

Bash Quick Start Guide

Get up and running with shell scripting with Bash

Tom Ryder

BIRMINGHAM - MUMBAI

Bash Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Noyonika Das
Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Shweta Jadhav
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Nilesh Mohite

First published: September 2018

Production reference: 1270918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-883-0

www.packtpub.com

http://www.packtpub.com

For Chantelle

– Tom Ryder

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Tom Ryder is a systems administrator living in New Zealand who works for an internet
services provider. He loves terminals, text editors, network monitoring and security, Unix
and GNU/Linux, shell script, and programming in general. He is also the author of
the Nagios Core Administration Cookbook.

Thanks go to the Packt editors and reviewers; to Richard Stallman, Brian Fox, and Chet
Ramey for the GNU Project and the Bourne-Again Shell; to the authors of Greg's Wiki
and the Bash Hackers Wiki; to Cory Sadowski for many entertaining chats about shell
script over the years; to my boss, James Watts, for contractual permission to write yet
another book; and, of course, to the lovely Chantelle Potroz.

About the reviewers
Fabio Alessandro Locati – commonly known as Fale – is the director at Otelia, a public
speaker, author, and open source contributor. His primary areas of expertise are Linux,
automation, security, and cloud technologies. Fale has more than 14 years' experience
working in IT, with many of them spent consulting for companies, including dozens of
Fortune 500 companies. Fale has written Learning Ansible 2, OpenStack Cloud Security, and
has been part of the review process for multiple books.

Janos Gyerik is a passionate software developer. He enjoys building software whatever the
programming language, both at work and in his spare time. He helps fellow programmers
by answering questions on Stack Overflow, or by giving feedback on their code on Code
Review Stack Exchange. Janos makes Android apps such as Programming and Bash Quiz,
and websites such as Bash One-Liners, and is always up to some geeky projects.

Cory Sadowski is an IT professional living in the United States, specializing in Perl and
shell programming, GNU/Linux, and, despite best efforts, Windows administration. He
loves most things GNU/Linux, video games, and other such sophisticated topics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: What is Bash? 7
What Bash is and is not 8
Getting Bash 8
Checking Bash is running 9

Switching the login shell to Bash 10
Identifying the Bash version number 11
Upgrading Bash on macOS X 12
Understanding Bash features 12

POSIX shell script features 13
Bash-specific features 14
Do I need Bash? 15

Choosing when to apply Bash 15
Choosing when to avoid Bash 16
Getting help with Bash 17
Summary 18

Chapter 2: Bash Command Structure 19
Using Bash interactively 19
Interactive key bindings 20
Simple commands 20
Shell metacharacters 21
Quoting 22

Escaping 22
Single quotes 23
Double quotes 24
Quote concatenation 24

Running commands in sequence 25
Exit values 25
Stopping a command list on error 26
Running a command in the background 27
Summary 28

Chapter 3: Essential Commands 29
Distinguishing command types 29
Essential Bash builtin commands 30

The type command 31
The echo command 32

Table of Contents

[ii]

The printf command 33
The pwd command 34

Tilde paths 35
The cd command 35

Changing the directory in scripts 36
The set command 37
The declare command 38
The test, [, and [[commands 39

Essential system commands 40
The ls command 40

Getting filename lists without ls 41
The mv command 42
The cp command 43
The rm and rmdir commands 44
The grep command 45
The cut command 47
The wc command 48

Getting file sizes with wc or du 49
The find command 49

Executing commands for each result 51
A note about find and xargs 52

The sort and uniq commands 53
Summary 55

Chapter 4: Input, Output, and Redirection 56
Redirecting output 56

Redirection paths 57
Avoiding overwrites 58
Appending to files 59
Understanding created file permissions 59
Choosing permissions for created files 61

Redirecting errors 62
Combining errors with output 63
Blocking errors completely 64
Sending output to more than one place 65

Redirecting input 66
Using a long string as input with here-documents 68

Using pipes 70
Adding file contents to a stream 71
Piping output from multiple programs 72
Filtering programs 73

The sed stream editor 74
The AWK programming language 75

Summary 77

Chapter 5: Variables and Patterns 78
Using variables 78

Table of Contents

[iii]

Listing variables 79
Naming variables 80

Variable name case 80
Clearing variables 81
Environment variables 82

Calling programs with environment variables 85
Expanding variables 86
Reading a value into a variable 86
Getting command output in variables 87
Parameter expansion forms 88

Specifying default values 88
String chopping 88
Extracting substrings 89
Getting string length 90
Substituting strings 90
Changing case 90
Combining parameter expansion forms 91

Doing math in Bash 91
Fixed or floating-point arithmetic 92

Using globs 93
Configuring globbing behavior 95

Including dot files, but excluding dot and dot-dot 95
Expanding to nothing 96
Case-insensitive globbing 97
Extended globbing 97

Using arrays 98
Glob expansion in arrays 99
Associative arrays 100

Summary 100

Chapter 6: Loops and Conditionals 101
Using the if keyword 101

Using the test command 103
Using the [command 104
Using the [[keyword 104
Arithmetic conditions 105

Switching with the case keyword 107
Looping over shell words with for 108

Skipping an iteration 109
Ending the loop 110
Misuse of for loops 111

Using Bash's C-style for loops 112
Using while loops 113

Infinite loops 113
Reading data line by line 114
Field splitting 116
Saving fields into arrays 116

Table of Contents

[iv]

Choosing the splitting character 117
Disabling whitespace trimming 118
Reading process output 118

Avoiding subshell problems 118
Avoiding input problems with ssh 120

Summary 121

Chapter 7: Scripts, Functions, and Aliases 122
Aliases 122

Defining new aliases 123
Understanding shortcomings with aliases 124

Functions 126
Defining functions 126
Passing arguments to functions 127

Using -- to separate options from filenames 128
Getting all the arguments 129

Returning values from functions 130
Understanding function input and output 131
Function scope 132
Reloading functions at shell startup 134

Scripts 135
Scripting methods 135
Writing a shebang script 136
Finding scripts with $PATH 137
System bindir 138
User bindir 139
Arguments to scripts 140
Understanding sh vs bash 140
Using env 141

Choosing between functions and scripts 141
Using functions in scripts 142
Summary 142

Chapter 8: Best Practices 143
Quoting correctly 144

When you don't want quotes 145
Handling filenames starting with dashes 146
Separating output and diagnostics 147
Keeping scripts brief and simple 148
Keeping scripts flexible 148
Respecting and applying the user's configuration 149
Allowing scripts to run without user input 149
Limiting the scope of shell state changes 151
Avoiding path anti-patterns 153
Avoiding Bash for untrusted user input 154

Table of Contents

[v]

Documenting scripts 154
Writing comments 155
Providing help output 155
Writing manual pages 155

Using temporary files cleanly 156
Cleaning up after a script 157
Tools to check shell scripts for problems 158
Summary 159

Other Books You May Enjoy 160

Index 163

Preface
The GNU Bourne-Again Shell, or Bash, is the best-known Bourne-style shell in the world,
and is installed or available for installation on a huge variety of Unix-like systems. Even
professionals who don't do a lot of work with Unix or Linux will need to use the Bash shell
occasionally.

Bash is a language of contradictions; while it's the best-known and most widely-deployed
shell of its kind, it's perhaps also one of the least-understood tools, with a terse syntax that's
relatively unique among modern programming languages and can seem bizarre even to
experienced users. Bash is powerful in some ways, and very limited in others. It's clear,
elegant, and expressive in some ways, and terse, clumsy, and bewildering in others.

Because it's so powerful and yet so complex, and because so many computer professionals
can't avoid using it at least occasionally, Bash is often learned by way of a kind of
"tradition;" demonstrations by experienced administrators, reading others' scripts, copying
and pasting, and asking questions and reading answers on the internet. This leads to a lot
of "cargo-cult programming," and a lot of bad practices that make things unnecessarily
confusing at best, and downright dangerous at worst. The available documentation for
Bash is often unhelpful in addressing this problem—it often teaches the same bad practices,
and even when it's correct, as the official Bash manual page is, it's often too complicated
and assumes too much knowledge for new users to understand it.

To avoid all that, we'll start learning good Bash from first principles, and focus almost
exclusively on writing the language well, in both interactive and batch mode. By the end of
this book, you'll have a firm grasp on how to write Bash shell script in a robust and
understandable way, and be in a position to notice bad habits and dangerous "hot spots" in
others' code. You'll have a great grasp on the problems for which shell script is a perfect
solution, and writing it will be a lot more efficient, and maybe even fun.

Preface

[2]

Who this book is for
This book is ideal for you if you have access to a computer with Bash installed or available,
and you've maybe even used Bash or another Unix-like command shell before to enter at
least a few basic commands, but you can't understand the official Bash manual page very
well (or at all). You should not be ashamed of that; it's one of the most famously dense
manual pages for software ever written! Some experience with basic programming
structures such as variables, expressions, conditionals, and loops will help you understand
the book—but Bash mostly has its own way of doing things that you need to learn from the
ground up, so you don't need to be an expert in any given language.

Alternatively, you may be a more experienced systems administrator, or even an expert in
another programming language, who has done a fair bit more than a beginner with shell
script, but is still frustrated by the dark corners and difficulties in using it, and wants a
course in "remedial shell script" to unlearn some bad habits. The book will clarify arcane
and difficult syntax and patterns in shell programming. You'll become much more
confident in using it in your work when the situation calls for it, and you'll be in a position
to fix both your own and others' shell scripts, and even to train others on writing shell
script effectively.

What this book covers
Chapter 1, What is Bash?, opens the book by giving a clear definition of what the Bash shell
actually is, where it fits in with other programs on a Unix system, and how to find and (if
necessary) install it on your system.

Chapter 2, Bash Command Structure, looks at the anatomy of Bash command lines, starting
with simple single commands and arguments, and moves on through running multiple
commands, and good quoting practices for data.

Chapter 3, Essential Commands, examines a list of common commands useful in Bash
command lines and scripts, explaining the situations in which each is useful and how to use
them; listing, searching, sorting, and slicing data are all discussed.

Chapter 4, Input, Output, and Redirection, extends our new basic command structure
knowledge to show how to specify where data for commands to read comes from, and
where it goes to—including "piping" one command's output into another command, and
filtering it in between.

Preface

[3]

 Chapter 5, Variables and Patterns, explains and demonstrates how Bash's variable
assignment and expansion works for both simple variables and arrays, how to transform
strings conveniently with parameter expansion, and how to use patterns to match and
specify lists of files.

Chapter 6, Loops and Conditionals, shows how to run the same set of commands on every
item of a list of shell words or lines, and how to run commands only if a certain expression
is true or false.

Chapter 7, Scripts, Functions, and Aliases, builds on our new knowledge of shell grammar
and common commands to start writing your own commands, implemented in the Bash
programming language and executable from anywhere on your computer.

Chapter 8, Best Practices, ends the book with some important hints, tips, and techniques for
writing robust and readable shell script that will set you on the path to becoming a true
shell scripting expert.

To get the most out of this book
You should have access to a computer with Bash 4.0 or higher installed or available, and be
able to type commands into it via a TTY, terminal emulator, Telnet, or SSH connection (for
example, using PuTTY). This book does give some guidance in the first chapter on how to
install Bash on your system if it's not already there, or if the installed version is too old (as
may be the case on macOS X). You will need either administrative-level (root) access to the
computer to install Bash yourself, or a cooperative systems administrator to help you.

If you are not sure which operating system to use, we recommend the Ubuntu distribution
of GNU/Linux, available from https:/ /www. ubuntu. com/ . The LTS (Long Term Support)
version will do fine. Ubuntu is open source, free to download, thoroughly documented,
and relatively easy to install. You can run this operating system in a virtual machine using a
program or hypervisor such as VMware or VirtualBox—it does not have to be installed
directly on your computer's hardware.

At the time of writing, Windows 10 has a new Bash subsystem available and in active
development, the Windows Subsystem for Linux. You may find that most of the material in
this book is relevant and usable on such a system, but the book does not specifically
support this, and we highly recommend installing a full GNU/Linux or BSD system for
your learning and experiments instead.

https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.ubuntu.com/

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Bash-Quick-Start-Guide. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789538830_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Bash-Quick-Start-Guide
https://github.com/PacktPublishing/Bash-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789538830_ColorImages.pdf

Preface

[5]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

#!/bin/bash
printf 'Starting script\n' >> log
printf 'Creating test directory\n' >> log
mkdir test || exit
printf 'Changing into test directory\n' >> log
cd test || exit
printf 'Writing current date\n' >> log
date > date || exit

Any command-line input or output is written as follows:

$ printf 'Hello, world\n' > myfile $ ls -l myfile -rw-r--r-- 1 bashuser
bashuser 1 2018-07-29 20:53:23 myfile

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
What is Bash?

Bash's full name is the GNU Bourne Again Shell. It is a programming language,
specifically a shell scripting language, with an interpreter in a program named bash. It was
created by Brian Fox of the Free Software Foundation, starting in 1989, and is now
maintained by Chet Ramey. It is part of the GNU project for a free software operating
system.

The bash program is used as a shell: either for entering commands as an interactive shell
using a command line, batches of commands from a shell script, or a single command from
an option.

In this book, we will refer to Bash as the software distribution and the programming
language, and to bash as its interpreter program.

Bash is a Bourne-style shell, with some support for POSIX shell compatibility. It is not
compatible with any kind of C-style shell, such as tcsh.

Bash has many general programming language facilities that make it usable for general
programming tasks, but like most shell scripting languages, its fundamental design is to
run other programs in a control structure, and to make them work together in ways
suitable to the programmer, whether or not they were designed to do so. This is the main
thing that makes shell scripting powerful and useful.

In this chapter, you will learn:

What Bash is and is not
How to install and switch to Bash
How to check you are running a recent version of Bash
How the POSIX standard applies to Bash
The two major categories of Bash features
Programming tasks for which Bash is and is not well-suited
How to get help while using Bash

What is Bash? Chapter 1

[8]

What Bash is and is not
On reading the preceding definition, you may have noticed a few things you might have
expected are missing. There is a lot of confusion out there about what Bash is and is not.
Here are some common misconceptions:

Bash is not (necessarily) part of Linux. They are separate pieces of software. GNU
Bash existed for several years before the Linux kernel was created, and runs on
other operating systems too.
Bash is not the same thing as SSH. SSH is a service and network protocol for
running commands on remote computers. bash can be one such command.
Bash is also not your terminal or TTY. Your terminal is a device for sending
information to, and receiving information from, a computer. Terminals used to
be hardware devices with a monitor and keyboard. Nowadays, for most users,
they are terminal emulators, or software devices. Bash is a program that runs
using your terminal for its input and output.
Similarly, Bash is not the same thing as PuTTY, iTerm, or xterm. These are
terminal emulators, not shells. Your terminal emulator is a program that
understands and interprets text-based programs. Bash is one such program.
Bash is not the command line, in the strictest sense. Bash has an interactive mode,
which is an example of a command line, but many other tools have command
lines, and not just system shells. The bc calculator tool is an example of another
tool with a command line.

Now that you know this, if someone ever asks you for a PuTTY account on your server,
make sure to set them straight!

Getting Bash
If you are running a GNU/Linux system, you almost certainly already have access to Bash.
It is installed by default on almost every GNU/Linux computer system.

On such systems, it is very often the default login shell for users. This means that when a
new user logs in for the first time, it's the first interactive program that runs, and it starts up
to wait for command input from the user.

On some systems, such as Debian GNU/Linux, Bash will be the default login shell for non-
system users, usually human beings rather than system processes, but a different shell, such
as the POSIX shell or Bourne shell, will be used for system accounts.

What is Bash? Chapter 1

[9]

Bash can be installed on other Unix-like systems as well, such as on FreeBSD, NetBSD,
OpenBSD, or proprietary versions of Unix. Even though Bash has such a strong history
with GNU/Linux systems, administrators of these other systems often end up installing it,
because it is so popular and many users will expect to be able to use it as their shell. It
usually has to be installed as a separate package, and is not part of the default installation.

You can also build Bash from source on most Unix-like systems with access to a C
compiler. Doing this is outside the scope of this book, and you should use your system's
packages or ports system if you can. The Bash source code is available at https:/ /www. gnu.
org/software/bash/ .

Checking Bash is running
If you're using a GNU/Linux system, and your system administrator hasn't changed your
login shell, it's likely that Bash is starting up as soon as you log in with a TTY, in an xterm,
or over SSH.

If you see a prompt that looks like one of these after you log in, it's a good sign you're in a
bash session:

bash-4.4$
user@hostname:~$

If you want to check, you can enter this at the prompt:

bash$ declare -p BASH

If you get a response like this, with a path to your bash binary, you can be confident you
are running bash:

declare -- BASH="/bin/bash"

If you get some other output, such as:

sh: declare: not found

Then you may be running some other kind of shell. You may be able to tell what it is by
printing the value of the SHELL variable:

$ echo "$SHELL"

We'll use the bash$ prefix before commands throughout this book as a way to show
commands you should enter at the Bash command line. We'll use just a $ prefix instead if
the command should also work in other POSIX-compliant shells.

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/

What is Bash? Chapter 1

[10]

Switching the login shell to Bash
Even if it's not the shell that starts up when you log in, Bash may still be installed on your
system, and you may still be able to change your login shell to it.

You might be able to start it by just typing bash:

$ bash

If you get output like command not found, you will probably need to install a Bash
package specific to your system, or get your system administrator to do it for you. Consult
your operating system's documentation to learn how to do this.

If you get a new prompt that looks like the Bash prompts in the previous section, you can
then find the location of the bash program:

bash$ declare -p BASH
BASH="/usr/local/bin/bash"

Depending on the system, you might then be able to change Bash to your login shell to that
path with the chsh tool:

$ chsh -s /usr/local/bin/bash

This might prompt you for your system password to allow you to make the change.

You may get an error message like this:

chsh: /usr/local/bin/bash is an invalid shell

In this case, the invalid shell part likely means that the path given needs to be added to
the /etc/shells file, which specifies the programs the system and its administrator have
allowed as login shells. You can inspect this list with cat:

$ cat /etc/shells

If you add your full path to bash on your system to that file, the chsh call should then
succeed.

What is Bash? Chapter 1

[11]

Identifying the Bash version number
Before we start writing commands and programming with Bash, it's a good idea to find out
what version of Bash you have installed. This is because newer versions of Bash have useful
new features that might be discussed in this book, but that might not be available in your
version of Bash.

You can check the version of your current running shell by printing the value of the
BASH_VERSION variable:

bash$ declare -p BASH_VERSION
declare -- BASH_VERSION="4.4.12(1)-release"

You can get the same information by invoking the bash program with its --version
option, which provides some extra information about the program's version number and
software license:

$ bash --version
GNU bash, version 4.4.12(1)-release (x86_64-pc-linux-gnu)
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

The most recent stable minor version of GNU Bash at the time of writing is version 4.4, with
version 4.4.0 released in September 2016.

In this book, we will focus on the features of Bash that were available in GNU Bash version
4.0, which was released in 2011, and is very widely available as a minimum version.

If the version of Bash installed on your computer is older than 4.0, some of the scripts and
features discussed in this book may not work correctly. You or your system administrator
should use your operating system to upgrade your Bash shell to a newer version.

What is Bash? Chapter 1

[12]

Upgrading Bash on macOS X
There is a special case of Bash versions for macOS X. If you are using Bash on OS X, you
might notice that the version of Bash installed by default is much older than the minimum
of 4.0 discussed in this book:

bash$ declare -p BASH_VERSION
declare -- BASH_VERSION="3.2.57(1)-release"

This is due to licensing changes in Bash 4.0 that were not acceptable to the operating system
vendor, which leaves the version of Bash included on the system stuck at the last acceptable
version. This means that, by default, your system may not have Bash 4.0 or newer, even if
the system is brand new.

Fortunately, there are other ways to install Bash 4.0 or newer on a macOS X computer. One
popular method is to use the Homebrew package-management system, available here:
http://brew.sh/.

Follow the instructions on the Homebrew website to install it. You can then install a new
version of Bash with:

$ brew install bash

You may have to include the newly-installed Bash path in the allowed list of login shells in
/etc/shells before you can apply chsh to change your login shell. You may also have to
adjust your terminal emulator (e.g. iTerm) to run the new version of Bash. Consult your
operating system and terminal emulator documentation to learn how to do this.

Understanding Bash features
Some of Bash's programming features are shared by all other Bourne-style, POSIX-
compatible Shell scripting languages. These are specified by the POSIX standard, in section
2, Shell Command Language. Bash is designed to conform to this standard. You can read what
it specifies at http:/ /pubs. opengroup. org/onlinepubs/ 9699919799/ utilities/ V3_
chap02.html.

Bash also has many other features that are not described in the POSIX shell script standard
that make many common shell script programming tasks easier. In this book, we will
examine both categories.

http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html

What is Bash? Chapter 1

[13]

POSIX shell script features
Features required for the POSIX shell script include:

Running commands convenient syntax for running commands, including other
programs, specifying arguments, environment variables, working directories,
permissions masking, and other properties.
Variables that can be set to any string value, including manipulating process
environment variables, and that can be expanded on the command line.
Arithmetic expansion for performing integer-based arithmetic on variables and
numbers.
Control structures for executing code depending on the outcome of another
command (if), including a specially-designed test or [command, and
repeating code until a condition is true (while).
Aliases as a way to abbreviate long command lines as a single word for
convenience.
Functions to allow defining blocks of code as new commands for the purposes of
the running script or interactive session.
Input and output redirection to specify input sources and output destinations
for programs run in the shell.
Pipes to direct the output of one command to become the input of another.
Argument list through which code can iterate using a for loop.
Parameter expansion a means of switching between or transforming string
values in assignments or command arguments.
Pattern matching in the form of classic Unix globs.
Process management in running jobs in the background, and waiting for them to
complete at the desired point.
Compound commands to treat a group of commands as one, optionally running
it in a subshell environment (subprocess).
Reading lines of input data including breaking them down into fields with a
defined separator character.
Formatted strings such as the C printf(3) function in the stdio C
programming language library.
Command substitution to use the output of a command as a variable, as part of a
test, or as an argument to another command.

What is Bash? Chapter 1

[14]

These features are either part of the Shell scripting language itself, or available in the
POSIX-specified programs that it calls. In a sense, your shell scripts are only limited by the
programs you can run with them.

By calling the grep program, for example, you can select input lines using regular
expressions, even if your Shell scripting language does not itself support regular
expressions. We will cover some of these essential commands in this book, even though
they are not technically part of the GNU Bash distribution.

All the these features mean you can get a lot done in your Bash program even if you just
use POSIX features, and your script might then run on other shells, such as dash, without
much modification. All of the features are discussed in this book.

Bash-specific features
In addition to all the POSIX shell script features in the previous section, Bash adds many
extensions that make programming more convenient, expressive, and sometimes less error-
prone. These include:

Named array variables. This is perhaps the most important advantage over the
plain POSIX shell script. It makes many otherwise impractical things possible. If
you need one single reason to use Bash, this is probably it!
An easier syntax for performing conditional tests. This is also a very important
feature.
Extended globs for advanced pattern-matching.
Regular expression support, for performing the most powerful kind of text-
pattern-matching, when even globs won't do.
Local variables for functions, a limited kind of variable scope.
A C-style for loop syntax.
Several kinds of parameter expansion, including case transformation, array
slices, substrings, substitution, and quoting.
Arithmetic expressions, for conveniently testing the outcome of arithmetic
operations.
Many more shell options to control shell script and interactive shell behavior,
including extra debugging support.
Better support for irregular filenames and unusual line separators in data.

What is Bash? Chapter 1

[15]

All of these features are also discussed in this book. Where relevant, we will specify which
features are POSIX-specific and which features are specific to Bash.

Do I need Bash?
If you know you will have Bash available on the systems where your shell script will run,
you should use it! Its features make programming in shell script easier and safer, and it is
by far the most popular kind of shell script, with many people reading and writing it. Many
people think that Bash is the only kind of shell script.

Even if your shell script is simple today, you might need to add more to it tomorrow, and a
Bash feature might be exactly the thing you need at that time.

However, if your shell script might need to run on a system where Bash may not be
installed and cannot be installed for your script, then you may need to limit yourself to the
POSIX shell features. Check your system's documentation to determine what style of shell
script you will have to write in order for your script to run.

Choosing when to apply Bash
There are some tasks for which shell scripting in general, and Bash in particular, are
especially well-suited:

Prototyping: Short Bash programs are quick and easy to write. It's quite common
to "hack together" a simple script in Bash for later replacement by a script or
program in a more advanced programming language that requires more effort to
write and maintain.

Interactive system administration: A Bourne-style shell is assumed in very
many contexts in Unix, and almost all of the system documentation you read will
tell you to issue commands in a Bourne-style shell. This makes it a natural choice
for a scripting language.

Automation: If you have a set of commands you often run together, making a
script for them is as simple as writing them all into a text file, each on a new line,
and making that file executable.

Connecting programs together: Like all Shell scripting languages, Bash
specializes in moving data to and from files and between processes. Many
programs are designed to work together in this way.

What is Bash? Chapter 1

[16]

Filtering and transforming text input: Some programs, however, aren't designed
to cooperate in this way, and they require some data filtering and
transformation in the middle. Bash can be a very convenient language for doing
this, and it's also a good language to call other tools such as awk or sed to do it
for you.

Navigating the Unix filesystem: In Bash, it does not require much code to
navigate and iterate through the filesystem, discovering, filtering, and processing
files within it at runtime. Coupled with the find tool, especially a high-powered
version such as GNU find, a lot can be done in a pattern over a filesystem with
relatively little code.

Basic pattern-matching on strings: Bash has features that make it good for basic
pattern-matching on strings, especially filenames and path names, with
parameter expansion.

