SNSB) cluster
 configuring 41, 42, 44
 consumer, starting 47
 producer, starting 46
 topic, creating 45
single-node single-broker (SNSB)
 broker, starting 43
 ZooKeeper, starting 42
Spark programming guide
 reference 199
Spark streams
 connecting, to Kafka 197, 198
SSL
 reference, for authentication 187
 used, for implementing authentication 185, 186
state change log merger
 using 152
StateChangeLogMerger tool
 about 152
 parameters 153
Storm
 installation link 199
stream processing application
 about 136
 steps 62
stream processor 137
streaming application
 running 140, 141, 142

T
threads
 configuring 30
topics

 about 9
 adding 154, 156
 removing 154, 156
topology 136

V
validator
 coding 74, 75
 running 77, 78, 79, 80, 81

W

windowing 137

Y
yum 13

Z
Zookeeper 9
ZooKeeper offsets
 importing 146, 147
Zookeeper settings
 configuring 35, 36

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: Configuring Kafka
	Introduction
	Installing Kafka
	Getting ready
	How to do it...
	Installing Java in Linux
	 Installing Scala in Linux
	Installing Kafka in Linux

	There's more...
	See also

	Running Kafka
	Getting ready
	How to do it...
	There's more...
	See also

	Configuring Kafka brokers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring Kafka topics
	Getting ready
	How to do it...
	How it works...
	There's more…

	Creating a message console producer
	Getting ready
	How to do it...
	How it works...
	There's more…

	Creating a message console consumer
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring the broker settings
	Getting ready
	How to do it...
	How it works…
	There's more…

	Configuring threads and performance
	Getting ready
	How to do it...
	How it works…
	There's more...

	Configuring the log settings
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Configuring the replica settings
	Getting ready
	How to do it...
	How it works…
	There's more...

	Configuring the ZooKeeper settings
	Getting ready
	How to do it…
	How it works…
	See also

	Configuring other miscellaneous parameters
	Getting ready
	How to do it...
	How it works…
	See also

	Chapter 2: Kafka Clusters
	Introduction
	Configuring a single-node single-broker cluster – SNSB
	Getting ready
	How to do it...
	Starting ZooKeeper
	Starting the broker

	How it works...
	There's more...
	See also

	SNSB – creating a topic, producer, and consumer
	Getting ready
	How to do it...
	Creating a topic
	Starting the producer
	Starting the consumer

	How it works...
	There's more...

	Configuring a single-node multiple-broker cluster – SNMB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	SNMB – creating a topic, producer, and consumer
	Getting ready
	How to do it...
	Creating a topic
	Starting a producer
	Starting a consumer

	How it works...
	There's more...
	See also

	Configuring a multiple-node multiple-broker cluster – MNMB
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Message Validation
	Introduction
	Modeling the events
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up the project
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading from Kafka
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing to Kafka
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running ProcessingApp
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Coding the validator
	Getting ready
	How to do it...
	There's more...
	See also

	Running the validator
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Message Enrichment
	Introduction
	Geolocation extractor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Geolocation enricher
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Currency price extractor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Currency price enricher
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running the currency price enricher
	Getting ready
	How to do it...
	How it works...

	Modeling the events
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up the project
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Open weather extractor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Location temperature enricher
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running the location temperature enricher
	Getting ready
	How to do it...
	How it works...

	Chapter 5: The Confluent Platform
	Introduction
	Installing the Confluent Platform
	Getting ready
	How to do it...
	There's more...
	See also

	Using Kafka operations
	Getting ready
	How to do it...
	There's more...
	See also

	Monitoring with the Confluent Control Center
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the Schema Registry
	Getting ready
	How to do it...
	See also

	Using the Kafka REST Proxy
	Getting ready
	How to do it...
	There's more...
	See also

	Using Kafka Connect
	Getting ready
	How to do it...
	There's more...
	See also

	Chapter 6: Kafka Streams
	Introduction
	Setting up the project
	Getting ready
	How to do it...
	How it works...

	Running the streaming application
	Getting ready
	How to do it...

	Chapter 7: Managing Kafka
	Introduction
	Managing consumer groups
	Getting ready
	How to do it...
	How it works...

	Dumping log segments
	Getting ready
	How to do it...
	How it works...

	Importing ZooKeeper offsets
	Getting ready
	How to do it...
	How it works...

	Using the GetOffsetShell
	Getting ready
	How to do it...
	How it works...

	Using the JMX tool
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the MirrorMaker tool
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replaying log producer
	Getting ready
	How to do it...
	How it works...

	Using state change log merger
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Operating Kafka
	Introduction
	Adding or removing topics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Modifying message topics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing a graceful shutdown
	Getting ready
	How to do it...
	How it works...

	Balancing leadership
	Getting ready
	How to do it...
	How it works...
	There's more...

	Expanding clusters
	Getting ready
	How to do it...
	How it works...
	There's more...

	Increasing the replication factor
	Getting ready
	How to do it...
	How it works...
	There's more...

	Decommissioning brokers
	Getting ready
	How to do it...
	How it works...

	Checking the consumer position
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Monitoring and Security
	Introduction
	Monitoring server statistics
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring producer statistics
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring consumer statistics
	Getting ready
	How to do it...
	How it works...
	See also

	Connecting with the help of Graphite
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring with the help of Ganglia
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing authentication using SSL
	How to do it...
	See also

	Implementing authentication using SASL/Kerberos
	How to do it...
	See also

	Chapter 10: Third-Party Tool Integration
	Introduction
	Moving data between Kafka nodes with Flume
	Getting ready
	How to do it...
	How it works...
	See also

	Writing to an HDFS cluster with Gobblin
	Getting ready
	How to do it...
	How it works...
	See also

	Moving data from Kafka to Elastic with Logstash
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Connecting Spark streams and Kafka
	Getting ready
	How to do it...
	How it works...
	There's more...

	Ingesting data from Kafka to Storm
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Pushing data from Kafka to Elastic
	Getting ready
	How to do it...
	How it works...
	See also

	Inserting data from Kafka to SolrCloud
	Getting ready
	How to do it...
	How it works...
	See also

	Building a Kafka producer with Akka
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a Kafka consumer with Akka
	Getting ready
	How to do it...

	Storing data in Cassandra
	Getting ready
	How to do it...
	How it works...

	Running Kafka on Mesos
	Getting ready
	How to do it...
	How it works...
	There's more...

	Reading Kafka with Apache Beam
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing to Kafka from Apache Beam
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Index