Portability: Bash works on and is packaged for a huge variety of Unix-like
systems. POSIX shell script is even more widely supported. If you need to know
your script and its runtime will remain portable to many Unix-like systems, Bash
might be a good choice.

Choosing when to avoid Bash
Bash's design and development effort is less focussed on some other areas. New users who
are keen to use Bash often find tasks that require the following to be difficult or impossible
in the Bash language itself:

Programs requiring speed: The end of the Bash manual page, under the "BUGS"
section, reads: It's too big and too slow. This may seem like a joke, but while a
compiled bash binary is unlikely to be more than a couple of megabytes in size,
it is not optimized for speed. Depending on the task, reading a very large file line
by line in Bash and processing data within it with string operations is likely to be
significantly slower than using a tool such as sed or awk.

Fixed or floating-point math: Bash has no built-in support for fixed or floating-
point mathematical operations. It can call programs such as awk or bc to do such
things on its behalf, but if you need to do a lot of this, you might want to just
write the whole program in AWK, or maybe in Perl instead.

What is Bash? Chapter 1

[17]

Long or complex programs: The ideal Bash program is short and sweet – less
than 100 lines of code is ideal. Bash programs much longer than this can rapidly
become unmanageable. This is partly a consequence of the terse syntax, and
partly because the complexity of a script increases faster when much of the work
is invoking other programs, as shell scripts tend to do.

Serialization: Bash has no native support for serialized data formats such as
JSON, XML, or YAML. Again, this is best delegated to third-party tools such
as jq or xmlstar, which Bash can call from within scripts. Trying to do this in
just Bash is an exercise in frustration for newer programmers.

Network programming: Bash does have some support for network
programming on some systems, but it does not allow much fine-grained control.
It mostly has to lean on external tools such as netcat or curl to do this.

Object-oriented programming: Object-oriented programming is not practical in
Bash. It does not have any concept of a namespace or classes, a system of
modules to separate code, nor any object system.

Functional programming: Bash's language design means it does not have any of
the primitives that users of functional languages, such as Lisp, Scheme, or
Haskell, might expect from a language. It has very limited support for lexical
scope, read-only data, indirection (references), or data structures more complex
than arrays. It has no support for closures or related features.

Concurrent programming: Bash generally just runs commands in sequence. It's
possible to run processes in parallel, and to simulate basic concurrency concepts
such as locks, but a programming language built with concurrency in mind may
be a better choice for tasks requiring multithreading or parallel processing.

Getting help with Bash
Sometimes in technical books, people skip the Getting help heading. Don't skip this one! It's
very important, and will save you a lot of time and confusion.

You can get help on using most of the commands in this book with a two-step process.
When you're using Bash, to get help on a command named printf, use help first:

bash$ help printf

What is Bash? Chapter 1

[18]

You'll get some help output, so you now know that printf is a Bash keyword or builtin.
That's the version of the command you want help with, because that's the one that you'll be
using when you call it from within Bash.

To see why this is confusing, try the man manual reader command, instead:

bash$ man printf

You'll get a completely different document, a full manual page! The features aren't even the
same! What's going on?

In a shell script, the same command can have more than one implementation. In Bash, you
can see a list of all of them using the type command with its -a (all) switch:

bash$ type -a printf
printf is a shell builtin
printf is /usr/bin/printf

Notice how there are two results for printf: the first is a shell builtin – a part of Bash
itself – and the second is a program on your filesystem. They will behave differently and
have different documentation. We'll see more of the type command in later chapters.

So remember: always try help first! Some people use Bash for many years before learning it
exists, and wonder why the man pages are always wrong. You can see a full list of available
help topics by typing it on its own, with no arguments:

bash$ help

Summary
Effective Bash programming begins with a good understanding of what Bash actually is,
and how it fits into your system. It's useful to know which features are in Bash because they
implement the POSIX standard for shell scripting, and which features are specific to Bash,
especially because it will help you decide on the portability of your shell script. It's also
very relevant for deciding whether Bash is the right tool for any given job.

2
Bash Command Structure

In this chapter, we'll learn the structure of a simple Bash command line, and the basics of
quoting. You should read this chapter all the way through, paying careful attention
especially to the material on quoting, even if you feel you already know how Bash
commands work.

In this chapter, you will learn the following:

How to use Bash interactively
The structure of simple commands
How to quote data safely
How to run several commands with one command line
How to make a command line stop if a command fails
How to run a command in the background

Using Bash interactively
If Bash is your login shell, and you log in to the system from a terminal or terminal
emulator, then it will start in interactive mode. In this mode, Bash will present a prompt
when it's ready to accept a command from your terminal. This differs from non-interactive
or batch mode, where commands are read from some other source, such as a script file. We
will use interactive mode in this chapter to experiment with the basics of shell script
command line grammar.

Nearly all of the features available to Bash in scripts are also available on the interactive
command line, and they behave essentially the same way as if you ran them from a script.
This allows you to treat the interactive command line as a live scripting environment: you
can assign variables, create functions, and manage control flow and processes.

Bash Command Structure Chapter 2

[20]

Interactive key bindings
In this book, we won't focus too much on the interactive keyboard shortcuts in Bash. This is
because it's more useful to know the syntax of the shell scripting language than it is to
know key bindings.

To read more about Bash key bindings, after you have finished this book, consult the Bash
manual under the READLINE section, and the GNU Readline manual:

$ man bash
$ man 3 readline

Simple commands
At an interactive Bash prompt, you can enter a command line for Bash to execute. Most
often while in interactive mode, you would issue only one simple command at a time,
ending each command with Enter. You would then wait for each command to finish
before entering the next one, examining any output or errors that it passes to your terminal
after each command.

A simple command consists of at least a command name, possibly with one or more
arguments, each separated by at least one space. The full definition can also include
environment variable assignments and redirection operators, which we'll explore in later
chapters.

Let's consider the following command:

$ mkdir -p New/bash

This simple command consists of three shell words:

mkdir: The command name, referring to the mkdir program that creates a
directory
-p: An option string for mkdir that specifies that the full directory path can be
created, whether or not any of the directories in the path already exist
New/bash: The relative path for the directory to create

Note that -p is not a special word or syntax to Bash; it's special to mkdir. Bash simply
passes it to mkdir as an argument. The meaning of command options is a property of the
commands themselves, not the shell from which they're called.

Bash Command Structure Chapter 2

[21]

Shell metacharacters
So far, all of our examples of commands and arguments have been single unquoted shell
words. However, there is a set of metacharacters that have a different meaning to Bash, and
trying to use them as part of a word causes problems.

For example, suppose you want to create (touch) a new file named important file.
Note that there's a space in the name. If you try to create it as follows, you get unexpected
results:

$ touch important file

If we list the files in the directory after running this, using ls -1 to put all the names on
separate lines, we can see we've actually created two files; one named important, and one
named file:

$ ls -1
file
important

This happened because the space between the two words separated them into two separate
arguments. Space, tab, and newline are all metacharacters. So are | (pipe), & (ampersand), ;
(semicolon), (and) (parentheses), and < and > (angle brackets).

There are many other characters interpreted specially by Bash in some
contexts, including {, [, *, and $, but these are not considered
metacharacters according to the manual page's definition.

Even the error messages can be confusing if you try to use a word with one of these
characters in it:

$ touch Testfile<Tom>.doc
bash: Tom: No such file or directory

$ touch Review;Final.doc
bash: Final.doc: command not found

In some cases, you may not get an error message at all, and something very unexpected will
happen instead; for example:

$ touch $$$Money.doc
$ ls
31649.doc

Bash Command Structure Chapter 2

[22]

A lot of the time we can simply work with files and words that don't use these characters.
However, we can't always do that, and we can't just hope others behave the same way—we
will eventually have to work with their files and data. How can we include special
characters in our words safely?

Quoting
The way you can reliably include characters that are special to Bash literally in a command
line is to quote them. Quoting special characters makes Bash ignore any special meaning
they may otherwise have to the shell, and instead use them as plain characters, like a-z or
0-9. This works for almost any special character.

We say "almost", because there's one exception: there's no way to escape
the null character (ASCII NUL, 0x00) in a shell word.

Quoting is the most important thing that even experienced people who write shell script
sometimes get wrong. Even a lot of very popular documentation online fails to quote
correctly in example scripts! If you learn to quote correctly, you will save yourself a lot of
trouble down the line. The way quoting in shell script works very often surprises people
coming from other programming languages.

We will look at three kinds of quoting: escaping, single-quoting, and double-quoting.

Escaping
Using escaping with backslashes, the examples from the previous section can be correctly
written like this:

$ touch important\ files
$ touch Testfile\<Tom\>.doc
$ touch Review\;Final.doc
$ touch \$\$\$Money.doc

A backslash can escape another backslash, too:

$ echo \\backslash\\
\backslash\

Bash Command Structure Chapter 2

[23]

However, it can't escape a newline within a word:

$ echo backslash\
> foo\
> bar
backslashfoobar

Single quotes
Using single quotes, we could write the commands like this, which is perhaps more readable
than the backslashes version, and creates files with identical names:

$ touch 'important files'
$ touch 'Testfile<Tom>.doc'
$ touch 'Review;Final.doc'
$ touch '$$$Money.doc'

Unlike backslashes, single quotes can escape a newline in a word:

$ echo 'quotes
> foo
> bar'
quotes
foo
bar

How do we use a single quote (') as a literal character between two single quotes? If you
are coming to Bash from a language such as Perl or PHP, you might try it like this, with a
backslash, but that doesn't work:

$ echo 'It\'s today'
>

This is because backslash is not treated specially within single quotes. Doubling the single
quote doesn't work, either:

$ echo 'It''s today'
Its today

In this case, Bash just sees two single-quoted strings, It and s today, and pushes them
together as one word. The way to do it is to use a backslash outside of the single quotes:

$ echo 'It'\''s today'
It's today

Bash Command Structure Chapter 2

[24]

Double quotes
Double quotes behave similarly to single quotes, but they perform certain kinds of
expansion within them, for shell variables and substitutions. This can be used to include the
value of a variable as part of a literal string:

$ echo "This is my login shell: $SHELL"
This is my login shell: /bin/bash

Compare this to the literal output of single quotes:

$ echo 'This is my login shell: $SHELL'
This is my login shell: $SHELL

Other kinds of parameter expansion within double quotes are possible, which we will
examine in later chapters.

You can include a literal dollar sign or backslash in a string by escaping it:

$ echo "Not a variable: \$total"
Not a variable: $total
$ echo "Back\\to\\back\\slashes"
Back\to\back\slashes

Exclamation marks are a special case, due to history expansion; you will generally need to
quote them with a backslash or single quotes instead of double quotes:

$ echo "Hello $USER"'!!'
Hello bashuser!!

For historical reasons, you will also need to escape backtick characters (`):

$ echo "Backticks: \`\`\`"
Backticks: ```

Quote concatenation
You may have noticed from the examples in the previous section that you can put different
types of quoting together in the same word, as long as they can never separated by an
unquoted space:

$ echo Hello,\ "$USER"'! Welcome to '"$HOSTNAME"'!'
Hello, bashuser! Welcome to bashdemo!

Bash Command Structure Chapter 2

[25]

In Bash, there's no concatenation operator like Perl or PHP's dot (.); to concatenate strings,
you just put them next to each other. This can be a good idea if you have a mix of literal
strings and variables in a single shell word, as it can help you avoid getting caught out by a
stray dollar sign, backtick, exclamation mark, or backslash within double-quote pairs.

Running commands in sequence
You can send an interactive command line with more than one simple command in it,
separating them with a semicolon, one of several possible control operators. Bash will then
execute the commands in sequence, waiting for each simple command to finish before it
starts the next one. For example, we could write the following command line and issue it in
an interactive Bash session:

$ cd ; ls -a ; mkdir New

Running cd on its own like this, with no directory target argument, is a
shortcut to take you to your home directory. It's the same as typing cd ~
or cd -- "$HOME".

For this command line, note that even if one of the commands fails, Bash will still keep
running the next command. To demonstrate this, we can write a command line to include a
command that we expect to fail, such as the rmdir call here:

$ cd ; rmdir ~/nonexistent ; echo 'Hello'
rmdir: failed to remove '/home/bashuser/nonexistent': No such file or
directory
Hello

Note that the echo command still runs, even though the rmdir command before it did not
succeed. If you want your set of commands to stop if one of them fails, separating them
with semicolons is the wrong choice.

Exit values
We can tell it was the rmdir command in the previous section that failed, because rmdir is
the first word of the error message output. We can test the command in isolation, and look
at the value of the special $? parameter with echo, to see its exit status:

$ rmdir ~/nonexistent
rmdir: failed to remove '/home/bashuser/nonexistent': No such file or

Bash Command Structure Chapter 2

[26]

directory
$ echo $?
1

The rmdir program returned an exit value of 1, because it could not delete a directory that
didn't exist. If we create a directory first, and then remove it, both commands succeed, and
the value of $? for both steps is 0:

$ mkdir ~/existent
$ echo $?
0
$ rmdir ~/existent
$ echo $?
0

Examining the exit values for the true and false built-in Bash commands is instructive;
true always succeeds, and false always fails:

$ true ; echo $?
0
$ false ; echo $?
1

Bash will also raise an exit status of 127 for you if it can't find a way to run a command you
request, such as notacommand:

$ notacommand ; echo $?
bash: notacommand: command not found
127

It's standard for programs to return 0 when they succeed, and something greater than 0 if
they fail. Beyond that, programs vary in which exit values they choose for error conditions.

Stopping a command list on error
Most of the time when programming in Bash, you will not actually want to test $? directly,
but instead test it implicitly as success or failure, with language features in Bash itself.

If you wanted to issue a set of commands on one command line, but only to continue if
every command worked, you would use the double-ampersand (&&) control operator,
instead of the semicolon (;):

$ cd && rmdir ~/nonexistent && ls

Bash Command Structure Chapter 2

[27]

When we run this command line, we see that the final ls never runs, because the rmdir
command before it failed:

rmdir: failed to remove '/home/user/nonexistent': No such file or directory

Similarly, if we changed the cd command at the start of the command line to change into a
directory that didn't exist, the command line would stop even earlier:

bash$ cd ~/nonexistent && rmdir ~/nonexistent && ls
bash: cd: /home/bashuser/nonexistent: No such file or directory

In Chapter 6, Loops and Conditionals, we'll explore more fully Bash's options for control flow,
including using the || command separator, and using the if command to execute blocks of
code conditional on a test outcome.

Running a command in the background
There are some situations in which you might want to continue running other commands
as you wait for another one to complete, to run more than one job in parallel. You can
arrange for a command to run in the background by ending it with a single ampersand (&)
control operator.

You can try this out by issuing a sleep command in the background. The sleep built-in
Bash command accepts a number of seconds to wait as an argument. If you enter such a
command without the &, Bash won't accept further commands until the command exits:

$ sleep 10
Ten seconds pass...
$

However, if you add the & terminator to start the job in the background, the behavior is
different: you get a job control number and a process ID, and you are returned immediately
to your prompt:

$ sleep 10 &
[1] 435
$

You can continue running other commands as normal while this job is running in the
background. After the 10 seconds are up, the next time the prompt appears, it will also
print output telling you the job has completed:

[1]+ Done sleep 10
$

Bash Command Structure Chapter 2

[28]

Summary
Even if you feel that you already know the basic structure of a Bash command well,
carefully looking at the structure of a typical command line and knowing the rules of string
quoting can make it much clearer what's wrong when something doesn't behave as
expected. We use single quotes to keep characters literal, and double quotes to safely
perform expansion for variables and substitutions. Developing disciplined habits with
quoting and understanding how Bash runs commands in sequence is helpful not just for
scripting, but for interactive command line work as well.

Having learned the structure of a Bash command line, in the next chapter we'll apply it to
learning some essential commands that will form the basis of many shell scripts.

3
Essential Commands

In this chapter, we'll be going through some of the commands essential for good Bash
scripting. Bash programming, and shell script programming in general, is different from
most other programming languages because it is designed to run other programs, mixing
the commands it provides with commands installed on the local system.

It may seem strange that in a Bash book, we would spend half a chapter explaining how to
use commands that are neither part of Bash, nor written in the Bash language! The reason
we do this is that most useful Bash scripts will use several of these external commands to
do their work, particularly to do things that in the Bash language are difficult, awkward, or
even impossible.

Distinguishing command types
The commands you can use in a Bash script fall into three major categories:

Shell builtin commands: Included in Bash itself. These commands don't
correspond to executable program files on your system; they are implemented in
the bash binary itself. Examples are echo, type, and source.
Runtime commands: Defined in the shell at runtime, and written in the Bash
language. These can be aliases or functions. They don't have executable program
files of their own on disk either, and are defined at runtime during a Bash
session, often by reading startup files. Examples vary between systems and users.
System commands: Invoke executable program files on your filesystem. These
are the only kinds of commands that can also be run outside of Bash. Examples
are grep, ping, and rm.

The executable programs called by system commands may be written in any language.
Bash can be used to specify how these programs run, where their input comes from, how
their output is processed, and how their success or failure changes the execution of the rest
of the script.

Essential Commands Chapter 3

[30]

We will explore useful commands in the first and third categories in this chapter. Runtime
commands (aliases and functions) are discussed in Chapter 7, Scripts, Functions, and Aliases.
In this chapter, you will learn how to use these essential builtin commands:

type: Finding what a command is
echo: Printing arguments
printf: Printing formatted arguments
pwd: Printing the current directory
cd: Changing the current directory
set: Viewing and setting shell properties
declare: Managing variables and functions
test, [, [[: Evaluating expressions

You will also learn how to use these system commands, which are not part of Bash itself:

ls: Listing files for users
mv: Moving and renaming files
cp: Copying files
rm and rmdir: Deleting files and directories
grep: Matching patterns
cut: Extracting columns from data
wc: Counting lines, words, and characters
find: Iterating through a file tree
sort and uniq: Sorting and de-duplicating input

We will not be covering the use of interactive text editors, such as emacs,
nano, and vi, due to space concerns. It's a very good idea for an aspiring
Bash programmer to learn how to use one of those editors, however! Your
author recommends vi, especially the Vim implementation.

Essential Bash builtin commands
The first category of essential commands that we'll examine are builtins: they are included
as part of the bash program. In fact, the very first command we'll look at, called type, is
itself designed to help you tell what any kind of command is.

Essential Commands Chapter 3

[31]

For all of these commands, Bash can provide help on usage with the help program. For
example, to get help on the type command, you would type:

bash$ help type

The type command
The type command, given the name of any command or commands, gives you information
about what kind of command it is:

bash$ type echo
echo is a shell builtin
bash$ type grep
grep is /bin/grep

It identifies shell keyword, too:

bash$ type for
for is a shell keyword

We can define a function and an alias to test that it correctly detects those:

bash$ myfunc() { : ; }
bash$ type myfunc
myfunc is a function
myfunc ()
{
 :
}
bash$ alias myalias=:
bash$ type myalias
myalias is aliased to `:'

The type command has a few useful options. If you use the -t option, you can get a single
word specifying the command type. This is sometimes useful in scripts:

bash$ type -t echo
builtin
bash$ type -t grep
file

Essential Commands Chapter 3

[32]

If you use the -a option, you can see all commands that have the same name. Bash will
print them in order of preference. For example, the true name probably has both a builtin
command and a system command on your system:

bash$ type -a true
true is a shell builtin
true is /bin/true

Bash will always prefer builtin commands for a given name over system commands. If you
want to call the system's implementation of true, you could do it by specifying the full
path to the program:

$ /bin/true

Try type -a [and then type -a [[. Are you surprised by any of the
output?

Another useful switch for type is -P, which will look for a system command for the given
name, and print out the path to it if found:

bash$ type -P true
/bin/true

Note that the /bin/true path was returned, even though true is also the name of a shell
builtin.

There is a reason we put the type command first in this list. After help, it is the most
useful Bash command for understanding the language, and clearing up the biggest source
of confusion about the language: When I run this command, what is actually running?

The echo command
The echo builtin command just repeats the arguments you provide it onto the standard
output:

$ echo Hello
Hello

This makes it a simple way to emit content to the terminal, including variables:

$ echo 'Hello, '"$USER"\!
Hello, bashuser!

Essential Commands Chapter 3

[33]

The echo command in Bash has switches that allow you to control the output, such as
excluding the final newline, or expanding sequences such as \t to tab characters. However,
we caution against using echo in scripts, because for historical reasons it has broken design
and portability problems that makes it confusing or error-prone to use, especially when
trying to use it with switches. We suggest you always use printf in scripts instead, as its
behavior is more predictable, especially when printing variables or control characters such
as newlines.

The printf command
The printf command works like echo, except the first argument you provide to it is a
format string:

$ printf '%s\n' 'Hello!'
Hello!

Notice that we had to put the format string in single quotes, to prevent the backslash from
having special meaning to the shell. Notice also that we didn't have to use double quotes to
get the newline from \n; the printf command did that for us.

You can use printf in much the same way you would use a printf() function in other
languages, such as C. It supports most of the same format specifications as
the printf(1) system command; you can type man 1 printf to see a list.

It's easier to print tricky strings with printf, where echo might struggle:

$ printf '%s\n' -n
-n
$ string=-n
$ printf '%s\n' "$string"
-n

You should always choose printf over echo in scripts, even though it's a little more
typing.

Be careful with what you put into a format string; a variable with a value
provided by the user can be a security hole! It's best to use only fixed
format strings, or carefully build them yourself.

Essential Commands Chapter 3

[34]

printf also has a useful property where it will repeat the format string as necessary for
each argument you provide it. This is a convenient way to print a list of arguments on
individual lines:

$ printf '%s\n' foo bar baz
foo
bar
baz

Note that we got three instances of the string-newline pattern from one format string.

Finally, Bash's printf has a %q pattern that can be used to quote special characters in a
string with backslashes, so it can be reused safely in the shell. If you follow good quoting
practices, you are unlikely to need this a lot in Bash, but it's useful to know it's there:

bash$ printf '%q\n' 'Watch out for thi$ $tring; it \has\ nasty character$!'
Watch\ out\ for\ thi\$\ \$tring\;\ it\ \\has\\\ nasty\ character\$\!

The pwd command
The pwd Bash builtin prints the current working directory for the script to the standard
output:

$ pwd
/home/bashuser

This information is also available in the PWD environment variable, which
can be more flexible to use in scripts.

The working directory for the shell refers to the directory from which all relative paths are
based, even if they have multiple levels of directories in them:

$ pwd
/home/bashuser/docs
$ ls important/doc1.txt
important/doc1.txt
$ ls doc2.txt
doc2.txt
$ ls nonexistent
ls: cannot access 'nonexistent': No such file or directory

Essential Commands Chapter 3

[35]

Any path that starts with a forward slash – a leading slash – is instead an absolute path, and
resolves independently of the current directory:

$ ls /home/bashuser/important/doc1.txt
/home/bashuser/important/doc1.txt
$ ls /home/bashuser/doc2.txt
/home/bashuser/doc2.txt

Tilde paths
A path that starts with a tilde character (~) is interpreted specially by the shell, for tilde
expansion into a system user's home directory. By itself, it refers to the current user's home
directory:

$ echo ~
/home/bashuser
$ echo ~/important
/home/bashuser/important

In this circumstance, it checks the value of the HOME environment variable first if it can.
However, if this variable is blank or if the tilde is followed by any valid system username,
Bash will attempt to find the home directory for that user with reference to the system
password file, usually /etc/passwd:

$ echo ~root
/root
$ echo ~root/.ssh
/root/.ssh

If the user does not exist, Bash will leave the tilde string the same, without raising an error:

$ echo ~notauser
~notauser

If you want to print a tilde for a real user without expanding it, you need to quote it.
Escaping, single-quoting, and double-quoting all work:

$ echo ~bashuser
/home/bashuser
$ echo \~bashuser '~bashuser' "~bashuser"
~bashuser ~bashuser ~bashuser

Essential Commands Chapter 3

[36]

The cd command
Where pwd or $PWD gets the current working directory for the shell, the cd Bash builtin
command sets the working directory:

$ pwd
/home/bashuser
$ cd /tmp
$ pwd
/tmp

When issued with no arguments, the cd command defaults to the current user's home
directory. Again, it does this by reading the $HOME environment variable first, if it can:

$ cd
$ pwd
/home/bashuser

You can change to the parent of the current directory with the .. name:

$ pwd
/home/bashuser
$ cd ..
$ pwd
/home

Changing the directory in scripts
The cd builtin works both interactively or as part of a script; in fact, you can change the
directory inside of a script run from Bash, and it will not change your running shell.
Suppose we had a script in the lstemp.bash file with the following two commands:

cd /tmp
ls

We can run that script from any directory, and even though part of the script is to change
the directory to /tmp, we won't be left there:

$ pwd
/home/bashuser/scripts
$ ls
lstemp.bash
$ bash lstemp.bash
tmpfile1 tmpfile2 tmpfile3
$ pwd
/home/bashuser/scripts

Essential Commands Chapter 3

[37]

This is because the script runs as its own subprocess, and hence has its own working
directory that can be changed without affecting any other process. We'll learn more about
this in the material on subprocesses and subshells in Chapter 7, Scripts, Functions, and
Aliases.

There's also an important note about using cd safely in scripts in Chapter 8, Best Practices.

The set command
The set builtin command is one of the most misunderstood (and overloaded!) commands
in Bash. It does several different things depending on how it's called: show names, set shell
options, and set shell positional parameters.

First of all, when run on its own with no arguments, set prints a list of all of the variables
and any functions for the running shell, in alphabetical order. It includes the full definition
of the functions. This is one of several ways to view all of the variables in the shell. We
suggest you use declare instead, explained later in this chapter, as it shows more
information about properties of the variables.

Secondly, set allows you to specify certain options for how the shell runs, all options
starting with a single dash, -. The complete list of the options that can be set is too long to
explain here, but is available in help set. Some options of note:

-e: Exit immediately if a command exits with a non-zero status. This is used in
scripts as a way to stop running the script if anything goes wrong. Because this
option's behavior can be hard to predict, it's generally better to write your own
error-handling for all but the most simple scripts.

-n: Read commands but don't execute them. This is a useful way to check that
your Bash script is syntactically correct without actually running any of the
commands. Note that this is not perfect, however; some subtle properties of the
Bash syntax can change during a script run, and the -n option might not catch
that.

-v: Print shell input lines as they are read. This can be good for debugging, but
does not show as much information as -x.

-x: Print commands and their arguments as they are executed. Turning this
option on is often a very good first step for debugging a Bash script, as it shows
you how the bash program has interpreted and expanded its input.

Essential Commands Chapter 3

[38]

These options work the same way as if you had started the bash program with that option;
for example, set -x in the shell has the same effect as starting the shell as bash -x, or
having a script's shebang line include the option, such as #!/bin/bash -x.

Finally, set followed by the option terminator string, --, can be used to set the positional
parameters for the shell. We will examine these special parameters in more detail in Chapter
6, Loops and Conditionals.

The declare command
The declare builtin sets or displays variables (including arrays) and functions. It's not
usually needed for setting variables, but it's a good way to get an overview of your shell's
current running state, providing more information than the set builtin.

Run with only the -p option, declare prints the values of all of the variables in the current
shell environment, along with some short option flags that describe their properties:

bash$ declare -p
declare -- BASH="/bin/bash"
declare -r BASHOPTS="cdspell:checkhash:checkjobs:checkwinsize:...
declare -ir BASHPID
declare -A BASH_ALIASES=()
declare -a BASH_ARGC=()
...

If you include the names of any variables after -p, without the dollar sign prefix, Bash will
print results only for those names:

bash$ declare -p BASH PWD
declare -- BASH="/bin/bash"
declare -x PWD="/home/bashuser"

When run with the -f option instead of -p, declare prints any functions defined for your
shell. If you have just started with Bash, you may not have any functions defined just yet.

We will learn more about how to use the declare builtin in Chapter 6, Loops and
Conditionals.

Essential Commands Chapter 3

[39]

The test, [, and [[commands
The test builtin command is used to evaluate conditional expressions; it tests whether two
strings are equal, whether a file exists, whether a string is empty, and other functions. The
complete list of tests is available with help test.

For example, to test whether a file exists, you might use the following:

$ test -e /etc/passwd && echo 'Password file exists!'
Password file exists!

There is an alternative way to write this command, called [. No, that's not a typo; [is the
name of the command! We can see this with type; there's even a program on our filesystem
by the same name:

bash$ type -a [
[is a shell builtin
[is /usr/bin/[

The primary difference between test and [is that [requires its last argument to be]. The
result is that it looks like a pair of square brackets surrounding the condition:

$ [-e /etc/passwd] && echo 'Password file exists!'

Because this syntax is confusing and can be hard to understand, Bash implements a new
version of [called [[. It's actually not really a command; again, type can tell us the whole
truth:

bash$ type [[
[[is a shell keyword

In Bash scripts, you are not likely to need test very much, if ever, but you will definitely
need the [[keyword that in turn derives its syntax from the [command. Understanding
the test and [commands and the unique way conditionals work in shell clarifies one of
the most confusing parts of shell script behavior. We'll look at that in more detail in
Chapter 7, Scripts, Functions, and Aliases.

Essential Commands Chapter 3

[40]

Essential system commands
This category of commands refer to executable files that are almost definitely installed on
your system, and not implemented in Bash itself. All of these commands are specified by
the POSIX standard, and so systems that aim to implement that standard should have them
available.

The ls command
The ls program prints human-readable listings of directories. By default, with no
arguments, this list is just the names of each file in the current directory, printed
horizontally for readability:

$ ls
books documents music

If we add the -a flag, we can include dot files in our output, files beginning with a period:

$ ls -a
. .. .bashrc .profile books documents music

Note that this output includes the . and .. entries, referring to the current and parent
directory, respectively.

Using the -l option, which can be combined with -a, we can get a long listing of files:

$ ls -al
drwxr-xr-x 91 bashuser bashuser 16384 Jul 7 19:50 .
drwxr-xr-x 5 root root 4096 Jun 1 20:28 ..
-rw-r--r-- 1 bashuser bashuser 3391 Jun 30 01:03 .bashrc
-rw-r--r-- 1 bashuser bashuser 571 Jun 30 01:03 .profile
drwxr-xr-x 54 bashuser bashuser 4096 Feb 6 14:54 books
drwxr-xr-x 2 bashuser bashuser 4096 Nov 29 2014 documents
drwxr-xr-x 33 bashuser bashuser 4096 Jun 4 00:06 music

Which columns are returned and the format the data takes varies depending on which
options you provide, the system's configuration, your personal configuration, and which
version of ls is installed.

Essential Commands Chapter 3

[41]

Getting filename lists without ls
ls is a very useful command for getting listings, but it is often misused by being parsed in
scripts to get filenames or file data from the output. The problem with this is that ls is
designed for human users to read, not other programs.

You may have seen bad code like this on the web:

Bad code
$ grep pattern `ls`
$ for file in `ls` ; do grep pattern $file ; done

This fails as soon as there is a filename with any special characters in it, such as a space, an
asterisk, or a semicolon:

$ ls -1
programming
recipes
file with spaces
file*
Bad code
$ grep pattern $(ls)
grep: file: No such file or directory
grep: with: No such file or directory
grep: spaces: No such file or directory

It is always better to use globs or find in this situation. If you only have to deal with one
directory, use globs, as the commands tend to be simpler:

$ grep pattern -- *
$ find . -type f -exec grep pattern -- {} \;

You can loop over globs the same way with for:

$ for file in * ; do grep -F pattern -- "$file" ; done

We'll learn more about globs in Chapter 5, Variables and Patterns, and build on that for
loops in Chapter 6, Loops and Conditionals.

Essential Commands Chapter 3

[42]

To summarize: never use ls in scripts unless it's only for a human running your script to
read. Resist the temptation to parse the output yourself, and look for a safer way to do it
instead.

The mv command
The mv command moves files or directories to a new directory, or renames them in their
existing one:

$ mv file path/to/directory
$ mv file1 file2

If the last argument is a directory, all of the arguments before it are moved into it, allowing
you to move several files at once:

$ mv file1 file2 dir1 path/to/directory

Note that mv overwrites any existing file at its destination, by design. When you're using
this interactively, if you don't expect to be overwriting files, the -i switch can be used to
prompt you before you overwrite a file:

$ ls
customers-new customers
$ mv -i customers-new customers
mv: overwrite 'customers'?

If you enter y at this prompt and press Enter, the overwrite will proceed. This feature is
designed for user interaction, so in scripts, it may be better to test for the existence of the
destination file before calling mv, and handling it an appropriate way:

#!/bin/bash
if [[-e customers]] ; then
 printf 'Customers file already exists, renaming\n'
 mv customers customers-old
fi
mv customers-new customers

The preceding script would move customers to customers-old first, if the target file
already exists.

Essential Commands Chapter 3

[43]

The cp command
The cp command is used to copy a file or set of files to a target directory, optionally
providing it with a new name:

$ ls
oldfile
$ cp oldfile newfile
$ ls
oldfile newfile

The new file in this case is truly a copy; you can change data in either the old or new file,
and it won't affect data in the other.

You can produce files that are linked rather than copied with the ln
command; editing one name for the file will also change the content for all
of its linked names.

If you specify more than two arguments after the options, with the last one being a
directory, cp will copy all of the files before the last one into the directory name in the last
argument:

$ cp file1 file2 file3 dir

cp with no options cannot copy directories or whole directory trees, and may give you an
error message if it fails. The following output is from the GNU version of cp, referring to
the non-standard -r option:

$ ls
olddir
$ cp olddir newdir
cp: -r not specified; omitting directory 'olddir'

If you provide the standardized -R option, you can copy a directory and all of the files
beneath it:

$ cp -R olddir newdir

The GNU cp, which you are probably using if you're running GNU/Linux, includes a -v
switch that shows each name as it's printed. This is particularly useful along with -R. Other
versions of cp, such as those installed by default on BSD systems, may lack this option.

$ cp -Rv olddir newdir
'olddir' -> 'newdir'
'olddir/file1' -> 'newdir/file1'

Essential Commands Chapter 3

[44]

'olddir/file2' -> 'newdir/file2'
'olddir/file3' -> 'newdir/file3'

The rm and rmdir commands
The rm tool deletes files, and directories if specified. Because it involves data loss by
definition, shell script programmers should be very careful with this command:

$ ls
file1 file2 file3
$ rm file1 file2
$ ls
file3

Note that by default, rm does not remove directories:

$ mkdir mydir
$ rm mydir
rm: cannot remove 'mydir': Is a directory

You can force this with the standard -R or -r option, but it's safer to use rmdir. This is
because rmdir will refuse to delete a directory if it still has files in it; it only deletes empty
directories:

$ mkdir test1 test2
$ touch test1/file test2/file
$ rm -r test1
$ rmdir test2
rmdir: failed to remove 'test2': Directory not empty

We recommend you avoid the -R or -r flag where you can, and instead select files for
deletion one by one. As a general rule of thumb in shell scripts, you should delete as little as
possible, and as specifically as possible. If you carefully define what you're deleting and
under what circumstances, you reduce the risk of unexpected problems. Emptying a
directory manually of the files you expect to be there with rm first, and then attem

pting to clear it with rmdir, is a safe approach.

We'll learn more approaches to safely managing and d

eleting files in hierarchies in Chapter 8, Best Practices.

Essential Commands Chapter 3

[45]

The grep command
The grep command matches regular expression patterns against lines of input data.
Regular expressions are a compact string syntax that can be used to describe patterns in
text. They can be simple text strings, such as telnet, which will match any lines that have
those six exact letters in sequence:

$ grep 'telnet' /etc/services
telnet 23/tcp
rtelnet 107/tcp # Remote Telnet
rtelnet 107/udp
telnets 992/tcp # Telnet over SSL
tfido 60177/tcp # fidonet EMSI over telnet

We could use some regular expression properties to filter this data more precisely. For
example, to limit the output only to lines that begin with the word telnet, we could use the
^ metacharacter:

$ grep '^telnet' /etc/services
telnet 23/tcp
telnets 992/tcp # Telnet over SSL

To limit the output to lines that end with telnet, we could use the $ metacharacter:

$ grep 'telnet$' /etc/services
tfido 60177/tcp # fidonet EMSI over telnet

There are other metacharacters useful in even basic regular expressions. We'll look at more
of them in detail in Chapter 6, Loops and Conditionals, including a way to match regular
expressions in Bash itself, without using external tools.

Metacharacters in both grep and Bash itself can be confusing. We
recommend you put your grep patterns in single quotes for clarity if they
contain anything but numbers and letters, so that Bash will treat them as
simple strings, and will pass them unchanged to grep.

By default, grep prints any lines in its input that match the pattern, in the same order in
which it read them. It does not sort the output, or check it for uniqueness – you may need
sort or uniq for that.

Essential Commands Chapter 3

[46]

One of the common uses for grep in shell scripts is with the -q switch, which suppresses
its output. This is useful for testing whether a file or input stream matches expressions
without actually printing the matching lines, because grep exits with success (0) when it
finds at least one pattern, and with failure (1) when it doesn't:

$ grep -q telnet /etc/services && echo 'Matched!'
Matched!
$ echo $?
0
$ grep -q foobar /etc/services && echo 'Matched!'
$ echo $?
1

There are a few other useful switches to grep specified by POSIX that are worth
mentioning.

The -c switch prints a count of the matching lines, and not the lines themselves:

$ grep -c telnet /etc/services
5

The -e switch allows you to specify multiple patterns to match in the text. If we wanted to
match telnet or ssh in the services file, we could write that like this:

$ grep -e ssh -e telnet /etc/services

Note that the lines do not have to match both expressions to be printed; they only have to
match one.

The -F switch allows you to search for simple text strings with no special meaning. This is
one way to allow you to search for a literal dollar sign, for example, without it meaning
"end of line" as it otherwise would:

$ grep -F '$' monthly-costs

Note that we still have to put it in single quotes, to stop Bash's special meaning for $ from
interfering!

Finally, the -v switch can be used to invert the match, printing lines only if they don't match
the pattern. For example, this prints the /etc/services file with no comment lines:

$ grep -v '^#' /etc/services

Essential Commands Chapter 3

[47]

Most of the grep switches can be combined with one another. For example, to count all the
lines in /etc/shells that don't have the bash or . fixed strings in them, we could write:

$ grep -cFv -e bash -e '.' /etc/shells
5

If you're using GNU/Linux, you are probably using GNU grep, which has many extended
features; check out man grep to see them all.

The cut command
The cut command is most often used to select single columns of data from input separated
by a single character, such as an /etc/passwd file. For example, this command line prints
the home directories of every user on a GNU/Linux system:

$ cut -d: -f6 /etc/passwd
/root
/usr/sbin
/bin
...

In this example, -d specifies the delimiter or separator variable, in this case a colon, and -f
specifies the number of the field (or column), starting from 1.

We can also specify the field numbers with hyphen-separated ranges, and/or comma-
separated indices:

$ cut -d: -f1,6 /etc/passwd
root:/root
daemon:/usr/sbin
bin:/bin
...
$ cut -d: -f1,3-4 /etc/passwd
root:0:0
daemon:1:1
bin:2:2
...

We can leave one of the numbers out of a range, to mean "up to" or "from":

$ cut -d: -f-2 /etc/passwd
root:x
daemon:x
bin:x
...

Essential Commands Chapter 3

[48]

$ cut -d: -f6- /etc/passwd
/root:/bin/bash
/usr/sbin:/usr/sbin/nologin
/bin:/usr/sbin/nologin

However, cut is not limited to delimited data. It can also split on character counts with -c,
or bytes with -b. This can be a useful way to get only a certain number or range of bytes
per line:

$ sha256sum .bashrc
50b9745d456e3023a859f3dd2e866e3a3a19a16b0af04b89e3387846fa158206 .bashrc
$ sha256sum .bashrc | cut -c-8
50b9745d
$ sha256sum .bashrc | cut -c9-16
456e3023a859f3dd

The wc command
The wc (word count) command counts lines, words, and bytes of its input. The default
output is to show all three:

$ wc .bashrc
 101 550 3391 .bashrc

In this example, our .bashrc file has 101 lines, 550 space-delimited words, and 3,391 bytes.
You can print only one of these numbers with the -l, -w, and -c options, respectively.

Technically, wc -l counts the number of newlines in the file, not the
number of lines that they delimit. This is almost the same thing, but not
exactly.

If you provide more than one file for wc to examine, it will also print a total:

$ wc -c .bashrc .bash_profile
3391 .bashrc
 471 .bash_profile
3862 total

Be careful to distinguish between bytes and characters. If you actually need to count the
number of characters, for example if you're dealing with a file with Japanese characters or
emojis in it, you can use the -m option instead:

$ wc -m -c japanese
 6 16 japanese

Essential Commands Chapter 3

[49]

Note here that the number of characters (6) is different from the number of bytes (16), as
some of the characters are composed of more than one byte in UTF-8 encoding.

The character counts returned with the -m option will depend on your
system's locale settings. Most modern systems will provide a UTF-8 locale
to new users.

Getting file sizes with wc or du
wc with the -c option is a useful and portable way to get the size of a file (but not a
directory) in bytes. The file does not have to be text for this to work:

$ wc -c /bin/bash
1099016

The output for the preceding command shows us that the /bin/bash binary is just over 1
MB in size.

The du program can show this information for a file or a directory, but its only portable
unit size as specified in POSIX is 1 kibibyte (1024 bytes), with the -k option:

$ du -k /bin/bash
1076 /bin/bash
$ du -k /bin
13796 /bin

GNU du has a -b option, which does allow byte counts, but this is not portable, meaning
you cannot rely on it working on all Unix-like systems.

The find command
The find command is a powerful way to operate recursively on a directory hierarchy. This
means that you can provide it with a set of directories (or files), and it will apply
appropriate tests and actions to them and also to any directories and files within them, such
as children and grandchildren.

The default action for find is to print the filenames as it finds them:

$ find ~/recipes
/home/bashuser/recipes
/home/bashuser/recipes/lemon-garlic-fish.txt
/home/bashuser/recipes/japanese

Essential Commands Chapter 3

[50]

/home/bashuser/recipes/japanese/katsu-curry.txt
/home/bashuser/recipes/gnocchi-and-sauce.doc

You can make this explicit with the -print action:

$ find ~/recipes -print

As long as there aren't too many files in the directory tree at that point, this can be a good
way to get a complete file listing of your directory. Because find just prints the files as it
finds them, you might want to run the output through sort if you want to read it:

$ find ~/recipes | sort

You can provide multiple directories to a find command; it will iterate through them all.
You can also provide filenames directly on the command line. They will still be tested and
have the actions run on them:

$ find ~/recipes ~/manuals todo.txt

You can filter the output for find in several ways. One of the most useful is using the -
name option:

$ find ~/recipes -name '*fish*' -print

Using -name with this glob-style pattern will print the name of any file or directory that has
the fish string in its filename. We could further refine this by adding the -type test, with
the f flag to limit the recipes to files:

$ find ~/recipes -name '*fish*' -type f -print

Note that the directories or filenames to search always come first on the command line, and
the filters always come before the actions.

To find files based on their modification date, you can use the -mtime test, with a minus (-)
or plus (+) prefix for the following number. To find files modified more than three days
ago, you could write:

$ find ~/recipes -mtime +3 -print

To find files modified less than five days ago:

$ find ~/recipes -mtime -5 -print

You can negate any of these filters with a single exclamation mark. For example, to find the
names of files that do not match the string chicken:

$ find ~/recipes ! -name '*chicken*'

Essential Commands Chapter 3

[51]

Be careful to make ! a word of its own, with at least one space on both
sides, otherwise you might trigger unwanted history expansion.

If there is a subdirectory you wish to ignore somewhere in the tree, you can do this with the
-prune action, which stops the descent at that point and continues with the rest of the tree.
This can be a useful way of excluding metadata, such as Git or Subversion directories:

$ find myproject -name '.git*' -prune -o -print

In the preceding command line, -o print ("or print") prints the names of found files and
directories that are not within a .git directory.

Executing commands for each result
Perhaps the most powerful action available in find is -exec, which allows you to run a
command on each of the found results. This is best explained by an example; this command
looks for occurrences of the search string in all files with names ending in .vim in a
directory named vim:

$ find vim -type f -name '*.vim' -exec grep -F search -- {} \;

The -exec action here is followed by the name of the grep tool, its -F option, a "search"
pattern, an option terminator (--), and two special arguments:

{}: Replaced with each find result
\;: Terminates the command

Note that we have to escape the semicolon with a backslash, in order to
prevent Bash from interpreting it itself. Putting it in single quotes or
double quotes would also work.

Suppose find found three matching files with the conditions we gave it:

$ find vim -type f -name '*.vim'
vim/config/main.vim
vim/maps.vim
vim/patterns.vim

Essential Commands Chapter 3

[52]

Adding the -exec command line does the same thing as if our grep command were run
over each of those files. It's like running these three commands:

$ grep -F search -- vim/config/main.vim
$ grep -F search -- vim/maps/vim
$ grep -F search -- vim/patterns/vim

If we change the command terminator to a plus sign (+), we can change the behavior to put
as many of the arguments as possible on one line. This can be easier and more efficient for
programs that can accept more than one filename argument:

$ find vim -type f -name '*.vim' -exec grep -F search -- {} +

The preceding command is like running this:

$ grep -F search -- vim/config/main.vim vim/maps/vim vim/patterns/vim

Knowing how to use find well is one of the best "secret weapons" a
GNU/Linux system administrator can have. We recommend you learn it
thoroughly and practice so you understand how it works.

A note about find and xargs
You can find lots of advice online, and in some Bash books, about using a program called
xargs to accomplish something similar to the -exec action of find:

$ find vim -type f -name '*.vim' | xargs grep -F search --

Using -exec for this sort of situation instead should be possible one way or another with
some careful programming, and it's safer and more portable too, because the only safe way
to use xargs is with the non-standard find -print0 and xargs -0 options that specify
null-byte terminators between each file, to safely and correctly deal with filenames that
contain newlines:

$ find vim -type f -name '*.vim' -print0 | xargs -0 grep -F search --

Yes, file names on Unix can contain newlines, not just spaces. If your find
command is going through a directory of files controlled by someone else,
it's especially important to accommodate this, as it will break your script.

Essential Commands Chapter 3

[53]

The sort and uniq commands
The sort command reads its input and writes it out again with the lines sorted, by default,
alphanumerically by the first column. Like most filter commands that came with Unix, the
input can come from a pipe, from files, or from data typed at the terminal. The first two
forms are the most useful:

$ sort /etc/shells
$ sort ~/file1 ~/file2
$ printf '%s\n' 'Line 2' 'Line1' | sort

sort can sort data according to a particular column of its input data. For example, to sort
all the entries in /etc/passwd by home directory (column 6), we could write:

$ sort -t: -k6,6 /etc/passwd

The options used here are:

-t: Specifies the delimiter for the data that separates the columns, in this case a
colon.
-k6,6: Specifies by which column the data should be sorted, starting at one, in
this case the sixth column. We add ,6 to specify that only the sixth column
should be sorted; the remaining columns should not be used to sort.

Some useful options to modify each column:

-n: Performs a numeric rather than alphabetical sort, so that "10" filters after "9,"
not before. Forgetting this is a common source of sort errors!
-r: Reverses the sort order; shows the results that would be last first.

You can combine these formats to specify very precisely how you'd like to sort:

$ sort -t: -k7,7 -k3,3nr -k4,4nr /etc/passwd

This sorts the users file by login shell first, and for users with the same login shell, sorts
them numerically, first by user ID, and then by group ID, in descending order.

You can also use the -c option simply to check whether the data is sorted. Some Unix filter
tools, such as uniq and comm, require the data to be sorted to work correctly, and may print
a warning if they find data arrives in an order they didn't expect. In practice, it's usually
easier just to sort the data on the fly and then pass it into these tools.

Essential Commands Chapter 3

[54]

Another useful option to note here is the -u option, which filters the data uniquely,
ignoring any lines that have keys they've already seen. This surprises some shell script
programmers who are accustomed to using uniq to do this; it's more flexible, because you
can apply it to individual columns:

$ cat lyrics
02 the
03 air
02 later
02 often
01 in
04 tonight
04 for
00 something
$ sort -k1,1n -u lyrics
00 something
01 in
02 the
03 air
04 tonight

Despite the availability of the -u flag for sort, the uniq tool does still have some uses;
perhaps the most useful one is with the -c flag, which allows us to count occurrences of
each line of sorted data:

$ cat ips
192.2.0.1
192.2.0.1
192.2.0.25
192.2.0.1
192.2.0.24
192.2.0.1
192.2.0.25
$ sort ips | uniq -c
 4 192.2.0.1
 1 192.2.0.24
 2 192.2.0.25

The preceding output shows us that the IP address 192.2.0.1 occurred in the data four
times, 192.2.0.25 twice, and 192.2.0.1 only once. If you looked at the output and
thought, "we could sort by the first column," you're thinking like a shell programmer:

$ sort ips | uniq -c | sort -k1,1nr
 4 192.2.0.1
 2 192.2.0.25
 1 192.2.0.24

Essential Commands Chapter 3

[55]

In this example, -k1,1 is optional. Can you see why?

Summary
Because a typical shell script calls so many different commands, knowing the commands
provided to you by the Bash shell itself, and by the system on which it runs, equips you to
choose the right tool for the job; that decision can be particularly difficult in shell scripting,
with so many options and alternatives available.

Knowing what the Bash shell provides – and what the POSIX standard specifies for the
system to provide – will help you write shell scripts that will run safely, reliably, and
portably on the systems where you need them to run. Tools like type, help, and man will
enable you to identify and find the correct documentation for these commands.

In the next chapter, we'll look at how we can specify and redirect input and output for these
and other commands, allowing you to pass just the data you need to them, just when you
need it.

4
Input, Output, and Redirection

In this chapter, we'll look at how to manage input and output for Bash commands,
specifying where any input into a command should come from, and where any output or
errors from it should go. We can manage each of these using Bash's support for classic shell
redirection, specifying a source or a destination for the data in the form of a path to a file.

In addition to file-based redirection, we'll also explore the use of pipes to transparently
direct the output of one command straight into the input of another, a powerful means of
composing (or combining) programs by having them work together. We'll also take a brief
look at some general data-filtering possibilities using the sed and AWK programming
languages.

In this chapter, we'll cover the following topics:

Managing input and output from programs
Controlling file-based redirection for both output and errors
The basics of file-creation permissions
Pipes between programs
Advanced filtering possibilities with other programming languages

Redirecting output
When you enter a simple command that produces output in an interactive Bash session,
such as a call to printf, it writes it straight back to your terminal so that you can read it,
before returning you to your prompt:

$ printf 'Hello, terminal!\n'
Hello, terminal!
$

Input, Output, and Redirection Chapter 4

[57]

In both an interactive session and a script, you will often want to do something with the
output besides printing it to the screen, particularly if you need to save the data
permanently for later use. The simplest means of doing this is to save the output to a file.

To accomplish this, we can use one of Bash's redirection operators, the right angled
bracket, >, followed by a filename path:

$ printf 'Hello, file!\n' > myfile
$

Notice that when we run the printf command in the preceding example, we don't get any
output on the screen before our prompt shows again. However, if we run cat with myfile
as its argument afterward, we can see where the command's output went; the file contains
the output that the command would otherwise have written to our terminal:

$ cat myfile
Hello, file!

When you use output redirection to a file, the file is created even if the command had no
output at all; if there's no output, it's created empty, or with a single terminating newline,
depending on what the command emitted:

$ printf '' > myemptyfile
$ wc -c myemptyfile
0

Redirection paths
The path that comes after the redirection operator can include directory parts, and tildes to
expand; both of the following redirections will work, if the mydir directory exists in your
home directory:

$ cd
$ printf 'Hello, file!\n' > mydir/myfile
$ printf 'Hello, file!\n' > ~/mydir/myfile

Variables such as HOME can also be expanded for the file destination:

$ printf 'Hello, file!\n' > "$HOME"/myfile

Input, Output, and Redirection Chapter 4

[58]

For output redirection to a new file path to work, you will need permission to create files in
the destination directory. If the file already exists, you will need permission to write to it in
order to replace its contents. For example, if we try to write a file to the root user's home
directory while we are not root, we will probably find this is not allowed:

$ printf 'Hello, root!\n' > ~root/myfile
bash: /root/myfile: Permission denied

Avoiding overwrites
You may have noticed in the output from the preceding commands that Bash does not
prompt you about the destination file for an output redirection that doesn't exists – it
creates it for you, without notifying you. Perhaps a bit more surprisingly, it won't prompt
you if it replaces the contents of a file, either:

$ printf 'First command\n' > myfile
$ printf 'Second command\n' > myfile
$ cat myfile
Second command

The output from the first printf command is replaced with the output from the second
printf command. If you don't want this to happen, and you only want to allow Bash to
create new files, you can set the -C shell option with set:

$ set -C

For the running shell session, Bash will refuse to overwrite a file with a redirection
operator:

$ printf 'Third command\n' > myfile
bash: myfile: cannot overwrite existing file

However, you can force it to write anyway with the >| syntax:

$ set -C
$ printf 'Third command\n' >| myfile
$

Don't forget that this only applies for your running shell. It doesn't prevent other running
Bash shells or any other program from writing files. If you're writing a Bash script and you
want to use the option, you need to include the set -C line near the top.

Input, Output, and Redirection Chapter 4

[59]

You may sometimes see the -C option referred to as noclobber. This is
another Bash-specific name for the same option. We recommend -C, as it
works in other shells, and is specified by POSIX.

Appending to files
If you wish to add output from a command to a file rather than replace it, double the right
angled bracket to >>:

$ printf 'First command\n' > file
$ printf 'Second command\n' >> file
$ cat file
First command
Second command

The file doesn't need to exist already for this to work; the >> operator will create it for you,
just like the > operator will.

This is a useful syntax for appending to log files, describing the output of your script as you
go:

#!/bin/bash
printf 'Starting script\n' >> log
printf 'Creating test directory\n' >> log
mkdir test || exit
printf 'Changing into test directory\n' >> log
cd test || exit
printf 'Writing current date\n' >> log
date > date || exit

Understanding created file permissions
When Bash creates a new file on the system for you into which output has been directed, it
needs to decide what permissions to set for the new file. It decides what those permissions
should be with reference to a value called umask for the current process, which can be set
by the process' owner.

Input, Output, and Redirection Chapter 4

[60]

The logic for how this decision is made is a little involved, and may require a quick review
of how permissions on Unix-like systems work. To start, let's create a new file using an
output redirection, and examine it with ls -l:

$ printf 'Hello, world\n' > myfile $ ls -l myfile -rw-r--r-- 1 bashuser
bashuser 1 2018-07-29 20:53:23 myfile

The permissions for the file are described in the the -rw-r--r-- string at the start of each
line. This is a human-readable version of the permissions; each character is either a letter
flag or a dash. It's possible that your own value may differ, depending on your system's
default settings:

The first character of the string (-) is not a permission flag; it just shows the file
type. In this case, a normal file (not a directory) shows a hyphen (-) in this field.
A directory would show d instead.
The next three characters (rw-) are the file owner permissions: read, write, and
execute. Since you have just created the file, its owner will generally be you. In
this example, the owner is able to read from and write to the file, but not to
execute it as a program.
The next three characters (r--) are the file group permissions: what a user in the
file's group can do with the file if they're not the owner. In this case, members of
our group can read the file, but can neither write to it nor execute it as a program.
The last three characters (r--) are the permissions for the world, or any other
users who are neither the file's owner, nor in its group. Again, these users can
read our file, but cannot write to it or execute it.

If we have GNU stat, we can also examine the permissions in another, more compact,
format; a numeric notation with three octal numbers ranging from 0 to 7:

$ stat -c %a myfile
644

This value is calculated by adding 4 for each read bit if set, 2 for each write bit if set, and 1
for each execute bit if set:

The owner has read and write privileges, so the first value is 4 + 2, or 6
The group has read privileges only, so the second value is just 4
The world has read privileges only, so the third value is just 4

If we were to make the file executable by the owner, the owner permissions would add 1,
and would then be 7, for numeric permissions of 744.

Input, Output, and Redirection Chapter 4

[61]

This numeric format is not as easy for humans to read as the symbolic format, but it is
closer to how the computer represents the permissions for files.

Choosing permissions for created files
While the defaults we saw in the previous section for newly-created files are sensible in
many situations, they're not ideal in others. In particular, note that every other user on the
system has permission to read the file, if they can get to it or name it. This isn't appropriate
for files with sensitive information in them, such as passwords, private keys, or confidential
user data. In such a situation, we don't want all the files we create to be readable by every
user on the system, especially for the system users running processes for unauthenticated
network services, such as a web server! How can we arrange for Bash to lock the files
down?

When Bash creates files for redirected output, it starts with a permissions string of rw-rw-
rw-, or in numeric notation, 666: with those permissions, all the system's users could read
or write the file. Before it creates the file, however, it checks the umask value of the process
to find out which of those permissions it should not apply to the created file. This value
therefore masks permissions bits. The bash program and many other system programs,
such as touch, use umask to decide the default permissions for created files.

You can check the current umask value for your Bash shell with the umask command. By
default, it prints in the numeric format. You can add the -S option to print the same value
in string or symbolic form, if you find it easier to read:

$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx

The value we see here, 0022, is a common value for users who are not root. Note the extra
zero at the start, a common prefix to signal an octal number. We can break down the other
three digits like so:

0: Don't strip any of the owner's privileges from the created file.
2: Strip write permission for groups from the created file, but leave read and
execute permissions intact.
2: Strip write permission for all other users from the created file, but leave read
and execute permissions intact.

Input, Output, and Redirection Chapter 4

[62]

We can change the umask value for the current running shell by providing it as an
argument, in either numeric or symbolic format. To prevent users besides the file owner
and group from being able to read the files, we might use a umask of 027:

$ umask 027
$ cat secrets > secret
$ ls -l secret
-rw-r----- 1 bashuser bashuser 1 2018-07-28 22:33:48 secret

In this case, other users – whose permissions are described by the last three flags in the
permissions string – end up with no permissions for this file. If a user who is neither
bashuser nor in the bashuser group tried to read the file, the kernel would refuse access,
with Bash raising a "Permission denied" error.

By contrast, with an "empty" umask of 0000, Bash creates new files that are readable and
writable for everyone:

$ umask 000
$ cat announcements > public
$ ls -l public
-rw-rw-rw- 1 bashuser bashuser 1 2018-07-28 22:36:08 public

If you're creating secret files during a shell session, consider switching to umask 077 to
make new files readable only by you; similarly, when you are writing a new script, consider
declaring an appropriate umask near the top.

Note that many other programs besides bash will also use umask for file creation, but not
all of them do, and the umask doesn't prevent them from changing the permissions of the
file after it's created. If you are using a new program for sensitive data, always check the
permissions of any files it creates carefully.

Redirecting errors
If you experiment with redirecting the output of commands to files, you may find that error
messages are still written to your terminal instead of the destination you specified:

$ grep pattern myfile /nonexistent > matches
grep: /nonexistent: No such file or directory

Input, Output, and Redirection Chapter 4

[63]

This is an intentional design feature of Unix-like operating systems, not just the bash
program; it's to separate the output of commands (standard output, or stdout) from any
error messages the command may also generate (standard error, or stderr). It's very
common for commands to emit both output and error messages, so that the person running
the script can read the errors without it interfering with any output from the script.

If you want to redirect error messages as well, the syntax is slightly different; you need to
link the redirection operator with the standard error stream's file descriptor number, which
is always 2:

$ grep pattern myfile /nonexistent > matches 2> errors
$ cat errors
grep: /nonexistent: No such file or directory

Visually, we could present it like this:

Note that just like redirecting standard output, the file will always be created, even if there
is no error output. Also note that you can use 2>> to append error output to a file; this is a
useful way to keep a permanent error log for a script, because old errors in the file will not
be overwritten the next time the script is run.

Combining errors with output
If you want to get both the output and errors from a command, you might try it this way at
first:

$ grep pattern myfile /nonexistent > matches 2> matches

Input, Output, and Redirection Chapter 4

[64]

However, this does not do what you might expect; you might get only the output, or only
the errors, or nothing at all, depending on the system. The syntax you want is to specify a
file descriptor as the redirection target, using the ampersand (&), syntax to specify 1 (the
standard output stream's descriptor):

$ grep pattern myfile /nonexistent > matches 2>&1

You can read the last word of this command line as "redirect standard error to the same
place standard output is already going."

Note that the order matters here; you can't put 2>&1 before > matches to accomplish the
same thing. Redirections are made in order, from left to right.

There is another Bash-specific syntax, &>, to do the same thing, but the
longer and more explicit method is the clearest to anyone reading your
script, and works on shells besides Bash.

Blocking errors completely
A common idiom to ignore error output from commands is to discard it by directing it to
the special /dev/null device file, which just ignores anything written to it and is always
empty:

$ grep pattern myfile /nonexistent > matches 2> /dev/null

If you want to ignore error output, this works, but think carefully before you do this. Error
messages are written to let you know and to help you understand when something is not
working, and they assist in debugging, especially when the error isn't fatal – that is, when
the command still runs to completion and maybe generates some output, so if nobody sees
the errors, it might seem like everything is working fine.

A good example is the comm tool, which shows lines that differ between files, similar to
diff, except it requires its input files to be sorted to do its efficient comparison. If they're
not sorted the way it expects, it raises an error like this:

$ comm myfile1 myfile2
comm: file 1 is not in sorted order

Input, Output, and Redirection Chapter 4

[65]

This warning is to alert the user that the program actually cannot do its work correctly if
the files are not sorted. If you suppress the error completely, and don't log it anywhere, it
makes it much harder to debug later:

$ comm myfile1 myfile2 2> /dev/null
$ echo $?
1

We can see the comm command exited non-zero, meaning there was an error. What was the
error? We can't tell, because we blocked it! This is particularly painful in automated scripts:
nobody ever sees the error, so it could be a long time before anyone actually notices things
are broken.

Instead, you may be able to adjust your script so that the error condition does not arise at
all, or perhaps pass program-specific options (often -f or -q) to suppress errors selectively,
instead of just discarding any and all error output.

Another method is to write the error output to a file, in case you do need to check it later:

$ grep pattern myfile /nonexistent > matches 2>> errorlog

Sending output to more than one place
If you need the output of a command in more than one place, and the command does not
need to run for long, the most straightforward way is to save it to a single file first, and then
use cat or cp to send it wherever it needs to be copied. This is simple and easy to read and
understand, and is the recommended way to do it if the command does not need to run for
long.

However, for situations where you want the output to go to more than one place while the
command is actually running, you can use the tee command, which copies all of its input
to any files named in its arguments:

$ printf 'Copy this output\n' | tee myfile
Copy this output
$ cat myfile
Copy this output

Input, Output, and Redirection Chapter 4

[66]

Notice that the output went to both the terminal and to myfile. This works when multiple
files are specified, too:

$ printf 'Copy this output\n' | tee myfile1 myfile2 myfile3
Copy this output
$ ls myfile*
myfile1 myfile2 myfile3

Each of the three files will end up with the same content.

You can use the -a option of tee to append to files rather than overwriting
them, much like using >> instead of >.

Redirecting input
Many commands invoked from Bash read their input from one or more files provided on
the command line, particularly the classic Unix text filtering tools, such as grep and sort.
When these commands are passed one or more filenames as arguments, they switch to
reading their input from those files in the order they were specified, instead of from their
own standard input:

$ grep pattern myfile1 myfile2 myfile3
$ sort -k1,1 myfile1 myfile2 myfile3

This tends to mean that you do not need to use Bash to redirect input as often as you need
to redirect output, because well-designed Unix programs can usually change their input
behavior by specifying filenames, without any shell syntax involved.

However, not all programs behave this way, and it will sometimes be necessary to use
input redirection to specify the source for a command's input. For example, the tr Unix
command is a simple way to translate characters in input to other characters, specified in
sets. We can try it out on the command line to convert all lowercase ASCII letters to
uppercase in each line we type:

$ tr a-z A-Z
Hello, world!
HELLO, WORLD!

Input, Output, and Redirection Chapter 4

[67]

If you are using a non-English locale, you might need to type export
LC_COLLATE=C first for this to work.

If we wanted to do this with data from a file named mylines, we might try to write it like
this:

$ tr a-z A-Z mylines

But that doesn't seem to work:

tr: extra operand ‘mylines’
Try 'tr --help' for more information.

This is because the tr program doesn't check its arguments for files; it only reads the
standard input stream, which by default comes from your terminal, so we need another
way to specify input for the command.

Many shell programmers try to solve this problem with a cat pipe first, like this:

$ cat mylines | tr a-z A-Z

This works, but it's what we refer to as a useless use of cat; because we only have one file,
there's nothing to combine, and hence no need to make cat read it for us. Instead, we can
use the input redirection operator, <, directly with the tr command:

$ tr a-z A-Z < mylines

In this case, the shell will open the mylines file and use it as the source for standard input
for the tr command.

Like the output redirection operator, >, we can place the input redirection operator, <,
elsewhere on the command line, including at the very start; this works, but it's not very
commonly used:

$ < mylines tr a-z A-Z

Note also that input redirection, output redirection, and error redirection can all be
performed simultaneously for the same command line:

$ tr a-z A-Z < mylines > mylines.capitalized 2> mylines.error

The preceding command runs capitalization on input read from mylines, writing the
output to the mylines.capitalized file and any errors to mylines.error.

Input, Output, and Redirection Chapter 4

[68]

Using a long string as input with here-documents
In some cases, you may have a long multi-line string for input to a command in your script
that you don't want to separate into another file. This is often the case with output for -h or
--help options, where you don't want to store the help information outside the script.

Because quoted strings can include multiple lines, we can just use printf for this; it works
fine, emitting multiple lines of output:

#!/bin/bash
case $1 in
 -h|--help)
 printf '%s\n' 'foo command help:
-h, --help: Show this help
-q, --quiet: Run without diagnostics
-v, --verbose: Add extra diagnostics'
 exit 0
 ;;
esac

For commands that accept the data as input, such as cat, rather than in argument, such
as printf, a different syntax can be used: a here-document, a kind of quoting that uses a
token word or delimiter to specify where a document for a command's standard input
should finish.

The preceding snippet could be rewritten to use a here-document in cat, instead of an
argument to printf:

#!/bin/bash
case $1 in
 -h|--help)
 cat <<'EOF'
foo command help:
-h, --help: Show this help
-q, --quiet: Run without diagnostics
-v, --verbose: Add extra diagnostics
EOF
 exit 0
 ;;
esac

This includes as input to cat all lines that are between the <<'EOF' line and the next
occurrence of the EOF token as the first word of a new line; in this case, this is a total of four
lines of data, each terminated with a newline character. That data becomes the standard
input to cat, which in turn prints it to the program's standard output.

Input, Output, and Redirection Chapter 4

[69]

Note the following details of this syntax:

The redirection operator is two left angled brackets, <<. Having only one left
angled bracket will trigger plain old file-input redirection – not what you
intended!
The lines in the data are not indented at the same level as the rest of the case
structure. This is because the leading whitespace will be interpreted literally, and
printed exactly as you write it. We say that leading whitespace is not stripped.
Similarly, the terminating delimiter that flags the end of the here-document is
the only content on the line, with no leading whitespace. If you include
whitespace before the delimiter, the line is taken as part of the input.
The token word, the delimiter, is EOF. This is only a common convention; it can
be any string (if quoted).
The delimiter is in single quotes. Similar to the behavior of single quotes, this
specifies that until the EOF is reached, all of the characters in the data should be
treated literally, including $.

If you want to expand variables or do command substitution inside a here-document, you
can leave out the single quotes around the delimiter. The here-document then expands
variables and substitutions inside it, much like a double-quoted string. This allows you to
use values from the environment or elsewhere in the program in the string:

#!/bin/bash
cat <<EOF
Hello, $USER; you are running this program on $(hostname -s).
Your home directory is $HOME.
EOF

If you really want to indent your here-documents, there is an exception to the preceding
rule about leading whitespace; if you include a hyphen between << and the delimiter, the
tabs (but not spaces) at the front of your input lines will be ignored:

#!/bin/bash
cat <<-'EOF'
 Leading tabs
 will not be included in the output
EOF

Input, Output, and Redirection Chapter 4

[70]

Using pipes
In some cases, we may store output from one command in a file, with the intent to use it in
the input to another. Consider this script, which accepts a list of ASCII words on its
standard input, converts any uppercase letters to lowercase with tr, sorts them, and then
prints a count of how often each word is used, sorted by frequency:

#!/bin/bash

Convert all capital letters in the input to lowercase
tr A-Z a-z > words.lowercase

Sort all the lowercase words in order
sort words.lowercase > words.sorted

Print counts of how many times each word occurs
uniq -c words.sorted > words.frequency

Sort that list by frequency, descending
sort -k1,1nr words.frequency

This sort of script involving many commands in sequence to filter and aggregate data can
be very useful for analyzing large amounts of raw text, such as log files. However, there's a
problem; when we run this, it leaves some files lying around:

$ ls words.*
words.frequency words.lowercase words.sorted

Of course, we could clean them up with rm at the end of the script:

rm words.frequency words.lowercase words.sorted

It would be preferable not to involve these temporary files in the first place, and instead to
feed the output of each program directly into the input of the next one. This is done with
the pipe operator. We can reduce the whole script to just one pipeline:

tr A-Z a-z | sort | uniq -c | sort -k1,1nr

Visually, we could represent it like this:

Input, Output, and Redirection Chapter 4

[71]

This pipeline accomplishes the same thing as the script does; try running it and type a few
words separated by newlines, and then type Control-D to terminate it (end-of-file):

$ tr A-Z a-z | sort | uniq -c | sort -k1,1nr
bash
bash
script
user
script
Bash
SCRIPT

If Ctrl + D is pressed to finish the list, we get this output:

3 bash
3 script
1 user

You can think of the pipe operator as a way to perform input redirection (<) and output
redirection (>) for a pair of programs into one another, like connecting things with a physical
pipe, without having to involve an intermediate state, such as a file.

Note that only the output from each command is redirected into the input
of the next; pipes do not affect where errors are sent.

A convenient property of the pipe operator is that it can be used at the end of a line; we
could put the preceding pipeline into a script spanning multiple lines, as follows:

#!/bin/bash
tr A-Z a-z |
sort |
uniq -c |
sort -k1,1nr

You may find this more readable, particularly if some of your commands are long.

Adding file contents to a stream
Sometimes, you may want to add header or footer information to a stream in a pipeline,
perhaps read from another file. One straightforward way of doing this is using cat for its
intended purpose of concatenating streams of input.

Input, Output, and Redirection Chapter 4

[72]

Normally, cat combines all of the filenames specified in its arguments and writes them to
standard output, in the same order they were specified:

$ cat myfile1 myfile2 myfile3 > myfiles.combined

We can use the special value of a single hyphen (-) anywhere among the cat filename
arguments to denote that any standard input to cat should be added at that point. For
example, if we had a generate-html command that generated the body of an HTML
document, we might want to add the headers with the <!DOCTYPE html>, <html>,
<head>, <body>, and other tags in header.html at the top, and the closing tags, such as
</body> and </html>, in footer.html at the end. We could combine them with one
pipeline using the - representation for the standard input:

$ generate-html
<p>Here is the content!</p>
$ generate-html | cat header.html - footer.html
<!DOCTYPE html>
<html>
 <head>
 <title></title>
 </head>
 <body>
<p>Here is the content!</p>
 </body>
</html>

Note that the single hyphen word (-) syntax is not a special value to Bash itself; it's just a
conventional way for individual programs to specify the standard input stream on the
command line. It's supported for many of the standardized POSIX tools, such as cat. For
some other commands, you might need to explicitly use the pseudo-device
file, /dev/stdin, in place of the hyphen.

Piping output from multiple programs
With what we've learned so far, it's easy to combine the output of two separate commands
into a file; we just run them in the appropriate sequence, and use the redirection output
with >> to append the data:

$ date > myout
$ hostname >> myout
$ cat myout
Mon Jul 30 21:32:33 NZST 2018
bashserver.example.net.

Input, Output, and Redirection Chapter 4

[73]

However, it may not be clear how you could combine two streams of output from
commands into one without saving them into a temporary file, for example to capitalize all
of the letters within it with tr. There isn't a specific syntax to "merge" pipes.

There is still a way to do this without resorting to a temporary file; you can use a
compound command that contains all of the commands for output redirection, and apply
the redirection to that compound command, rather than to the individual commands
within it.

The most straightforward way to do this is with a group command, which is delimited with
curly brackets, { and }:

$ { date ; hostname ; } | tr a-z A-Z
MON JUL 30 21:38:52 NZST 2018
BASHSERVER.EXAMPLE.NET.

Note that we not only had to separate the date and hostname commands here with a
semicolon, we also had to include a semicolon control operator for the final command to
terminate it, before closing the group with }. This form of compound command is the same
as the one commonly used for functions, as we'll see in Chapter 7, Scripts, Functions, and
Aliases.

Input and output redirection can also apply to compound commands:

$ { date ; printf '%s\n' apple carrot banana ; } > mywords
$ { read date ; printf '%s\n' "$date" ; sort ; } < mywords

There are other kinds of compound commands, which we'll learn about in Chapter 6, Loops
and Conditionals, for which redirection works just as well. This property of redirection for
compound commands is the basis of Bash's while read -r loop idiom, for reading a file
line-by-line.

Filtering programs
When we establish long pipelines, we sometimes want to add an extra "link" into the
pipeline to reformat or filter the data in some way before passing it on to the next program,
and we may find that there are no programs available to us on the system that filter the text
in exactly the way we need.

We may therefore wish to use something with a bit more power; we'll look at the sed and
AWK programming language interpreters, both of which are specified by POSIX. They are
ideal tools to write short one-line programs dedicated to filtering text streams in novel
ways.

Input, Output, and Redirection Chapter 4

[74]

We can't completely explain sed and AWK here, but we'll give some examples that will
demonstrate the sort of tasks for which they are ideal. Like many other commands useful in
Bash scripts, neither of these programs are part of Bash itself; they're just very often used in
Bash and other shell script command lines.

The sed stream editor
The sed program is an interpreter for sed, the stream editor, a simple data-driven
programming language that accepts data on input (normally strings), and acts on and
transforms it conditionally. The programs end up being very short, as the commands are all
only one letter long. This terse approach means they fit very well on a command line and
are quick to type.

We'll use the following example file, named manual, for our sed demonstration:

$ cat manual
The sed utility is a stream editor that shall read one or more text files,
make editing changes according to a script of editing commands,
and write the results to standard output.

With an empty program, sed simply reproduces all of the output without changing it; this
is because by default it prints all the lines it filters implicitly, unless they are deleted:

$ sed '' manual
The sed utility is a stream editor that shall read one or more text files,
make editing changes according to a script of editing commands,
and write the results to standard output.

Note the empty string is specified with ''; if we don't use the quotes to
show an empty argument, sed will only be passed manual as an
argument, and will think it's a script!

We can delete individual lines with the d command, by prefixing them with the line
number:

$ sed '1d' manual
make editing changes according to a script of editing commands,
and write the results to standard output.

We can delete a range of lines with a comma-separated pair of numbers:

$ sed '1,2d' manual
and write the results to standard output.

Input, Output, and Redirection Chapter 4

[75]

Lines can be selected not just with line numbers, but also with pattern matches. For
example, to delete all lines from "1" up to and including the next occurrence of the word
"commands," we could write the following:

$ sed '1,/commands/d' manual
and write the results to standard output.

We can transform lines with the s command, which substitutes a regular expression pattern
into a given replacement:

$ sed 's/stream/river/' manual
The sed utility is a river editor that shall read one or more text files,
...

The s/pattern/replacement/ pattern-replacement syntax is the function of sed that is
best known to programmers even outside of shell scripting; it shows up very often in older
shell scripts, and in various other contexts in Unix, such as in the vi editor.

These are just a few examples of the text transformations possible with sed; you should
check your operating system's manual page for more details.

While powerful, the terseness of these examples shows sed programs can be a little hard to
write at first. Fortunately, many of the most common filtering functions for which
programmers often use sed can be done in Bash itself, using parameter expansion for
common string operations such as removing extensions or leading paths from paths. We
will discuss that in Chapter 5, Variables and Patterns .

Don't be tempted to use sed for tasks such as parsing programming languages or markup
languages such as HTML; it's just not powerful enough to do it correctly! Use a proper
parser such as HTML's tidy instead, and keep sed programs for simple and well-defined
line-based text translations. For XML, try xpath; for JSON, try jq.

The AWK programming language
The AWK programming language interpreter works in many ways like sed; it accepts (by
default) lines of input, performs pattern-matching and filtering on each, and applies actions
based on those patterns.

AWK is especially well-suited for data that takes the form of a regular pattern of words, or
fields, which makes it ideal for filtering data in clearly-delineated columns. By default,
fields are separated by any whitespace (spaces or tabs), and records are separated by
newlines, but both of these can be changed as part of the program.

Input, Output, and Redirection Chapter 4

[76]

The basic form of an AWK program is a set of patterns for each record (normally a line) to
match, for which an action is performed for each matching record. We will take a look at
some simple examples so you can get an idea of the kinds of patterns and actions that are
possible.

We'll use the following groceries data file for our example AWK programs:

$ cat groceries
Item Quantity Price
Apples 5 0.50
Cereal 1 3.40
Soda 2 1.10

The best-known application of AWK for administrators and programmers is to extract a
single column of data. We can do this with a print command and by specifying the second
column with $2:

$ awk '{ print $2 }' groceries
Quantity
5
1
2

We can also print multiple columns by separating them with commas:

$ awk '{ print $2, $3 }' groceries
Quantity Price
5 0.50
1 3.40
2 1.10

If we want to exclude the first line with the headers so that we only retrieve the number
data, we can do that as part of the AWK program too, by specifying a condition as the
pattern preceding the action:

$ awk 'NR > 1 { print $2, $3 }' groceries
5 0.50
1 3.40
2 1.10

NR in the preceding command refers to the record number, in this case the same as the line
number, and specifies that the second and third columns should only be printed if the
record number is greater than 1, thereby skipping the headers.

Input, Output, and Redirection Chapter 4

[77]

We can even do some arithmetic, calculating the total price for each item by multiplying the
unit price by the quantity, then formatting them and prefixing them with a dollar sign
using printf:

$ awk 'NR > 1 { printf "$%.2f\n", $2 * $3 }' groceries
$2.50
$3.40
$2.20

Note that printf in the Awk program is implemented by AWK; it's not
the Bash command of the same name!

As with sed, these examples only scratch the surface; AWK is a small programming
language, but it has many features beyond merely filtering by column number. Consult the
documentation for your system's version of awk to get a better idea of what it can do. Note
that different versions of AWK support different extensions to the POSIX standard; keep
your AWK programs simple, if you can!

Summary
While the model of standard input, output, and error streams for Bash is simple in
principle, redirections and piping allow us to combine programs and files in novel ways to
efficiently and expressively program in only one or two lines what might take hundreds of
lines in other programming languages. This is especially true when extended to applying
other programming languages, such as sed or AWK, to filter data appropriately.

In the next chapter, we'll learn how to gather and manipulate data within Bash itself, using
its builtin variables and patterns.

5
Variables and Patterns

In this chapter, we'll learn how to work with data and variables in Bash, and how to use
them with pattern matching and shell glob syntax. While you can get a lot done by just
piping existing commands together, we often need variables to get more fine-tuned
behavior from scripts.

We'll cover:

Variable declarations and scope
Environment variables
String operations
Arithmetic expressions
Capturing program output in a variable
Matching filenames with glob patterns
Using arrays and associative arrays

Using variables
The basic form of a variable assignment in shell script looks like this:

myshell='GNU Bourne-Again shell'

This declares a variable named myshell, and gives it the string contents GNU Bourne-Again
shell.

Note that there is no space either before or after the equals sign, as there might be in a C-
like language. Note also that the value in this example assignment is surrounded by single
quotes, so the contents are interpreted literally, without expanding any special characters,
in this case spaces. As with other single-quoted strings in shell script, the quotes themselves
do not become part of the value.

Variables and Patterns Chapter 5

[79]

You will need to quote any value that contains special characters in variable assignments.
For new shell programmers, it is safest to quote all the values in their assignments; it might
be unnecessary in some cases, but it doesn't do any harm, and it's easier to manage:

myshell='sh'
myvar='GNU'\''s Not Unix!'
myprompt="$USER@$HOST"

By design, you can't assign parameters such as $1, $?, or $#; they are read-only variables
that are managed by the shell. Trying to assign to them will yield strange errors, or even no
output at all.

See the "Special Parameters" section of the Bash manual page to learn
more about these special parameters. We'll be using a few of them in later
chapters.

Listing variables
After a variable has been assigned a value, you can check it by using printf or echo:

$ today='August 9th'
$ printf '%s\n' "$today"
August 9th

Bash includes a builtin named declare, which can be used with variable names as its
argument to show more information about each named variable and its value:

$ declare -p today
declare -- today='August 9th'

In this case, the -- string in the output tells us that there is no special attribute to this
variable.

You can list all of the variables currently assigned by leaving out the name:

$ declare -p
declare -- BASH="/bin/bash"
declare -r BASHOPTS="cdspell:checkhash...
declare -ir BASHPID
declare -- PS1="\\u@\\h:\\w\\$ "
...

Variables and Patterns Chapter 5

[80]

Naming variables
A variable name in bash must begin with a letter or an underscore, and can be followed by
any letter or number, or more underscores.

These variables names are all legal:

myvar

MYVAR

Myvar

mYVAR

_myvar

my_var

myvar_

my012

These variable names are not allowed:

1myvar

my-var

my.var

my:var

Variable name case
Note that in our example assignments earlier, variable names such as myshell and today
are in lowercase. Very often, when you read shell scripts others have written, particularly
older scripts, you will find that variables that are used only internally in the script are
written in uppercase, such as MYSHELL.

The issue with using the ALL_UPPERCASE variable names for your own script variables is
that environment variables, such as HOME, and shell internal variables, such
as BASH_VERSION, are also (almost) always written in uppercase, and there are a lot of
them – so if you use capitalized names, there is a significant risk of accidentally breaking an
important variable in your own script.

Variables and Patterns Chapter 5

[81]

For example, if you were to assign PATH rather than path for one of your variables, you
would change the environment variable that the system uses to find other programs:

#!/bin/sh
PATH=/home/bashuser/myfile
grep -- mystring "$PATH"

If this script is run, it yields:

grep: command not found

This is because with PATH changed to a filename, the system can no longer find the
fundamental grep tool – and the error message doesn't make it clear why. Similar problems
occur with names such as BASH_VERSION, SHELL, or even innocent-looking words such
as RANDOM.

You can avoid this class of problems by naming variables for your script in all lowercase,
since very few shell-internal and environment variables are written like this:

#!/bin/sh
path=/home/bashuser/myfille
grep -- mystring "$path"

There is one exception: the http_proxy environment variable used by
some programs is always written lowercase, for historical reasons.

Of course, if you really do want to change one of these variables, you can still do so:

PATH="$PATH:/home/myuser/scripts"
MYDIR=/home/myuser
export MYDIR

Clearing variables
If you want to assign a variable an empty value, you can do so by leaving the right side of
an assignment to the variable blank:

$ system=

However, the variable name still appears in the list of variables, it just has an empty value:

bash$ declare -p system
declare -- system=""

Variables and Patterns Chapter 5

[82]

The system variable is defined, but empty. POSIX shell script actually does not make much
of a distinction between these two states. It's more common to test whether a variable is
empty than it is to check whether it's defined:

#!/bin/bash
If the 'system' variable is not empty, print its value to the user
if [[-n $system]] ; then
 printf 'The "system" variable is: %s\n' "$system"
fi

You can actually remove a variable with unset:

$ unset -v system
$ declare -p system
bash: declare: system: not found

If you do ever need to check whether a variable is defined, Bash allows you to do this with
the -v test; note that we use system, not $system, here:

#!/bin/bash
If the "system" variable has been set--even if it's empty--print its
value to the user
if [[-v system]] ; then
 printf 'The "system" variable is: %s\n' "$system"
fi

Environment variables
Variable assignments such as the ones we've done so far in this chapter are only visible to
the current running shell. Their values don't implicitly affect a program called by the
script – a forked process.

The easiest way to demonstrate this on the command line is to start another shell process
after making an assignment. Consider this basic shell session, including an assignment to a
variable named realname:

bash$ declare -p BASHPID
declare -ir BASHPID="7013"
bash$ realname='Bash User'
bash$ declare -p realname
declare -- realname='Bash User'

Variables and Patterns Chapter 5

[83]

If we start a new bash process, we get a new process ID in BASHPID, and the realname
variable does not show as a set:

bash$ bash
bash$ declare -p BASHPID
declare -ir BASHPID="7585"
bash$ declare -p realname
bash: declare: realname: not found

Once we use exit to return to the parent process, it shows as available again:

bash$ exit
bash$ declare -p BASHPID
declare -ir BASHPID="7013"
bash$ declare -p realname
declare -- realname='Bash User'

If you want a way for variables to be visible and usable by any of the programs you call on
the script or command line, you need to use environment variables. The POSIX-specified
command to do this is called export, which is a builtin command in Bash:

bash$ REALNAME='Bash User'
bash$ export REALNAME
bash$ declare -p REALNAME
declare -x REALNAME="Bash User"

Variables and Patterns Chapter 5

[84]

We use the all-uppercase REALNAME here rather than realname, observing
a convention for all-uppercase names for environment variables.

Notice that the declare output for the preceding command is slightly different from our
system example; it includes the -x option, specifying that the REALNAME variable has been
exported to the environment. This export makes the variable available to child processes:

bash$ bash
bash$ declare -p REALNAME
declare -x REALNAME="Bash User"
bash$ exit

You can get a list of all environment variables and their values with declare -x in Bash.
The POSIX-specified env program is another option, called with no arguments, but you
might want to sort its output in order to read it.

You should only export variables when you actually need to use their values in
subprocesses. It may be tempting to export all of your variables, but it's untidy, and you
risk overwriting an important environment variable used by a program without intending
to, which can be hard to debug.

Environment variables are simple string key-value pairs. You cannot
reliably export a data structure like an array with environment variables.

Variables and Patterns Chapter 5

[85]

Calling programs with environment variables
Environment variables are properties of all processes, not just bash processes. They can be
read by other programming languages, such as C, Perl, Awk, or Python. This means that
environment variables are sometimes used to affect how another program runs.

For example, the sort program uses locale settings to decide the sort order for some
strings – specifically, it uses the LANG or LC_COLLATE environment variables. If
LC_COLLATE is set to en_US.UTF-8, it will sort lowercase a before uppercase A:

$ printf '%s\n' 'alligator' 'Alfred' >words
$ LC_COLLATE=en_US.UTF-8
$ export LC_COLLATE
$ sort words
alligator
Alfred

However, if the environment variable is then set to C, its behavior changes:

$ LC_COLLATE=C
$ sort words
Alfred
alligator

There's a shortcut here: we can call a program with a modified environment by putting
environment variable assignments before the call to the program, on the same line:

$ LC_COLLATE=C sort words
Alfred
alligator

This sets the LC_COLLATE environment variable to C for the sort call, but doesn't change it
in the rest of the script.

This combination of assignment syntax and command-line call is very useful, but it's also
not very intuitive, because the presence of a command after the variable assignments
changes what the assignments mean more or less entirely. Make sure you understand the
difference between these two lines:

mycollate=C
LC_COLLATE=C sort words

The first is defining a shell variable named mycollate to the value C. The second is
defining only an environment variable, and only for the sort call that it starts on the words
file, not the rest of the script.

Variables and Patterns Chapter 5

[86]

Expanding variables
Bash, and shell scripting languages in general, refer to the process of evaluating variables
and other parameters such as $1 as parameter expansion.

The safest way to use parameter expansion is to prefix the name of the variable with a
dollar sign as part of a double-quoted string:

$ realname='Bash User'
$ printf '%s\n' "Hello, $realname."
Hello, Bash User.

If you need to distinguish the variable name from characters around it, you can use curly
brackets:

$ printf '%s\n' "__Hello, ${realname}__"
__Hello, Bash User__

This prevents Bash from trying to expand a variable named realname__, with two trailing
underscores.

Note that if you expand a variable that doesn't exist, by default Bash does not issue any
warnings; it just replaces the variable with an empty string:

$ printf '%s\n' "Hello, $notset."
Hello, .

If you want to arrange for Bash to throw an error whenever an unset variable is expanded,
you can use the -u option with set:

bash$ set -u
bash$ printf '%s\n' "Hello, $notset."
bash: notset: unbound variable

Reading a value into a variable
The read builtin command with its -r option can be used to read values into variables
from standard input, including directly from the terminal:

$ read -r myname
Bash User

Variables and Patterns Chapter 5

[87]

Press Ctrl + D (end-of-file) after pressing Enter after the last preceding line; the entire first
line of input will be used as the value for myname:

bash$ declare -p myname
declare -- myname='Bash User'

You should always use the -r option with read, to avoid running into confusing issues
with reading backslashed values.

We will use the read builtin a lot more in Chapter 6, Loops and Conditionals,as part of
Bash's looping syntax for processing data.

Getting command output in variables
We can get command output in variables using command substitution. For example, to
assign the output of the whoami command to the myusername variable, we could use the
following:

$ myuser="$(whoami)"
$ printf '%s\n' "$myuser"
bashuser

Don't forget to use double quotes around the expansion, so that special characters, such as
spaces and asterisks, don't get treated specially by the shell.

Command substitution has the special property of trimming trailing newlines from the
output of the command it executes. The whoami command actually prints the current
username, followed by a newline. Command substitution removes that trailing newline.
This is simply for convenience, as the trailing newline is usually not wanted.

Command substitutions can be nested, but note that the double quotes are still required
even on the inner expansion to suppress unwanted expansion:

$ mypwent="$(getent passwd "$(whoami)")"

Especially in older shell scripts, you may sometimes see backticks (`) used
for command substitution. Bash still allows this syntax so that older
scripts can run, but you should prefer the $(command) syntax to
`command`; the former is easier to read, and much easier to perform
expansions within expansions.

Variables and Patterns Chapter 5

[88]

Parameter expansion forms
Besides the simple "$myvar" form of parameter expansion, there are some other forms
available for common string operations that can be very useful. Some of these forms are
specified by the POSIX shell scripting standard, and others are specific to Bash itself; we
will distinguish them with the bash$ prompt for Bash-specific forms, and the single $
prompt for POSIX-specified forms.

Specifying default values
If a variable may not have a value in a script, you can specify a default or "fallback" value
for it with the form "${myvar:-default}", where default is the string you want to use
instead of the variable's value if it's unset or blank. This can be useful for default directories
that can be overridden by environment variables, if present:

cd -- "${MYSCRIPT_DIR:-/usr/local/myscript}"
...

This script will change into the directory named in the MYSCRIPT_DIR environment
variable if set, or the /usr/local/myscript directory it it is not set, or if it is blank.

If you use the := characters instead of :-, you can additionally assign the default value to
the environment variable for the rest of the script:

cd -- "${MYSCRIPT_DIR:=/usr/local/myscript}"
...

If it was initially unset or blank, then after the first line of the preceding script,
MYSCRIPT_DIR will additionally be set to /usr/local/myscript for the remainder of the
script.

String chopping
There are also some ways to perform string "chopping" via parameter expansion, which are
frequently useful for trimming paths. The "${myvar#prefix}" form removes one
occurrence of prefix from the variable's expansion:

$ ta='type:json'
$ printf 'Type: %s\n' "${ta#type:}"
Type: json

Variables and Patterns Chapter 5

[89]

We can chop a string from the end of the value instead using % instead of #:

$ ta='type:json'
$ printf 'Field name: %s\n' "${ta%:*}"
Field name: type

Note that the stripped string can include wildcards: * to match any number of characters,
or ? to match one. In the preceding example, we stripped :*, or the rightmost string
following a colon.

If you want to trim a pattern with literal asterisks, you need to escape or quote them:

$ text='*WARNING'
$ printf '%s\n' "${text#*}"
WARNING
$ printf '%s\n' "${text#'*'}"
WARNING

The preceding forms will will lean toward removing smaller occurrences of the pattern
rather than larger ones. If you want to chop the longest possible match of a pattern with *
in it, double the applicable sign: # becomes ##, and % becomes %%. The first is useful for
stripping an entire leading path with */:

$ path=/usr/local/myscript/bin/myscript
$ printf 'Filename with path removed: %s\n' "${path##*/}"
Filename with path removed: myscript

Extracting substrings
If we know a specific substring we want to extract from a variable by where it starts, and
optionally how long it is, we can use the ${var:start} or ${var:start:length} form:

bash$ title='== Password =='
bash$ printf '%s\n' "${title:3}"
Password ==
bash$ printf '%s\n' "${title:3:8}"
Password

By specifying a negative start value, you can start the counting from the end of the string,
starting at -1:

bash$ alpha='abcdefghijk'
bash$ printf '%s\n' "${alpha: -3:2}"
ij

Variables and Patterns Chapter 5

[90]

Note that we had to add a space prefix before the minus sign, to prevent the shell from
interpreting this as the unrelated :- form.

Getting string length
The "${#myvar}" form can be used to expand to the length of a string:

bash$ alpha='abcdefghijk'
bash$ printf '%u\n' "${#alpha}"
11

While this form is Bash-specific, it's a short and convenient alternative to counting
characters with wc. Note that it counts characters according to your locale, not bytes, and not
screen columns either, so be cautious when counting characters outside the ASCII set. Some
Japanese characters, for example, will expand to "1" with an en_US.UTF-8 locale, even
though they're 4 bytes long, and will usually take 2 screen columns.

Substituting strings
Substituting patterns in expansions can be done with the
"${myvar/pattern/replacement/}" form:

bash$ promise='I'\''ll do it today.'
bash$ printf '%s\n' "${promise/today/tomorrow}"

This only replaces the first instance of the pattern. If you want to replace all instances of the
pattern, use two slashes before the first pattern rather than just one:

bash$ promise='Yes, today. I'\''ll do it today.'
bash$ printf '%s\n' "${promise/today/tomorrow}"
Yes, tomorrow. I'll do it today.
bash$ printf '%s\n' "${promise//today/tomorrow}"
Yes, tomorrow. I'll do it tomorrow.

Note that the pattern being replaced uses the wildcard (globbing) syntax, with * matching
multiple characters, and ? matching only one; it is not a regular expression as might be used
with sed or awk:

bash$ promise='Yes, today. I'\''ll do it today.'
bash$ printf '%s\n' "${promise/today*/I\'ll do it soon.}"
Yes, I'll do it soon.

Variables and Patterns Chapter 5

[91]

Changing case
You can have a variable expand into its value with all characters uppercase or lowercase
using the "${myvar^^}" and "${myvar,,}" forms, respectively:

bash$ fn='mixedCase'
bash$ printf '%s\n' "${fn^^}"
MIXEDCASE
bash$ printf '%s\n' "${fn,,}"
mixedcase

Can you guess what the form with a single ^ or , might do, rather than a
double one? Try it out.

Combining parameter expansion forms
You cannot combine the preceding parameter expansion forms into one expansion;
"${myvar:-foo#.ext}" does not do what you might hope. You could use a temporary
variable instead, to run them one at a time:

#!/bin/bash
temp="${myvar:-foo}"
printf '%s\n' "${temp#.ext}"

Doing math in Bash
Bash supports simple integer (whole number) arithmetic operations with its arithmetic
expressions. The syntax for expanding these is a set of double parentheses after the usual $
expansion sign:

$ num_a=3
$ num_b=2
$ printf 'The sum of the two numbers is: %u\n' "$((num_a + num_b))"
The sum of the two numbers is: 5

Variables and Patterns Chapter 5

[92]

Notice in the preceding expression, "$((num_a + num_b))", we did not have to use the $
prefix to expand the num_a and num_b variables names. Assignments to other variables can
be performed in the same way:

$ diff="$((num_a - num_b))"
$ printf 'The difference of the two numbers is: %u\n' "$diff"
The difference of the two numbers is: 1

We can do many different kinds of operations with these expressions, using both variables
and literal numbers:

Three raised to the power of two (squared)
$ printf '%u\n' "$((3**2))"
9
180 divided by 60
$ printf '%u\n' "$((180/60))"
3
1 or 0, depending on whether one number is greater than another
$ printf '%u\n' "$((2 > 1))"
1
$ printf '%u\n' "$((30 > 40))"
0

The full list of operations supported by these expressions is available after the
"ARITHMETIC EVALUATION" in the Bash manual page. They are mostly taken from the
C language, and the order in which the operations are evaluated is the same as in that
language.

Fixed or floating-point arithmetic
If you try out a few of the preceding mathematical expressions, you might notice that some
of the expanded values seem wrong:

$ printf '%.2f\n' "$((3/2))"
1.00

You may have expected a value such as 1.50 to be returned here, but Bash does not
support floating-point or fixed-point arithmetic, only integer arithmetic. Fractional parts for
these operations are lost.

Variables and Patterns Chapter 5

[93]

If you need to perform arithmetic with non-integers using tools that are highly likely to be
available on a POSIX system, your best bets are the bc calculator for fixed-point, or an AWK
program for floating-point:

$ bc <<'EOF'
scale=2
3/2
EOF
1.50
$ awk 'BEGIN { printf "%.2f\n", 3/2 }'
1.50

If you have to do a lot of these sorts of operations, you should consider using a different
programming language entirely. Bash is not the best language for heavy numerical
analysis.

Using globs
A * unquoted asterisk character on a command line has a special meaning to Bash: it means
it should expand the word in which the character occurs to all of the matching filenames if
possible, but (by default) to leave the word unchanged if there are no such matching files.

This can be confusing, and is best explained with a few examples. Suppose our current
directory has the following filenames:

$ ls -a
. .. .bashrc april august october september

A glob by itself will expand to all the filenames that are not prefixed with a dot:

$ printf '%s\n' *
april
august
october
september

Note that the filenames are expanded in alphabetical order – or, more correctly, the order
specified by your language environment's collation settings.

Variables and Patterns Chapter 5

[94]

If there are other letters in the same word as a glob, they have to match the relevant
filenames in the same position. We could get all the filenames starting with a with a*:

$ printf '%s\n' a*
april
august

Or the filenames ending in ber with *ber:

$ printf '%s\n' *ber
october
september

Or both – we can put two globs on the same line, and they will be expanded in order:

$ printf '%s\n' a* *ber
april
august
october
september

Rather than matching any number of characters, we can also match a single character with a
question mark, ?:

$ printf '%s\n' ????ber
october

Note that here, october was printed but september was not, because only october
matched the condition: four characters – no more, no less – followed immediately by three
characters, ber.

Rather than matching any character with ?, you can also define valid sets of characters with
the [...] syntax:

$ printf '%s\n' *[lr]
april
october
september

The pattern used here could be read as "any filename ending with l or r." Note that
august was not printed, as it does not match. These sets can be inverted with an
exclamation mark as the first character in the range:

$ printf '%s\n' *[!lr]
august

Variables and Patterns Chapter 5

[95]

Now the pattern matches anything that does not end with l or r.

For brevity, these ranges can also be represented with hyphenated ranges, or character
classes. Full details on these ranges are available under the "Pathname Expansion" heading
in the bash manual page:

[a-z]
[0-9]
[[:alnum:]]

Configuring globbing behavior
Bash offers a few options to change the way POSIX-specified globbing behavior works; two
of the most useful are dotglob and nullglob.

Including dot files, but excluding dot and dot-dot
Note that .bashrc was not included in our example output. We might try to include it by
prefixing a second glob with . – but this also includes the . and .. implied entires, referring
to the current and parent directory. That could be a disaster if we were going to run rm -r:

$ printf '%s\n' * .*
april
august
october
september
.
..
.bashrc

We will almost never actually want this behavior. One POSIX-compatible way of working
around it is using character globbing to exclude . and .. specifically, by requiring a second
character that is not a dot:

$ printf '%s\n' * .[!.]*
april
august
october
september
.bashrc

Variables and Patterns Chapter 5

[96]

But this would exclude a file named ..bashrc with two leading dots, which – while
unconventional – is still a valid filename. How frustrating! Bash offers an option to deal
with this called dotglob, which includes dot files in glob expansion for *, but excludes
the . and .. implied entries:

$ shopt -s dotglob
$ printf '%s\n' *
.bashrc
april
august
october
september

Expanding to nothing
You may also have noticed with some experimentation with globs that if the pattern does
not match anything, it expands to itself, unchanged:

$ printf '%s\n' c*
c*

Because none of our test files start with c, the glob is unexpanded and unchanged. This
may seem strange; surely it would be better if the pattern expanded to nothing at all? It
makes more sense when you consider the behavior of many classic Unix commands; if
there are no arguments, they default to assuming input is coming from standard input. For
example:

$ cat -- c*
cat: 'c*': No such file or directory

Because the pattern here did not expand, cat saw the c* argument, found the file named
c* did not exist, and reported that to us, with an error message that gives us some idea of
what went wrong.

Bash does allow us to alter this behavior; if we set the nullglob option, c* really will
expand to nothing at all:

bash$ shopt -s nullglob
bash$ printf '%s\n' c*
bash$

Variables and Patterns Chapter 5

[97]

However, note that if we then used the c* pattern on a cat command line, for example,
and there were no matching files, it would simply stop, waiting for input from the
terminal – probably not what you intended to happen:

bash$ shopt -s nullglob
bash$ cat -- c*

So nullglob can be a very useful option – but be careful when using it in scripts.

Case-insensitive globbing
Setting the Bash shopt option to nocaseglob allows us to make globs match case-
insensitively:

bash$ shopt -s nocaseglob
bash$ printf '%s\n' A*
april
august

In this example, the lowercase april and august were matched and returned, even
though the glob started with an uppercase A.

Extended globbing
Creative use of globbing syntax can do a great deal of advanced pattern matching, but in
some cases we may need something more advanced, perhaps approaching regular
expressions in terms of complexity. Bash's extglob feature allows us to do this. With this
shopt option enabled, we can use some additional glob forms:

?(pattern): Match up to one occurrence of the pattern
*(pattern): Match any number of occurrences of the pattern
+(pattern): Match at least one occurrence of the pattern
@(pattern): Match exactly one occurrence of the pattern
!(pattern): Match everything except the pattern

For example, /var/log/!(*.gz) matches all files in /var/log that don't end in .gz.

Some of these are useful only when using multiple patterns separated by a pipe
character, |; for example, /var/log/@(sys|mess)*.gz matches all compressed log files
that start with either sys or mess.

Variables and Patterns Chapter 5

[98]

This option can be useful, but don't use it if you can express what you need with a simple
classic glob, or a set of them; we could have done the same as the previous example with
/var/log/sys*.gz /var/log/mess*.gz, without needing the extglob option at all.

Using arrays
It's sometimes the case that we'd like to store a set of multiple values in one variable, where
we don't know how many there might be at the time we start the program, especially sets
of filenames. Unfortunately, it's not safe to store a set of filenames in a simple string
variable, even when separated by newlines, because a newline is itself a valid character for
filenames – there's no safe choice of delimiter for the data, because we can't use null bytes
in shell words.

Fortunately, Bash provides arrays to allow us to do this:

bash$ fruits=('apple' 'banana' 'cherry')

Arrays are not specified at all as part of POSIX shell. They are a feature
specific to Bash.

Note that we separate the parts of the array only with spaces, not commas, and we do not
quote the parentheses; they are part of the syntax. With this array defined, we can expand
members of it with numeric suffixes in square brackets, starting from 0:

bash$ printf '%s\n' "${fruits[0]}"
apple
bash$ printf '%s\n' "${fruits[2]}"
cherry

We can reference values indexed from the end of the array with negative subscripts, starting
with -1:

bash$ printf '%s\n' "${fruits[-1]}"
cherry

We can expand all of the array elements using @ as a special subscript value:

bash$ printf '%s\n' "${fruits[@]}"
apple
banana
cherry

Variables and Patterns Chapter 5

[99]

We will be using arrays a great deal in the next chapter when discussing loops and
conditionals.

One convenient property of arrays is that after expanding them with the special @ index, we
can apply parameter expansion operations to every element:

bash$ printf '%s\n' "${fruits[@]^^}"
APPLE
BANANA
CHERRY

Glob expansion in arrays
Arrays are especially useful when used to contain expanded globs:

bash$ myhomefiles=("$HOME"/*)
bash$ printf '%s\n' "${myhomefiles[@]}"
/home/bashuser/code
/home/bashuser/docs
/home/bashuser/music
/home/bashuser/Important Notes.txt
/home/bashuser/**README**

The myhomefiles array defined here contains a list of all files and directories matched by
the * glob in our home directory, and stores them safely, even if they contain special
characters, such as spaces, asterisks, or even newlines.

If you wish to store arguments for a command to execute later or for a
script to iterate through, you should always use arrays (or positional
parameters with set --). Never try to separate the files out from a single
variable afterwards, with spaces or newlines – it's neither reliable nor safe.

Variables and Patterns Chapter 5

[100]

Associative arrays
Bash 4.0 also introduced associative arrays, allowing string indices for arrays rather than
numeric offsets, rather like a dictionary in Python, or a hash in Perl:

bash$ declare -A myassocarray
bash$ myassocarray=([apple]="red" [banana]="yellow" [carrot]="orange")
bash$ printf '%s\n' "${myassocarray[banana]}"
yellow

Be careful to declare the array with -A first if you want to use this, otherwise Bash may
treat the array and operations done with it using numeric indices.

We won't use associative arrays in the rest of this book – while useful for those who want a
dictionary type for shell scripting, they're a relatively new addition to the language, well
outside the specifications for shell scripting languages. A case could reasonably be made
that the tasks that need them might be a better fit for languages such as AWK, Perl, or
Python.

Summary
With a basic grasp of how to assign, expand, and manipulate variables, arrays, and pattern-
matching in Bash, we're now in a position to use them in tests and loop structures to
complete the basic features of Bash as a programming language, which we'll do in the next
chapter.

6
Loops and Conditionals

In this chapter, we'll learn how to work with conditionals and then loops in Bash using the
if, for, and while shell keywords. These allow us to execute commands conditionally
and/or repeatedly, giving us control flow for our scripts.

We will cover:

How to use the if keyword
The use of and the difference between the [builtin and the [[keyword
When to use Bash's ((arithmetic compound command
How to match values with the case keyword
How shell script for loops work
Using Bash's alternative C-style for loops
Using while loops
The while read -r idiom for reading data line by line
Choosing between for and while

Shell script's syntax for these structures is somewhat unique, largely for historical reasons
and to fit into its command-centered structure, and only partly resembles comparable
features in other programming languages.

Using the if keyword
A shell script is fundamentally a sequence of commands. In such a script, we very often
want to run a command only if a testable condition is true. In earlier chapters, we already
saw one way to do this, with the && control operator:

$ grep -q bash /etc/shells && printf 'Bash is a system shell\n'

Loops and Conditionals Chapter 6

[102]

The preceding command line separates two commands with &&. The second command,
which prints a string to standard output, only runs if the first command, grep -q bash
/etc/shells, finds the bash string in the /etc/shells file and hence exits with status
zero (success).

Using the if keyword, we can make this conditional approach more flexible, and
somewhat easier to read:

$ if grep -q bash /etc/shells ; then printf 'Bash is a system shell\n' ; fi

The preceding command line could also be written like this in script form:

if grep -q bash /etc/shells ; then
 printf 'Bash is a system shell\n'
fi

Don't forget the then keyword, with the ; separator before it; both are required. If you
prefer, you can put then on a new line after the test command instead.

Note that the keyword at the end of the condition, fi, is just if
backwards.

In shell script, what is expected after the if keyword is not an expression, but a command to
run, the outcome of which determines whether the code between the then and fi
keywords is run.

The command line tested by if can be any command, builtin or not. For example, you can
execute commands only if an attempt to change the working directory with cd was
successful:

if cd /usr/local ; then
 printf >&2 'Successfully changed directory\n'
fi

We can reverse the test using the ! keyword before the command, separated by spaces:

if ! cd /usr/local/myscript ; then
 printf >&2 'Failed to changed directory\n'
 exit 1
fi

Loops and Conditionals Chapter 6

[103]

The printf command in this example would only run if the script's attempt to change the
working directory to /usr/local/myscript failed. Coupled with an early exit, this can
be an effective way to abort a script and prevent the rest of it from running if some essential
condition can't be met.

There are also elif and else keywords for using after if to perform successive tests and
specify alternatives if the initial command exits with failure:

if cd /usr/local/myscript ; then
 printf >&2 'Changed to primary directory'
elif cd /opt/myscript ; then
 printf >&2 'Changed to secondary directory'
else
 printf >&2 'Couldn'\''t find a directory!'
 exit 1
fi

The script will try to change its working directory to /opt/myscript only if its attempt to
change it to /usr/local/myscript fails first. If both attempts fail, it will print an error
message, and then exit with 1 (failure).

We can perform a lot of useful logic by testing commands once we know how their exit
values work, but very often – perhaps more often – what we actually want is to test some
sort of conditional expression, for example:

Does a variable's value match a string?
Is a variable empty?
Is one number greater than another?
Is a file empty?

There are dedicated commands that are designed to help us do all of this.

Using the test command
The POSIX standard for the shell scripting language specifies a command named test that
can be used to test something, and return an exit status to reflect the result.

Which kind of expression to evaluate is specified with the arguments to test. A
straightforward and useful test is string equality; are two strings the same? We can try this
out with an equals sign between two other shell words:

$ myshell=bash
$ test "$myshell" = 'sh' && printf 'Match!\n'

Loops and Conditionals Chapter 6

[104]

$ test "$myshell" = 'bash' && printf 'Match!\n'
Match!

Note that the equals sign needs to be a separate word for the test arguments, with spaces
before and after, unlike the variable assignment, where we cannot have spaces.

Many other tests are possible:

test -e 'myfile': Whether a file or myfile directory exists
test -n "$myvar": Whether a myvar variable is set and not empty
test -d 'mydir': Whether a directory with the name mydir exists
test -s 'myfile': Whether a file myfile file is not empty

You can see a complete list of these with help test. You are likely to refer to this
particular help page many times during your career as a Bash programmer!

Using the [command
A better-known form of the test command is the [command. The primary difference
between the two is that] must be the last argument to [. This makes it look very much like
a special syntax for shell script, but it isn't; it's just another command:

$ ["$myshell" = 'bash'] && printf 'Match!\n'

Being a command, this syntax can be used after if, just like the grep and cd examples
earlier in this chapter:

myshell=bash
if ["$myshell" = 'bash'] ; then
 printf 'Match!\n'
fi

This is all specified by POSIX. Note that we still had to quote our variable to prevent special
characters in its value from causing unwanted glob or whitespace expansion.

Using the [[keyword
Bash provides its own improved version of the [command, doubling it to [[. It's actually a
shell keyword, a special part of the Bash syntax, and not just a regular builtin command:

#!/bin/bash
myshell=bash

Loops and Conditionals Chapter 6

[105]

if [[$myshell = 'bash']] ; then
 printf 'Match!\n'
fi

One advantage of the [[keyword over the [builtin is that less quoting is required. You
may notice in the preceding example that $myshell is not in double quotes.

Unfortunately, this benefit does not apply to the right-hand side of the =, ==, !=, or =~
operations. If you're testing two variables for equality, for example, you will still need to
quote the one to the right of the equals sign:

[[$myshell = "$yourshell"]]

If you find this too confusing (or imbalanced!), you can just double-quote variables on both
sides, the same way you would with the [command; it doesn't do any harm:

[["$myshell" = "$yourshell"]]

Most of the tests described in help test work the same way with [[, just as well as they
do with [or test itself. However, there are a few other differences. The first is that
equality or inequality testing on strings does glob matching:

[[$myshell = b*]]

Because the right side of this expression is unquoted, Bash will check whether the value of
the myshell variable starts with b; the rest of it can be any other set of characters, or none
at all.

The [[keyword also supports a new operator, =~, to test whether strings match regular
expressions:

[[$myshell =~ 'sh$']]

This will test whether the myshell variable's value ends with the letters sh, with $ being a
regular expression metacharacter meaning "end of string."

Arithmetic conditions
The POSIX specification for the test and [commands includes a few arithmetic tests for
integers:

["$a" -eq "$b"]: Equal
["$a" -ne "$b"]: Not equal
["$a" -lt "$b"]: Less than

Loops and Conditionals Chapter 6

[106]

["$a" -le "$b"]: Less than or equal to
["$a" -gt "$b"]: Greater than
["$a" -ge "$b"]: Greater than or equal to

Be careful not to confuse -lt and -gt with < and >; the latter are
lexicographic tests, to see whether strings sort after one another. For
example, [2 \> 10] exits successfully, because the "10" string sorts
after "2"!

Sometimes using these tests with expansion of arithmetic expressions can be unwieldy to
write; for example, if we wanted to test whether the value of the bytes variable, divided by
1,000, was greater than the kbytes variable, we might write:

if ["$((bytes / 1000))" -gt "$kbytes"] ; then
 ...
fi

Bash includes its own syntax for testing arithmetic expressions with ((– without a leading
$ sign – including all the terms in one expression, which is somewhat easier to read and
debug:

if ((bytes / 1000 > kbytes)) ; then
 ...
fi

The double parentheses, ((...)), can contain any arithmetic expression, like we saw in
Chapter 5, Variables and Patterns, and it is treated like a command – its exit value reflects the
outcome of the expression. An outcome of 0 is treated as false and exits with status 1, and
any other outcome is treated as true, and exits with status 0:

((2 > 0)) # True; exits 0
((a = 1)) # True; exits 0, and variable a is assigned the value 1
((0 > 3)) # False; exits 1
((0)) # False; exits 1
((a = 0)) # False; exits 1, and variable a is assigned value 0

These expressions are very powerful and somewhat easier to manipulate than their POSIX-
standardized equivalents. Remember that all of the arithmetic operations use integers
only – no fractional (fixed or floating point) numbers.

Loops and Conditionals Chapter 6

[107]

Switching with the case keyword
Bash's extension to string equality tests for pattern matching is useful, but it can sometimes
be more convenient to use the older POSIX-specified case construct, which is shell script's
analogue of the C switch statement.

The case statement allows us to run commands based on the outcome of matching a string
against glob patterns. For example, to check whether the command variable matches help,
we might do this:

case $command in
 help) printf 'Command help:\n...' ;;
esac

Note the following details of this syntax:

You don't have to double-quote $command just after the case statement.
The pattern to match has a closing), but does not require an opening one.
The closing keyword is esac, which is case spelled backwards, just as the
closing keyword for if is fi.
Each option is terminated with two semicolons.

We can add other options according to the same pattern:

case $command in
 help) printf 'Command help:\n...' ;;
 version) printf 'Command version: 0.1.0\n' ;;
esac

We can specify alternative values for any of these options for the same outcome by
separating the patterns with a pipe character:

case $command in
 help|h|usage) printf 'Command help:\n...' ;;
esac

Perhaps most usefully, we can include glob-matching characters: *, ?, and [...] to test for
partial matches. This is a good way to have a "catch all" or default option if nothing else
matches:

case $command in
 debug|verb*)
 printf 'Running in verbose mode.\n'
 verbose=1
 ;;

Loops and Conditionals Chapter 6

[108]

 *) printf 'Unknown command\n' ;;
esac

Remember that only the first condition that matches will be run; the others will be ignored,
as long as they're correctly separated with two semicolons, ;;.

Looping over shell words with for
The for keyword is used to define code to run repeatedly over a list of shell words:

#!/bin/bash
for system in bsd linux macosx windows ; do
 printf '%s\n' "${system^^}"
done

The preceding code loops through the list of four items, assigning each one in turn to the
system variable. The body of the loop prints the value of the system variable in all caps,
for each iteration of the loop.

Note the following about the preceding syntax:

The variable name goes just after for, and before in
do is required and needs to be after the semicolon, to specify where the variable
and list of words finishes
The loop is closed with done, not rof as you might have expected from fi and
esac

The list of words can be blank; for system in ; do ... ; done is not a
syntax error, it just does nothing

The assignment of the system variable in this loop is not "scoped" in any meaningful sense.
If this variable had a value assigned before the loop started, it will be lost. After the loop
finishes, it will remain assigned to the final item, in this case the "windows" string.

Loops and Conditionals Chapter 6

[109]

The in for for is only required if you want to specify a word list inline. Otherwise, the for
loop defaults to the list of arguments to the current shell or function, that is, the positional
parameters, expandable as "$@". We can test this out by assigning the parameters for the
current shell; an alternative (but not exactly equivalent) way to write this might be as
follows:

set -- bsd linux macosx windows
for system ; do
 printf '%s\n' "${system^^}"
done

We could write the second line like this instead, if we wanted to be explicit:

for system in "$@" ; do

The for loop is hence the correct choice for iterating over an arbitrary number of
arguments on which your script or function is running. It's also the correct choice for
iterating over arrays, which we can think of as storage for an arbitrary number of shell
words:

#!/bin/bash
systems=(bsd linux macosx windows)
for system in "${systems[@]}" ; do
 printf '%s\n' "${system^^}"
done

This uses the special array subscript of @ that we discussed in our introduction to arrays at
the end of Chapter 5, Variables and Patterns, expanding to every value in the array. Don't
forget the all-important double quotes around the expansion, too: "${systems[@]}", never
${systems[@]}.

Skipping an iteration
You can use the continue keyword to skip the rest of the current iteration and start the
next one, if there is any. For example, this code gets the size of every one of a set of
directories, but it only runs du if the directory actually exists:

#!/bin/bash
dirs=(/bin /home /mnt /opt /usr)
for dir in "${dirs[@]}" ; do
 [[-d $dir]] || continue
 du -s -- "$dir"
done

Loops and Conditionals Chapter 6

[110]

The continue keyword skips to the next run of the loop if the directory does not exist. It
uses the || control operator to do this; if you prefer, you could write it with a full if
statement instead.

As well as testing for the general case of file existence or type, loop continuations such as
this are a useful method for dealing with unexpanded glob patterns. Recall that with Bash's
default settings, a glob pattern such as * will remain unexpanded if there are no matching
files. This means that the glob can sometimes show up in unwanted places:

for tmp in /tmp/myapp/* ; do
 printf >&2 'Warning: file %s still exists\n' "$tmp"
done

If /tmp/myapp does not exist, or is empty, the preceding code will print:

Warning: file /tmp/myapp/* still exists

This is probably not what you wanted! We can handle the case of an unexpanded glob with
a continue condition:

#!/bin/bash
for tmp in /tmp/myapp/* ; do
 [[-e $tmp]] || continue
 printf >&2 'Warning: file %s still exists\n' "$tmp"
done

This method skips any filename that does not actually exist, to handle the case of
unexpanded globs. It works for multiple unexpanded globs in the same list, too.

You could also deal with this quirk using a find call instead, or with the
nullglob option described in Chapter 5, Variables and Patterns .

Ending the loop
The break keyword anywhere within the for loop stops the loop processing, and resumes
execution at the first command after the loop's done keyword. It doesn't just skip the rest of
the current iterations; it stops the current one too.

Loops and Conditionals Chapter 6

[111]

For example, the following code loops through the arguments given to the script or
function, and adds each one to an opts array if it starts with a dash, -, such as -l or --
help:

#!/bin/bash
opts=()
for arg ; do
 case $arg in
 -*) opts+=($arg) ;;
 esac
done

If we want to add support for the -- option termination string, to allow the user a way to
specify where the options finish, we could add a case with break, like so:

case $arg in
 --) break ;;
 -*) opts+=($arg) ;;
esac

With this added, when the loop encounters the exact string -- (two characters) as an
argument, it will stop processing; the rest of the arguments will not be checked, even if they
do begin with a dash.

We sometimes refer to the use of continue and break statements as short-circuiting a loop.

Misuse of for loops
In code samples on the internet and others' shell scripts, you will often find command
substitution used with for to iterate over lines of output; this is especially common with
commands such as ls, cat, and grep:

Bad practice
for item in $(ls) ; do
 ...
done
for line in $(cat TODO.txt) ; do
 ...
done
for match in `grep username ~/accounts` ; do
 ...
done

Loops and Conditionals Chapter 6

[112]

You should never attempt to iterate over lines with for loops, as in the preceding
examples. The primary reason for this is that other characters besides newlines can separate
arguments – spaces, for example. Another is that in order for the preceding code to work,
the command substitution has to be unquoted, meaning that characters such as * or ? in the
output can wreak havoc.

There are workarounds for both of these problems that partly work, such as setting the IFS
variable and the -f shell option, respectively, but there's no real need for them when while
read -r loops work better "out of the box."

If you want to iterate over output from a file or the output of a command, always use a
while read -r loop. Limit for to iterate over arguments or arrays, or the C-style for loop
described in the next section.

Using Bash's C-style for loops
Bash extends the for keyword to provide functionality similar to the three-argument for
loop used in C:

#!/bin/bash
for ((i = 1 ; i <= 10 ; i++)) ; do
 printf '%u\n' "$i"
done

The preceding code prints the numbers from 1 to 10, each terminated by a newline, by
assigning each number to the i variable in turn and then printing it. When followed by an
unquoted ((, the meaning of for changes; it does not iterate over a list of words, but
instead loops using the three semicolon-separated statements in the double parentheses like
so:

The first expression is run before the loop starts: We assign the i value to zero
to start it off.
The second expression is the test used to determine whether the loop should
continue or stop: We test whether the value of i is less than 10.
The third expression runs after each instance of the loop: We add one to the
value of i.

If you want to read the help topic for this feature, you will need to quote
it: help 'for (('.

Loops and Conditionals Chapter 6

[113]

You will sometimes read shell scripts that use the non-standard seq tool to do something
similar to this:

Not recommended
for i in $(seq 1 10) ; do
 printf '%u\n' "$i"
done

If Bash is available on your system, the for loop is somewhat easier to read, affords greater
control, and does not rely on the availability of seq.

Using while loops
The while loop runs a command repeatedly, running the commands in the body of the
loop each time the test command succeeds, and terminating the loop as soon as the
command fails.

We could write the loop that prints the numbers from 1 to 10 that we implemented with
for in the previous section like so:

#!/bin/bash
((i = 1))
while ((i < 10)) ; do
 printf '%u\n' "$i"
 ((i++))
done

Note the similarity to the C-style for loop here, with the difference that the first
expression, i = 1, and the third expression, i++, have been moved out into separate
statements.

A while loop also behaves much like a for loop in terms of flow control: an iteration of the
loop can be skipped with continue, and the whole loop can be terminated with break.

Infinite loops
An infinite loop can be written using the true builtin with a while statement:

while true ; do
 printf 'Infinite loop!\n'
 sleep 1
done

Loops and Conditionals Chapter 6

[114]

The preceding code will print the "Infinite loop!" string followed be a newline endlessly,
waiting for a second after each print. You can press Ctrl + C to stop the loop. The loop will
never terminate on its own, because the true builtin in Bash always exits with status 0
(success), by design.

You will sometimes see the colon builtin, :, used instead of true; the effect is the same.
You may find true is easier to read.

An infinite loop may not seem very useful at first, especially given Bash is not an event-
driven or functional language that might require an event loop. There are still situations
where such a loop can be useful in shell script. One common use is as a quick wrapper
script, to run a program again even if it crashes or exits; this is often used to keep a game
server daemon process running:

while : ; do
 mygameserver --foreground
 sleep 1
done

The : builtin still has a help topic, despite its odd name! Try help :.

Reading data line by line
We mentioned earlier in this chapter that for loops are often misused to read data line by
line from files, or from the output of command pipes. The correct way to do this is with a
very common idiom for use with while loops: repeatedly running the read command,
always with its -r flag.

Consider a file named fcs, with the names of four famous computer scientists, one on each
line:

Ken Thompson
Dennis Ritchie
John McCarthy
Larry Wall

We'd like a program to print out this table, but also to print a link to the person's article on
the English-language Wikipedia after each line. There is no dedicated UNIX tool to do this,
so we will write our own in Bash.

Loops and Conditionals Chapter 6

[115]

We might implement a rough version something like this:

#!/bin/bash
while read -r name ; do
 printf '%s\n' "$name"
 printf 'https://en.wikipedia.org/wiki/%s\n' "${name// /_}"
done < fcs

There's quite a lot to take in there, so let's break it down.

The while loop's test command is read -r name. read is a builtin command that accepts
a line from standard input, and saves its contents into one or more variables. In this case,
we will save the entirety of each line into one variable, called name.

We use the -r option for read to stop it from treating backslashes in input specially,
potentially misinterpreting data. We don't have any backslashes in this particular data, but
it's still a good habit to get into.

The input source for the loop, the fcs file, is specified at the end of the loop, after done.
Recall from Chapter 4, Input, Output, and Redirection, that a compound command can have
redirections for input and output applied to it, just like a simple command. A while loop is
a compound command. In this instance, we're specifying the standard input for the loop,
and hence for each read -r command.

Within the loop, there are two printf statements. The first prints the name just as we read
it. The second prints a link to the Wikipedia page, after substituting an underscore for every
space using parameter expansion.

If we save the script in a file named fcs-wiki.bash, and run it with bash fcs-
wiki.bash in the same directory as the fcs file, we can see the output we wanted:

$ bash fcs-wiki.bash
Ken Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
Dennis Ritchie
https://en.wikipedia.org/wiki/Dennis_Ritchie
John McCarthy
https://en.wikipedia.org/wiki/John_McCarthy
Larry Wall
https://en.wikipedia.org/wiki/Larry_Wall

Loops and Conditionals Chapter 6

[116]

Field splitting
Suppose we wanted to print only the last name of each of our computer scientists. We
could use the read command's built-in word splitting to do this, by specifying two
variables after -r:

while read -r firstname lastname ; do
 printf '%s\n' "$lastname"
done < fcs

This yields the names we wanted:

Thompson
Ritchie
McCarthy
Wall

Because there is more than one variable name given, each line read is split at the first space
or tab, and the line up to that point is saved into the firstname variable. Because
lastname is the last variable on the line, the entire rest of the line—not only the last
field—is saved into that.

Saving fields into arrays
Using the -a option to the read builtin, we can save the separated fields of a read line of
input as an array variable, instead of a set of named string variables. This is particularly
useful if we have a varying number of fields on each line:

$ cat animals-by-letter
alligator anteater armadillo
bee
caribou cat

elephant

Note that the fourth line in the preceding data is blank!

We can get an array of all the animals on each line, as separated by spaces, into an array
named animals for each loop run, and then iterate over that array with a for loop; a loop
within a loop:

#!/bin/bash
while read -r -a animals ; do
 for animal in "${animals[@]}" ; do
 printf '%s\n' "$animal"

Loops and Conditionals Chapter 6

[117]

 done
done < animals-by-letter

On running this code, we get a list of all of the animals, each terminated by a newline:

alligator
anteater
armadillo
bee
caribou
cat
elephant

Notice that the fourth line being empty meant that the animals array read for that line
ended up empty, so the for loop never ran printf during that iteration of the while loop.

Choosing the splitting character
The read builtin checks a special variable named IFS – the Internal Field Separator – to
decide where to split the line it reads. If this variable is unset, as it has been for our
examples so far, it splits on groups of spaces and tabs.

If our data is separated by some other character, for example by colons in /etc/passwd,
we can set IFS as an environment variable for read to influence its behavior. For example,
to print every numeric user ID from the file without using cut, we could do this:

while IFS=: read -r user pass uid gid gecos home shell ; do
 printf '%s\n' "$uid"
done < /etc/passwd

Notice that the setting for IFS to the colon character, :, occurs just before the read
command, and there is no control operator between them. Recall from Chapter 5, Variables
and Patterns, that this sets IFS as an environment variable for the read command, and only
for the read command.

The IFS variable affects other word-splitting behavior outside of read too, but this is not
often needed, and is something best avoided for beginners. If you need to change IFS, do it
using the environment variable prefix trick if you can, to avoid unwanted side-effects.

Loops and Conditionals Chapter 6

[118]

Disabling whitespace trimming
It's important to note that by default, read ignores spaces and tabs at the start and end of a
line when reading fields into variables:

$ cat lines
Line one
 Line two
 Line three
$ while read -r line ; do printf '%s\n' "$line" ; done
Line one
Line two
Line three
done <lines

A lot of the time, this is what you want, but if you do actually want the line literally in one
variable including any leading and trailing spaces or tabs, you need to set IFS to a blank
value for the read command:

$ while IFS= read -r line ; do
printf '%s\n' "$line" ;
done <lines
Line one
 Line two
 Line three

This also suppresses the field-splitting completely, of course, so you can only read the
whole line into one variable this way.

Reading process output
As a compound command, a while loop can also accept the output of another command as
input, using a pipe. For example, to pass the output of who -T to the loop as input, to print
only the terminal names for active users on the system, we might write:

who -T | while read -r username state terminal _ ; do
 printf '%s\n' "$terminal"
done

Avoiding subshell problems
When passing program output into a compound command with a pipe, there's a subtle
pattern of problems, which can be very hard to figure out, to do with subshells.

Loops and Conditionals Chapter 6

[119]

Consider this simple loop, which is intended to count the lines of output from a call to who,
and then print it:

((count = 0))
who | while read -r ; do
 ((count++))
done
printf '%u\n' "$count"

When run, however, this program always prints zero for the count! Most new shell
programmers eventually run into this sort of particularly baffling problem.

Because each command after the first command in a pipeline runs in its own subshell
environment—its own forked process—changes to variables do not persist after the pipeline
is completed. This means that the count variable inside the while loop correctly counts the
input lines, but that count is discarded when the subshell ends, and the value is back at
zero!

When the data is saved to a temporary file first, however, and the while loop is passed that
file as input, the while loop runs in the same process, not in a subshell, and so the line-
counting works correctly:

who > who.out
while read -r ; do
 ((count++))
done < who.out
printf '%u\n' "$count"

There are a few ways to deal with this without having to involve (and clean up) a
temporary file. First, we can use a compound command to include all of the code that needs
to use the count variable as part of the same subshell:

who | {
 while read -r ; do
 ((count++))
 done
 printf '%u\n' "$count"
}

This method works even in non-Bash shells, but it can be unwieldy if the code inside the
pipeline is extensive. An easier method specific to Bash is with process substitution:

while read -r ; do
 ((count++))
done < <(who)
printf '%u\n' "$count"

Loops and Conditionals Chapter 6

[120]

Note the < <(who) syntax at the very end of the loop. The first left angle bracket, <, is a
standard input redirection, with which we're already familiar. The new syntax in <(who)
runs the command inside the parentheses and expands to a temporary file handle or
filename, managed internally by Bash, containing the command's output.

As an alternative, there is also the lastpipe option set with shopt, which makes the last
command in a pipeline run in the current shell, not a subshell:

shopt -s lastpipe
((count = 0))
who | while read -r ; do
 ((count++))
done
printf '%u\n' "$count"

This works in a script, but we recommend you use process substitution instead, as it
behaves reliably whether the script is executed or sourced into an interactive shell.

Avoiding input problems with ssh
Another vexing problem with reading lines in a while read -r loop is that sometimes
certain commands inside the loop can themselves consume some of the data intended for
the read builtin, and it may not be immediately clear what those commands are.

One such command is the ssh OpenSSH client, which by default reads all the standard
input it can once started to pass it as commands to the target system, even if a command is
specified on the command line. Consider this list of SSH hostnames:

$ cat hostnames
alpha.example.com.
beta.example.com.
gamma.example.com.

We want to read each hostname, and run the uptime command on it to get a quick
overview of how long it's been up and its load average. However, this doesn't seem to
work:

while read -r hostname ; do
 ssh -- "$hostname" uptime
done < hostnames

Loops and Conditionals Chapter 6

[121]

The first iteration of the loop runs fine, and after perhaps typing a password or passphrase,
we see the uptime of alpha.example.com. – but then the loop stops, with no error
message!

This is because ssh has read the remaining two lines of the hostnames file during the first
loop iteration, after the first line was saved into the hostname variable by the read builtin.
The -n switch to ssh suppresses this behavior, instructing it not to read any standard
input:

while read -r hostname ; do
 ssh -n -- "$hostname" uptime
done < hostnames

The loop then runs three times, reading each host and printing the output of its uptime
program after running it via SSH.

Any program that reads standard input without you expecting it to may potentially run
into this problem. If you can't find a way to prevent the program from reading standard
input with configuration or options, you can try directing /dev/null into it:

while read -r item ; do
 program </dev/null "$item"
done < items

Summary
We use for loops to iterate through arguments or through ranges of numbers, and we use
while loops to test conditions in the same way as if for more generic looping purposes,
especially in the form of the while read -r idiom for reading files or command output
line by line. Along with the use of the variables and arithmetic expressions from Chapter 5,
Variables and Patterns, and the input- and output-redirection techniques from Chapter 4
Input, Output, and Redirection, we now have the building blocks to make all kinds of useful
scripts in Bash.

In the next chapter, we'll look at the specifics of defining your own commands and scripts
using these skills.

7
Scripts, Functions, and Aliases

In the previous chapter, we explored some of the most important commands provided to
you by the Bash shell and by a Unix system that implements the POSIX standard. These
commands have many uses on their own, and they can additionally serve as the basis for
making your own custom commands, to perform specific tasks that you need and
remember them for convenience in the future.

This chapter explores three different types of custom commands that you can write to use
in your Bash scripts or on the Bash command line:

Aliases: Can expand a word into a command line string
Functions: A way to write a command from a set of other commands, much
more versatile than aliases
Scripts: Take the form of programs in files on your system, and unlike aliases
and functions, can be used outside of Bash

We'll look at each of these in turn, demonstrating them with some short examples, and
discuss when you should use each type of command.

Aliases
Aliases are quick and simple ways to make one command stand for a whole command line,
expressed as a string. They are perhaps the best-known way to customize behavior in the
Bash shell, but they are also the least flexible.

Scripts, Functions, and Aliases Chapter 7

[123]

Depending on your system, it's possible you already have an alias or two defined by your
startup scripts. When the builtin alias command is entered with no arguments, it lists all
of the aliases defined in the current Bash session.

For example, on a Debian GNU/Linux server, a new user might have the following alias
defined:

bash$ alias
alias ls='ls --color=auto'

This is also evident from running the type command on ls with the -a switch, which
informs us that the command used is an alias:

bash$ type -a ls
ls is aliased to `ls --color=auto'
ls is /bin/ls

The purpose of this ls alias is to add the --color=auto option to any call to ls. Adding
an option like this to every call is a very common use for aliases. For GNU ls, the --
color=auto option specifies that the entries in the output of ls can be written in color if
the output is to a color terminal.

Note that because an alias for ls exists, when a user issues an ls
command, Bash uses it in preference to the /bin/ls program of the same
name, hence its position as first in the list. When the ls command inside
the alias is run, however, Bash doesn't run the ls alias again—that would
be an infinite loop! Instead, it looks to the next item in the list, and runs
the /bin/ls program instead. This means that aliases can't run
themselves, though they can run other aliases.

Defining new aliases
We can define our own aliases to get similar option-defining shortcuts. Suppose we've been
typing ls -l a lot to get a full file listing of the current directory. Because we run it so
often, we'd like a way to type it with fewer keystrokes. We can define an ll alias like this:

bash$ alias ll='ls -l'

The ll name is thereafter available as a command that will expand to run the full ls -l
command instead:

bash$ type ll
ll is aliased to `ls -l'

Scripts, Functions, and Aliases Chapter 7

[124]

bash$ ll
total 16
-rw-r--r-- 1 bashuser bashuser 3526 Jul 15 16:42 .bashrc
-rw-r--r-- 1 bashuser bashuser 675 Jul 15 16:42 .profile

We can add further options to our call to the ll alias, such as specifying a file on which the
command should run, in this case .bashrc:

bash$ ll .bashrc
-rw-r--r-- 1 bashuser bashuser 3526 Jul 15 16:42 .bashrc

We can verify this by briefly turning on the -x option for the shell, which will print the
expanded command before executing it, after a + prefix:

bash$ set -x
bash$ ll .bashrc
+ ls -l .bashrc
-rw-r--r-- 1 bashuser bashuser 3526 Jul 15 16:42 .bashrc
bash$ set +x

Understanding shortcomings with aliases
Aliases are simple to understand, but they have some shortcomings as a means of writing
your own commands. One of the biggest problems is that they have no way of modifying
their behavior based on any arguments given to them; they are just simple text
substitutions.

For example, suppose you wanted to make an alias, mkcd, that created a directory before
changing into it—a very useful shortcut! If you wanted to do this with aliases, you might
try to define it like this, separating each command with a semicolon:

bash$ alias mkcd='mkdir -p;cd'

But this doesn't work:

bash$ mkcd createme
mkdir: missing operand
Try 'mkdir --help' for more information.
-bash: cd: createme: No such file or directory

If we use set -x again, we can see the actual command Bash ran, and see what went
wrong:

bash$ set -x
bash$ mkcd createme

Scripts, Functions, and Aliases Chapter 7

[125]

+ mkdir -p
mkdir: missing operand
Try 'mkdir --help' for more information.
+ cd createme
bash: cd: createme: No such file or directory
bash$ set +x

The createme argument was only passed to the last command, cd; what Bash saw and
executed was mkdir -p;cd createme. We need a way to pass the same argument to both
commands. This attempt using $1 to get the first argument doesn't work either:

bash$ alias mkcd='mkdir -p -- "$1" && cd -- "$1"'
bash$ mkcd createme
mkdir: cannot create directory ‘’: No such file or directory
-bash: cd: too many arguments

With aliases, there is no practical way to handle this simple requirement. Functions can do
this, however.

Another problem with aliases is that invoking them in Bash scripts doesn't work; they are
strictly for use in interactive mode. Worse, there is no error raised when they're
defined—they just don't work when called, so it's hard to tell what went wrong:

bash$ cat alias.bash
alias ll='ls -l'
ll
bash$ bash alias.bash
line 2: ll: command not found

To make it even more complicated, in some other shells, aliases do work in scripts. It's better
to avoid the whole mess by always using functions instead, which work the same way in all
POSIX family shells.

A third problem is that because the commands are in strings, escaping the characters or
using quotes in the command definitions can get very confusing:

bash$ alias mybook='cd ~/'\''User'\''s Guide'\'

To summarize, our advice is to avoid aliases; they have no practical advantages over
functions or scripts. The preceding discussion will help you edit aliases in other people's
scripts that you may have to maintain—but if you can replace them with functions, do it!
You will thank yourself later. Even the bash manual itself agrees:

For almost every purpose, aliases are superseded by shell functions.

Scripts, Functions, and Aliases Chapter 7

[126]

Functions
Functions are a much better way of defining your own commands for use on the Bash
command line, and in Bash scripts. They can do everything aliases can, and more.

Well, almost everything. There are some niche tricks you can do with
aliases and not functions alone, but they are essentially clever hacks and
mostly a curiosity. Take a look at Simon Tatham's Magic Aliases article to
learn more: https:/ /www. chiark. greenend. org. uk/ ~sgtatham/ aliases.
html.

A great deal of what we discuss for functions will be applicable to the next section on
scripts. There are some important differences in the way the two work, but they have a lot
in common. We will highlight the similarities in the next section.

Defining functions
We can define a function as a new name given to a saved compound command, which is
run each time a command of that name is called. That definition is somewhat dense, so
we'll break it down with some examples.

A simple function definition in one line to print our home directory might take the
following form:

bash$ home() { printf '%s\n' "$HOME" ; }

This definition has a few parts:

A function name, followed by a pair of parentheses. The name must start with a
letter, and the rest of the name must be only letters, numbers, or underscores.
Bash allows a space before the parentheses, if you like. In this case, our function
is named home.
An opening curly bracket, to open the compound command that forms the body
of the function. This must be followed by a space.
At least one command, each one followed by a control operator, in this case a
semicolon, to run the command and pause execution until it completes. If you
leave the control operator out, you'll get a syntax error. A newline counts as a
control operator.
A closing curly bracket to complete the compound command.

https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html
https://www.chiark.greenend.org.uk/~sgtatham/aliases.html

Scripts, Functions, and Aliases Chapter 7

[127]

You might have seen the function keyword used as an alternative way
to declare functions, such as function mkcd { ... }. We recommend
the mkcd() { ... } syntax instead, as it's consistent between shells.

After the preceding function is defined in an interactive shell, it can be run with the home
command, and Bash's type builtin reports the home name as referring to a function:

bash$ home
/home/bashuser
bash$ type home
home is a function
home ()
{
 printf '%s\n' "$HOME"
}

Passing arguments to functions
If we try to implement our mkcd alias attempt from the previous section in functions, we
meet with more success than our attempt with aliases. Here's one possible implementation:

bash$ mkcd() { mkdir -p -- "$1" && cd -- "$1" ; }

This function works as we wanted, ensuring the directory is created before we try to change
into it:

bash$ pwd
/home/bashuser
bash$ mkcd createme
bash$ pwd
/home/bashuser/createme

Note that this mkcd function runs more than one command in its body: a mkdir call, and a
cd call. It also includes the "$1" string, which expands to the value of the first positional
parameter passed to the function. We can see this in action with set -x:

bash$ set -x
bash$ mkcd createme
+ mkcd createme
+ mkdir -p -- createme
+ cd -- createme
bash$ set +x

Scripts, Functions, and Aliases Chapter 7

[128]

We separate mkdir and cd with &&, because we only want to change into the directory if it
was successfully created: that is, we run the cd command only if the mkdir command
exited successfully.

Note also how the argument we provided to mkcd, the createme directory name, was
passed to both the mkdir command and to the cd command afterward, each time via the
"$1" parameter.

Finally, note that we put $1 in double quotes to stop any special characters in its value
being interpreted by Bash, per the discussion of quoting behavior in Chapter 2, Bash
Command Structure. This allows us to apply mkcd to any directory name we want:

bash$ mkcd 'My Book'
bash$ mkcd '!@#$%^&*()'
bash$ mkcd \'

You would hopefully never actually name a directory with just a literal
apostrophe ('), but Bash lets you, if you want to, and your users might do
so too. Your functions and scripts should anticipate any valid filenames
they might wish to use.

After "$1", we can get the second positional parameter with "$2", the third with "$3",
and so on. This can go beyond "$9" if you want, with curly brackets: "${10}", "${11}",
and so on, but you should not need to index arguments that far very often.

Using -- to separate options from filenames
In our mkcd example, we preceded both calls to "$1" with a double dash, --, the option
terminator string. This syntax specifies a point beyond which further arguments are meant
as argument strings for the program, often filenames, and not as options, even if they start
with hyphens, such as -dirname-.

This is so that the mkdir and cd commands know that whatever we pass in as $1 is not an
option to the command, such as -p or --version, but a directory name on which to
operate. Most commands that accept options use this syntax to separate options from
filenames or other words, including bash itself:

bash$ bash --version
GNU bash, version 4.4.23(1)-release (x86_64-pc-linux-gnu)
bash$ bash -- --version
bash: --version: No such file or directory

Scripts, Functions, and Aliases Chapter 7

[129]

If this seems unnecessary or overly cautious to you, try leaving out both of the -- strings
when you define the function, and then running it with a new directory name such as --
parent or -virtual:

bash$ mkcd --parent
mkdir: missing operand
Try 'mkdir --help' for more information.
bash$ mkcd -virtual
mkdir: invalid option -- 'i'
Try 'mkdir --help' for more information.

Imagine how hard it would be for someone else using your function to see these error
messages, and to try to figure out what they did wrong!

Getting all the arguments
We could adapt our preceding mkcd function to a new function, mkls, that creates
directories and then prints them with ls -dl. The -d option to ls lists the directory itself,
rather than its content. This implementation works well:

bash$ mkls() { mkdir -- "$1" && ls -dl -- "$1" ; }
bash$ mkls newdir
drwxr-xr-x 2 bashuser bashuser 4 2018-07-17 20:30:33 newdir/

However, this approach only allows us to create one directory. Because both mkdir and ls
accept more than one directory name, we could create two of them like this:

bash$ mkls2() { mkdir -- "$1" "$2" && ls -dl -- "$1" "$2" ; }
bash$ mkls2 newdir1 newdir2
drwxr-xr-x 2 tom tom 4 2018-07-17 20:32:03 newdir1/
drwxr-xr-x 2 tom tom 4 2018-07-17 20:32:03 newdir2/

But that means the function no longer works correctly for only one directory, presenting an
error:

bash$ mkls2 singledir
drwxr-xr-x 2 bashuser bashuser 4 2018-07-17 20:30:33 singledir/
mkdir: cannot create directory '': No such file or directory

It would be convenient to get all of the function's arguments within the function, no matter
how many there were. Fortunately, Bash has a syntax for this, with the
special "$@" expansion parameter:

bash$ mkls() { mkdir -- "$@" && ls -dl -- "$@" ; }
bash$ mkls dirset1 dirset2 dirset3

Scripts, Functions, and Aliases Chapter 7

[130]

drwxr-xr-x 2 bashuser bashuser 4 2018-07-17 20:38:01 dirset1/
drwxr-xr-x 2 bashuser bashuser 4 2018-07-17 20:38:01 dirset2/
drwxr-xr-x 2 bashuser bashuser 4 2018-07-17 20:38:01 dirset3/

"$@" expands to all of the arguments given to the function, separately quoted. You can also
check this for yourself by changing the shell's own positional parameters with calls to set
and printf:

bash$ set -- arg1 'argument 2' '-third argument'
bash$ printf '%s\n' "$@"
arg1
argument 2
-third argument

The double quotes around $@ are just as important as they are around any other kind of
variable or parameter expansion. Without them, special characters in the arguments might
be interpreted by the shell, and may be broken up in a way you did not expect. You will
never need an unquoted $@ for original, practical Bash scripts.

Returning values from functions
Like filesystem scripts or programs, Bash functions can have exit values. These are integer
values normally used to describe how well the function did its job, often for use by the
calling shell or program to decide what to do next after the function completes. In the case
of functions, we will call these return values for clarity, as they use the return keyword
rather than exit.

Here's an example of a simple pair of functions, succeed and fail; rather like true and
false, they always return 0 and 1, respectively:

bash$ succeed() { return 0 ; }
bash$ fail() { return 1 ; }

As observed in Chapter 2, Bash Command Structure, we can test these using the special $?
parameter:

bash$ succeed;echo $?

0
bash$ fail;echo $?
1

Scripts, Functions, and Aliases Chapter 7

[131]

A function does not have to have a return statement. If you leave it out, or use return
without specifying a number afterward, the function's return value will be the exit value of
the last command it ran. This means we could write succeed() and fail() like this
instead, using the true and false commands:

bash$ succeed() { true ; }
bash$ fail() { false ; }

Be careful not to confuse return and exit. The former is for functions; the latter is for
scripts. If you use exit in a function, the shell itself will exit, not just the function. This can
be an unpleasant surprise when you're in the middle of some work!

An early return can sometimes be a good way to stop processing a function due to usage
errors. This is sometimes referred to as short-circuiting. In our mkcd example, we know we
can't accept more than one argument, because we can't change into more than one
directory. We could add a few lines to the function for a full definition, like so:

mkcd() {
 if (($# != 1)) ; then
 printf >&2 'Need exactly one argument\n'
 return 1
 fi
 mkdir -- "$1" && cd -- "$1"
}

In this example, the function tests whether $# (the number of arguments) is equal to 1
before proceeding. If it's not exactly 1, the function prints an error message and returns 1, to
represent having failed to do what it was asked, and the mkdir and cd commands are
never run.

Understanding function input and output
It's important to note from the discussion on return values that you cannot return strings or
arrays from functions. The return keyword is not used in the same way as in structured
programming languages, such as PHP or JavaScript. It is strictly for integers, and it's
intended to describe the function's success or failure, and not any product of its work.

Scripts, Functions, and Aliases Chapter 7

[132]

Instead, for values calculated by a function, you should have the function print the output
that you want, and use it in suitable ways in scripts. Using our home example function, the
following code uses command substitution to include the function's output in a message of
its own:

bash$ home() { printf '%s\n' "$HOME" ; }
bash$ printf '%s\n' "Your home directory is: $(home)"
Your home directory is: /home/bashuser

You can treat function calls that emit output on the command line or in scripts the same
way you can any other command that emits output; the shell does not treat them specially
in this regard. For example, we could count the number of characters in our home output
with wc, like so:

bash$ home | wc -c
15

Note that in this example, wc still counted the newline character we printed at the end of
the directory name, hence the count of 15 and not 14.

Similarly, functions can read data from standard input as well. Suppose we write
a grep_un function that uses the grep command to search for any line that contains the
current user's username:

bash$ grep_un() { grep -F -- "$USER" ; }

If we feed input into this function from a pipe while running as bashuser, it will behave as
if grep bashuser were running on that input:

bash$ getent passwd | grep_un
bashuser:x:1003:1003:Bash User,,,:/home/bashuser:/bin/bash

Function scope
Functions defined during a bash session are only available in that session. You cannot
define a function on the command line, and then expect to have it available in a Bash script
you execute, or in another user's bash session. You would need to include the function
definition in the script, and have the other user load your function first.

Scripts, Functions, and Aliases Chapter 7

[133]

Functions that use curly brackets, {...}, for the function body operate in the current
process of the shell. This allows you to have functions that can change your current
working directory, such as cd shortcuts, to view and set variables for the current active
shell, or to set shell runtime options, such as -x.

This means that variable assignments aren't local to functions; they're visible outside it,
after the function has run:

bash$ func1() { foo=bar ; printf '%s\n' "$foo" ; }
bash$ func1
foo
bash$ declare -p foo
declare -- foo="bar"

If you want to set variables that are only visible inside the function body, you can use
the local Bash keyword to declare the variable as being local to the function before you set
it:

bash$ func2() { local baz ; baz=quux ; printf '%s\n' "$baz" ; }
bash$ func2
quux
bash$ declare -p baz
-bash: declare: baz: not found

Note that local variables and the local keyword are not defined by
POSIX; they're only guaranteed to work in Bash.

If you want to run a function so that it doesn't affect your current shell at all, including shell
options, positional parameters, and current working directory, one method is to run it with
a subshell body instead, by using parentheses instead of curly brackets. Consider these two
functions, etc1 and etc2:

bash$ etc1() { cd /etc ; }
bash$ etc2() (cd /etc)

Notice that the function body for etc2 is surrounded with parentheses and not curly
brackets. Also note that for this function type, a control character such as ; is not required
after the last command.

If we run each of these functions, we can see that the first one changes the current directory
of our shell, but the second one does not:

bash$ cd ~
bash$ etc1

Scripts, Functions, and Aliases Chapter 7

[134]

bash$ pwd
/etc
bash$ cd ~
bash$ etc2
bash$ pwd
/home/bashuser

This is because the directory change in the etc2 function took place in a subshell; its parent
process, our interactive shell, did not have its own working directory changed.

Reloading functions at shell startup
We can declare as many functions on the Bash interactive shell as we like, but just as
functions are only visible during that bash session, they're not persistent either: as soon as
the Bash shell in which they were declared exits, they disappear.

If you write a function on the command line that's convenient for you and that you'd like to
be available in future sessions, you might want to arrange for that function to be loaded on
startup. For most Bash configurations, a good place to put such function declarations is in
your ~/.bashrc file. On many systems, such a file may already exist, provided for you
with some starting configuration and aliases.

Fortunately, Bash makes it easy to save defined functions for later use; you can reproduce
code that will declare them with the -f option of declare. Let's examine the output of this
command when run with our home example function:

bash$ declare -f home
home ()
{
 printf '%s\n' "$HOME"
}

Note that the function doesn't resemble exactly how we declared it, which was all on one
line; this is how bash has chosen to format it, but it still works the same way. We can save
this into our ~/.bashrc file for later, using >> so that we append to the file's existing
contents, rather than >, which would overwrite it:

bash$ declare -f home >> ~/.bashrc

If you examine the ~/.bashrc file in your favorite editor, you'll find that the function
declaration is now at the end of it. If the .bashrc file is indeed being sourced on startup for
interactive shells as normal, then the function will be available to you the next time you
start an interactive bash session on the same host and as the same user.

Scripts, Functions, and Aliases Chapter 7

[135]

If you change your ~/.bashrc file, you can also reload it without logging
out by typing source .bashrc.

Scripts
The third method of creating your own commands with Bash is to put them in a script: a
file that you can arrange for bash to interpret and execute from the filesystem by name.

What a "script" means to Bash can mean many different things depending on context. In
this book, we'll focus on scripts stored as executable program files on our filesystem,
external to the Bash process itself.

Scripting methods
There are three general ways to run a script file in Bash: sourcing it, providing it to bash as
input, and as a standalone script. For the following examples, we'll use
the hello.bash script, with the following contents:

printf 'Hello, %s!\n' "$USER"

Sourcing the script means to use the Bash source command to read all of the commands in
a script into the current shell session and run them there. A source command to read in a
script such as hello.bash might look like this:

bash$ source hello.bash
Hello, bashuser!

This method behaves rather like a function, in that it runs the commands as if you had
entered them from your own shell. Variable settings, directory changes, shell options, and
other changes will apply to the current running shell session. This may not necessarily be
what you want—more often than not, you will want the script to do its work, and then exit
and leave you back at your shell session without changing any of your settings.

To avoid this, we can also provide the script to bash explicitly as input. You can either call
the bash program with the script name as an argument, or provide it as input with a pipe
or redirection:

bash$ bash hello.bash
Hello, bashuser!

Scripts, Functions, and Aliases Chapter 7

[136]

bash$ cat hello.bash | bash
Hello, bashuser!
bash$ bash < hello.bash
Hello, bashuser!

This starts a new Bash subprocess, which runs the commands in the file, and then exits.

However, this method requires us to know that bash is the interpreter for the program, and
means the command has at least two parts. Someone else using our script may not care
what language it works in; they just want to run it! It would therefore be convenient to be
able to just run the script directly, using only its name, which the next section explains.

Writing a shebang script
We can accomplish a self-executing script with a special syntax, #!, called a shebang, or
sometimes hash-bang, as the first line of the script. This syntax is treated specially by the
kernel, and specifies the program that should be used to run the rest of the script—the
interpreter.

We edit hello.bash to put the shebang as the very first line of the script:

#!/bin/bash
printf 'Hello, %s!\n' "$USER"

The preceding syntax assumes that your Bash shell is in the common location of
/bin/bash. You can find out where yours is by checking the value of the BASH variable:

bash$ declare -p BASH
declare -p BASH="/usr/local/bin/bash"

We also need to use the chmod system program to make the script executable:

bash$ chmod +x hello.bash

This sets the executable bit for all users of the script, allowing it to be executed directly as
its own program, without needing to specify bash on the command line:

bash$./hello.bash
Hello, bashuser!

Scripts, Functions, and Aliases Chapter 7

[137]

Now that the script knows its own interpreter, we don't need the .bash extension
anymore, so we can use mv to rename the program to just hello:

bash$ mv hello.bash hello
bash$./hello
Hello, bashuser!

This has the effect of making our script into a program that knows how to run itself, and
instructs the kernel on what to do when a user executes it. The user of our program is able
to run it without needing to think about what language the program is written in. We can
even release a new version later with the same name and that does the same thing, but
written in an entirely different language!

It's very likely that many of your most-used programs on a GNU/Linux or other Unixlike
system are in fact scripts with shebang lines—not compiled from languages such as C, but
scripts, interpreted each time you run them. The file tool can help you identify them; for
example, the ldd program on Debian GNU/Linux turns out to be a Bash script:

bash$ file /usr/bin/ldd
Bourne-Again shell script, ASCII text executable

Finding scripts with $PATH
You may have noticed in the previous section that we haven't yet called hello in quite the
same way we would another program; we still have to put the ./ prefix first, or specify a
full path to it. It doesn't work otherwise:

bash$./hello
Hello, bashuser!
bash$ /home/bashuser/hello
Hello, bashuser!
bash$ hello
bash: hello: command not found

What's missing? The answer is that we need to use the special PATH variable to specify
where it can find commands such as hello, without needing to specify a full filesystem
path to them.

Let's take a look at the value of PATH; your own value may vary:

bash$ declare -p PATH
declare -x PATH="/usr/local/bin:/usr/bin:/bin"

Scripts, Functions, and Aliases Chapter 7

[138]

We notice two things:

It's an environment variable (-x); that means the variable name and its value is
passed down through child processes. Any programs we run will get a copy of
the PATH variable as it was when we called the program.
It's a colon-separated list of directories, most or all of which end in bin or sbin.

Each of the directories specified in the value of the PATH variable are locations to be
searched, in order, for any given program that the user requests be run. The first matching
command found is run, and the rest are ignored. We will call these bindirs, short for
logical binary directories.

Directories in PATH are only searched for a program if a builtin, alias, or
function by the requested name doesn't exist; those command types
always take priority. That's why you can't replace echo by making a new
program called /usr/local/bin/echo.

So, in order to run hello from anywhere on the system without having to specify its full
path, we need to put it in one of the directories in that variable. Which one should we pick?

System bindir
A typical location for programs that are accessible system-wide on most Unix-like systems
is /usr/local/bin, and this directory is included in the $PATH of every user. If you want
hello to be available system-wide, and you have permission to write to /usr/local/bin,
you might put it there, using su or sudo to get root permissions first:

bash$ sudo -s
Password:
bash# mv hello /usr/local/bin

Note that for the last command line, we use bash# instead of bash$, to denote a shell that
is running as the system administrative root user.

If we're able to do this, we should be able to call the hello program from anywhere on the
system and as any user, just with the word hello:

bash$ hello
Hello, bashuser!
bash$ sudo -s
Password:
bash# hello
Hello, root!

Scripts, Functions, and Aliases Chapter 7

[139]

User bindir
If we don't have root access, or we only want our script to be accessible to us, the other
approach to getting our program in a PATH directory is to make our own bindir.

This can be any directory you like. The system does not require bin to be the name of the
directory, but it's a good idea because it will make clear what the directory is for. We'll
create a new user bindir in our home directory, called ~/bin.

First, we create the directory with mkdir, and then put hello inside it:

bash$ mkdir /home/bashuser/bin
bash$ mv hello /home/bashuser/bin

If we try running hello now, it still doesn't work, because our new bindir is not yet part
of PATH. We can do that by adding the directory to the end of PATH with a variable
assignment:

bash$ PATH=$PATH:/home/bashuser/bin

With this done, our command now works:

bash$ hello
Hello, bashuser!

We can make sure Bash is running the command we expected with a few type checks:

bash$ type -a hello
hello is /home/bashuser/bin/hello
bash$ type -t hello
file
bash$ type -p hello
/home/bashuser/bin/hello

This shows us that the hello file in our new user bindir is definitely being run when we
invoke the hello command. We hope that by now you can see how useful the type
command is for understanding what commands are actually doing on your system.

If we want to keep this setup permanently, we will need to make sure that our new
directory is added to PATH each time we log in. You can do this by adding a line to your
.bash_profile file, or .profile if .bash_profile does not exist:

PATH=$PATH:/home/bashuser/bin

Scripts, Functions, and Aliases Chapter 7

[140]

This will append our /home/bashuser/bin bindir to the end of the existing value of
PATH on every login, so that any scripts we put in our user bindir will be available to us
by any process we run—not just Bash!

Arguments to scripts
Arguments to scripts work in exactly the same way they do for functions:

You can get the arguments as positional parameters with "$1", "$2", "$3", and
so on
You can dynamically get all of the positional parameters without having to count
them with "$@"
You can count the number of positional parameters if you need to with "$#"

Understanding sh vs bash
If you have worked with shell script before, you might be wondering why we used
#!/bin/bash as our shebang in all our examples, and not #!/bin/sh. Many users think
that the /bin/sh and /bin/bash programs work the same way as shell script interpreters
on every system. This is not true – there are important differences between the two.

The most important difference is that /bin/sh may not even be the same program as
/bin/bash, and may therefore lack many of the programming features Bash adds that are
not specified by the POSIX standard. Some GNU/Linux systems use bash as their /bin/sh
implementation (Arch Linux, CentOS), but others do not (Debian GNU/Linux, Ubuntu).

When Bash is called as sh, it changes its behavior slightly to be consistent with the way the
/bin/sh program is expected to work. However, most of its special features, such as the
advanced [[syntax, still work even in this mode. This means that a script with #!/bin/sh
as the interpreter that uses Bash features might work on one system, and not another. This
can even change over time: if your system of choice changes its /bin/sh implementation
from Bash to another shell, as Debian GNU/Linux did, your script may stop working
correctly after an upgrade where it appeared to be working fine before.

If you're writing a Bash script, use a bash shebang. This makes clear to both the system and
to anyone reading your script what shell it should run in. If you use /bin/sh while using
non-POSIX features, the system may get it wrong, and the user will have to guess.

Scripts, Functions, and Aliases Chapter 7

[141]

Using env
Another problem with porting Bash scripts is that Bash is not always reliably in the same
location. On GNU/Linux systems, it's almost always available in /bin/bash. On other
systems, such as FreeBSD, it might instead be in /usr/local/bin/bash.

One way of working around this portability problem is to use a trick with the
/usr/bin/env program; using it as a shebang with bash as the argument will find the first
bash program in PATH:

#!/usr/bin/env bash

This works well on most systems, but it's not perfect. One subtle problem with it is that it
means the bash executable to run the script is chosen at runtime. This means that a user
with their own copy of bash installed or with a PATH that points to a different version of
bash might experience different behavior from the same script.

If you are distributing your script for other systems in an archive or in a system package, if
at all possible, you should specify a fixed path, such as #!/bin/bash, for the correct
interpreter either in the packaging process or at build time. For casual sharing of programs,
using /usr/bin/env might be good enough, and even if it does not work, your users will
be able to see the language you mean the script should run in, and can correct it to point to
the right location of the bash program for their system.

Choosing between functions and scripts
Having established the difference between functions and scripts, how can we know which
is the best to use in which situation?

The choice can be subtle, but here's a basic guide to start:

If you want your command only to be limited to an interactive shell, for example
to override interactive behavior, add options to a command, or other shortcuts,
use a function. Filesystem programs are useable outside the Bash shell, while
functions are limited to the Bash process only.
If you want your command to affect a running shell process, such as to change
your current shell directory, or to read or set shell variables, use a function.
Filesystem programs cannot change properties of your current shell process.
In all other situations, use a script as a filesystem program in a bindir specified in
$PATH. This script will then be callable by the system in any other situation you
need, not just in Bash.

Scripts, Functions, and Aliases Chapter 7

[142]

Using functions in scripts
Functions can be defined and used in scripts, and it can be a good idea to do so. One
common use is a die function that catches error conditions, prints any given messages, and
then exits the script:

die() {
 printf >&2 '%s\n' "$@"
 exit 1
}
tempfile=$(mktemp) || die 'Could not create temporary file'
(($# > 0)) || die 'Need at least one argument'
[[$1 != *:*]] || die 'Colon not allowed in directory name'

Note that you have to declare the functions before you call them. It's best to put the
functions near the top of the script.

Summary
We've seen how to use and write aliases, functions, and scripts, and demonstrated why you
should almost always choose functions or scripts over aliases, including a demonstration of
how to pass arguments for both to the commands within them.

Knowing how to implement your own custom commands effectively allows you to take full
advantage of the expressiveness of the GNU Bourne-Again Shell. It's like extending the
programming language by defining your own words for it, whether for your own private
use, or to share with other users of the system. When you get good at doing this, and define
many commands to suit your specific tasks, you can work so quickly and effectively that it
looks like magic to anyone watching.

In the final, chapter, we'll go through some best practices for shell scripting—some general
recommendations and techniques to make your scripts and functions safer, more correct,
and more robust.

8
Best Practices

In this final chapter, we'll look at some techniques for programming in Bash defensively,
safely, and productively, in a way that makes working with shell scripts a joy rather than a
chore, especially by avoiding some nasty pitfalls in the language.

We'll revisit the following material from earlier chapters in more depth:

Quoting correctly
Handling filenames starting with dashes
Separating output and diagnostics

We'll also cover:

Keeping scripts brief and simple
Keeping scripts flexible
Respecting and applying the user's configuration
Allowing scripts to run without user input
Limiting the scope of shell state changes
Avoiding path anti-patterns
Avoiding Bash for untrusted user input
Documenting scripts
Using temporary files cleanly
Cleaning up after a script
A tool to check shell scripts for problems

Best Practices Chapter 8

[144]

Quoting correctly
It can't be over-emphasized how important it is to wrap expansions, such as $myvar,
${myvar[1]}, and ${myvar##*/}, in double quotes. Failing to do this will lead to bugs
down the line when values contain characters that have special meaning to Bash, especially
spaces. This is a common problem with code that has been cut and pasted from old
documentation, or from bad advice posted on websites or in chat channels.

It only takes a few examples to realize how dangerous a failure to quote properly can be,
especially in circumstances where files can be created by other users, and hence might
include shell metacharacters. A file named *, for example, is legal, and if expanded
incorrectly, can wreak havoc on your scripts:

$ cd ~/important
$ myfilename='*'
$ echo $myfilename
important-document passwords-DO-NOT-DELETE anniversary-plans
$ echo "$myfilename"
*

Imagine what might have happened if the first echo command here had been rm in a script
instead!

In a few contexts in Bash, an expansion does not strictly require double quotes; none of
these cases of myvar here require double quotes, due to their syntactic context:

newvar=$myvar
case $myvar in ...
[[$myvar = "$othervar"]]

However, adding double quotes in each of these cases does not do any harm, either:

newvar="$myvar"
case "$myvar" in ...
[["$myvar" = "$othervar"]]

Similarly, watch for cases where you need more than one pair of nested quotes:

touch -- "$(basename -- "$filename")"

This might seem strange to those coming from other programming languages; it looks as if
the two different sets of double quotes are mismatched. However, because one pair of
quotes is inside a command substitution, the double quotes around it don't interfere with
the expansion within it.

Best Practices Chapter 8

[145]

In summary, if you're in doubt about any given expansion: quote it!

You may occasionally run into objections of this sort: I don't allow files with spaces or asterisks
in their names on my system, so I don't need to quote. Don't listen! Always use quoting to make
your scripts safer and more robust.

When you don't want quotes
The previous section might have led you to ask, What about if I actually do want the contents of
my variable to undergo whitespace splitting and glob expansion?

You may be tempted to do this to store a set of options for repeated use in later commands,
for example:

Not recommended
curlopts='--location --cookie-jar ~/cookies --cookie ~/cookies'
curl $curlopts --head -- http://www.example.org/
curl $curlopts -- http://www.example.net/

If we double-quoted the $curlopts expansions here, the options would be treated together
as one argument, and wouldn't work correctly. However, this still seems to be a useful
property of variables—so how can we use it safely?

The answer is that this is an ideal application of the positional parameters in the POSIX
shell, or (preferably) array variables in Bash:

POSIX (if necessary)
(
 set -- --location --cookie-jar ~/cookies --cookie ~/cookies
 curl "$@" --head -- http://www.example.org/
 curl "$@" -- http://www.example.net/
)
Bash (better)
curlopts=(--location --cookie-jar ~/cookies --cookie ~/cookies)
curl "${curlopts[@]}" --head -- http://www.example.org/
curl "${curlopts[@]}" -- http://www.example.net/

The first form uses a subshell, surrounding the commands that require the curl options in
parentheses, so that the set command that sets the positional parameters for reuse only
applies within that block. This works, but it can be awkward to manage several such
parameter stacks. If Bash is available, using arrays as in the second form makes the task
much easier, and require such forced scoping.

Best Practices Chapter 8

[146]

You can build and store whole command strings this way, including the command name
itself, executing it by simply expanding the whole array. Here's an example of building all
the options and arguments for a grep command line:

#!/bin/bash

Example starting values
extended=0
fixed=1
patterns=(foo bar)
extra_files=()
Start with the grep command line
grepcmdline=(grep)
If the extended or fixed flags are set, add -F or -E
if ((extended)) ; then
 grepcmdline+=(-E)
elif ((fixed)) ; then
 grepcmdline+=(-F)
fi
Add each pattern to check
for pattern in "${patterns[@]}" ; do
 grepcmdline+=(-e "$pattern")
done
Add option terminator
grepcmdline+=(--)
Add files to check
grepcmdline+=(* "${extra_files[@]}")
Run command!
"${grepcmdline[@]}"

This can be very useful for wrapper scripts, designed to simplify the use of a complicated
command for one specific application, such as searching a fixed set of files for a set of
patterns specified by the user.

Handling filenames starting with dashes
Recall that in any situation where a filename is stored in a variable, we must be careful
when using it on a command line, because it might get interpreted as an option:

$ cp "$myvar" destdir

If myvar were a file named -alphabet-, this would result in a confusing error:

cp: invalid option -- 'h'

Best Practices Chapter 8

[147]

This is because the string was interpreted as a bundled set of options, and the letters a, l,
and p are all valid options for the GNU cp command, but h is not.

We can address this one of two main ways; the first, for the commands that support it, is to
use the -- terminator string option:

$ cp -- "$myvar" destdir

This signals to the cp command that every word after that argument is not an option, but
(in this case) a file or directory name to operate on.

Unfortunately, while this is a very widespread convention, not every command supports
these terminators. For such commands, a more general way to make this work is to specify
the path in a form that doesn't start with a dash, whether by fully qualifying it from the
filesystem root, or just by prefixing it with ./:

$ myscript /home/bashuser/-alphabet
$ myscript ./-alphabet

This also works fine in loops:

cd data || exit
for file in * ; do
 myscript ./"$file"
done

Separating output and diagnostics
Remember always to write error output from your script to the standard error file
descriptor, not to output, using the >&2 redirection:

#!/bin/bash
if ! [[-e $myfile]] ; then
 printf >&2 '%s does not exist!\n' "$myfile"
 exit 1
fi

This allows users to redirect any output the script generates separately from the errors. This
applies to non-fatal warnings or diagnostic information just as much as to error messages.

Best Practices Chapter 8

[148]

Keeping scripts brief and simple
The ideal shell script is a relatively short one, because shell script has such limited support
for concepts such as variable scope, no support for a library or module system for robust
packaging, a lot of global state of various kinds, and very limited data typing.

Instead of trying to write one very long program that does many things, follow the Unix
tradition of writing shorter, smaller programs that do one thing each, and that do that thing
very well.

If you find your Bash program is becoming too large and unwieldy, and you can't simplify
it, consider translating it to Perl, Python, or a similar general-purpose program instead.
This is quite normal; shell script has been used since its earliest days as a prototyping
language, in exactly this way.

Keeping scripts flexible
Allow your script's users to use the tool in whatever way they may need. For example,
avoid hardcoding filenames to be read in your scripts, if you can; instead, allow the user to
provide filenames as options or arguments.

If your script works on files, consider making it work the same way the classic Unix text
filtering tools do. If there are no arguments, read any data needed from the standard input:

$ myscript

If there are arguments, read the data from (or make changes to) all of those files, in order:

$ myscript file1 file2

If one of the arguments is a dash, read from the standard input at that point in the
argument loop, to allow us to provide a prefix and a suffix to the data:

$ myscript file1 - file2

These conventions are well-known to Unix users, and they will appreciate finding this
flexibility in your scripts.

Best Practices Chapter 8

[149]

Respecting and applying the user's
configuration
Never assume a user's choice of line-text editor ($EDITOR), visual-text editor ($VISUAL),
shell ($SHELL), or web browser ($BROWSER). Instead, fall back to sensible defaults if these
values are not set, using the :- form of parameter expansion:

#!/bin/bash
read -p 'Now editing your configuration file (press ENTER): '
"${VISUAL:-vi}" -- "$HOME"/.myscriptrc

The preceding script will wait for an Enter key press (well, a line entry, technically). It then
starts the user's choice of visual-text editor if it's set, or defaults to vi if it's not, which
should be installed on most Unix-like systems. In some circumstances, such as a script for
use by beginners, a more sensible default choice might be nano. Consider carefully what
your script's users might expect to happen; avoid giving them any nasty surprises.

Choose to invoke VISUAL instead of EDITOR to start an editor for
interactive scripts; it is much more likely to present the user with an editor
they can use.

Allowing scripts to run without user input
If your script requires user data during its run in order to make decisions on what to do, it
can be tempting to prompt the user for each required bit of information when needed,
perhaps using the -p option to the read builtin to request a prompt:

#!/bin/bash
read -p 'Do you want to create the directory? [y/N]: ' createdir
case $createdir in
 y*|Y*)
 mkdir -- "$HOME"/myscript || exit
 ;;
esac

Best Practices Chapter 8

[150]

This example will only create the directory named in the dir variable if a string such as y
or YES (or yoyo!) is read from standard input, and assumes that it is likely to be the user's
terminal.

This is convenient for interactive scripts, but it assumes that the user running the script is
actually at a terminal, and it makes the script awkward to use in automation; someone
trying to call this script automatically from cron or systemd would need to arrange to pipe
in a single line, yes, to make it work. If the script needs to read from a data file at some
point, it also complicates passing further data into it via the standard input.

If you need to make whether to do something during the script's run configurable, consider
using a command-line option instead:

case $1 in
 -c|--createdir)
 mkdir -- "$HOME"/myscript || exit
 shift
 ;;
esac

Now the need for the behavior can be specified on the command line:

$ myscript -c
$ myscript --createdir

In some cases, it can even be desirable to put the variable in a configuration file, to be read
at startup from a known path:

#!/bin/bash
if [[-r $HOME/.myscriptrc]] ; then
 source "$HOME"/.myscriptrc
fi
case $createdir in
 y*|Y*)
 mkdir -- "$HOME"/myscript || exit
 ;;
esac

The preceding script uses source to run all of the Bash commands in
the ~/.myscriptrc file, if it exists. If this configuration file contains a definition of
createdir as anything starting with y or Y, the directory will be created:

$ cat ~/.myscriptrc
createdir=yes

Best Practices Chapter 8

[151]

If, for whatever reason, your script really does need user input, which sometimes happens
in secure contexts where you need to read straight from the terminal device, consider
including an optional mode named --batch, --force, or a similar name that proceeds
without that input, skipping all the prompts by assuming a sensible default for an answer:

#!/bin/bash
case $1 in
 -b|--batch)
 batch=1
 shift
 ;;
esac
if ((batch)) ; then
 createdir=y
else
 read -p 'Do you want to create the directory? [y/N]: ' createdir
fi
case $createdir in
 y*|Y*)
 mkdir -- "$HOME"/myscript || exit
 ;;
esac

Limiting the scope of shell state changes
If you are going to change properties of the shell as a whole in part of your script, consider
limiting the scope of that change only to the needed part of the script to avoid unexpected
effects on the rest of it. Watch for these in particular:

The working directory
The positional parameters ($1, $2 ...)
Environment variables, especially PATH
Shell-local variables, especially IFS
Shell options with set (such as -x) or shopt (such as dotglob)
Shell resource limits set with ulimit

We already saw one effective means of limiting the scope of variables in Chapter 5, Variables
and Patterns, by applying them as prefixes to a command:

IFS=: read -r name address

This limits the scope of the IFS change to the read command only.

Best Practices Chapter 8

[152]

For other types of shell state change, we have to get a bit more creative:

Keeping the script itself so short that the change doesn't matter
Changing the state back to its original value again as soon as possible
Making the change in a subshell so that it doesn't affect the rest of the program
Rewriting to avoid the change entirely

The last option is by far the most desirable; if the command itself can do what you need,
don't reinvent that wheel in Bash!

Here is an example based on a common problem: the following script changes into the
working directory of a Git repository in ~/src/bash, and fetches any changes from its
default remote branch:

cd -- "$HOME"/src/bash || exit
git fetch

The problem is that the script needs to change its directory to do this, and then needs to
change back to whatever directory it started in before proceeding with the rest of the script.

We could do this manually by saving the current working directory in a variable named
pwd before changing it to the repository directory, and then changing back to the saved
path after we are done:

pwd=$PWD
cd -- "$HOME"/src/bash || exit
git fetch
cd -- "$pwd" || exit

We could make the change in a subshell, so that it does not change the state of the
surrounding script; this is complicated, however, as we then need to add an extra exit to
catch a failure to change directory at all, and || true to ignore error conditions from git
fetch, since that's what the original does:

(
 cd -- "$HOME"/src/bash || exit
 git fetch || true
) || exit

The best method in this case is to use the git program's -C option to specify the working
directory for the command, allowing us to reduce this to just one line:

git -C "$HOME"/src/bash fetch

Best Practices Chapter 8

[153]

If you apply a little care to managing global state like this, your scripts will be much easier
to edit later.

Avoiding path anti-patterns
Some shell script programmers use absolute paths for even common system tools:

/bin/sed '/^$/d' data

This command line is intended to print the contents of the data file, but to skip blank lines.
It does work on most GNU/Linux systems, but why specify the full /bin/sed path? Why
not just sed?

Worse, sometimes people try to abbreviate this by saving the full paths in variables, after
retrieving them with a non-standard tool such as which:

Terrible code; never do this!
SED=$(which sed)
$SED '/^$d/' data

Can you see anything else wrong with this code? Hint: what was the very
first thing we re-emphasized in this chapter?

This use of which and full paths such as this is unnecessary, and there are no advantages to
doing it. Bash will already search PATH for you for any command name; you don't need to
rely on which (or even type -P) to do it for you.

Besides being unnecessarily verbose, there are other problems with this approach; this
script isn't respectful, because it doesn't apply the user's choice of $PATH, and worse, it's not
portable: on some Unix systems, the sed program may not be in /bin, but in /usr/bin, or
even something very hard to predict, such as /usr/xpg4/bin (yes, really!).

So, keep it simple; just call sed, and let the system figure the rest of it out:

sed '/^$/d' data

Best Practices Chapter 8

[154]

Avoiding Bash for untrusted user input
Shell script is not a language that was designed with the security of untrusted input in
mind, and because shell scripting interpreters are generally used for situations in which a
user is at least partly already trusted to run processes on the box, they do not heavily
prioritize security or security audits.

When you give a user a system shell account on your server, even if you don't give them
root privileges, you are trusting them to some extent not to abuse the system or damage it.
Executing code using the same tools from someone on the internet that you don't trust is a
recipe for disaster!

Highly publicized vulnerabilities, such as 2014's "ShellShock," resulted largely from abuse
of the Bash shell as part of generating responses to requests from the internet. Bash is a
system-command interpreter, and was never designed to be used in this way – it was
created years before the World Wide Web even existed. It takes significant effort and
expertise to make a task using shell scripting languages safe to run with data from the web;
there are just too many ways to allow arbitrary code-execution in the language.

Therefore, at least until you are a shell script expert and familiar with all of these dark
corners, don't attempt to sanitize untrusted data from the internet with Bash. Your author
has studied shell scripting for many years, and still wouldn't do it. Use a web-based
programming language instead, where security – while never perfect – is both important
and emphasized, and frequently reviewed. PHP or Python are both good starting points.

If you're writing scripts that parse trusted web pages using a tool such as
curl, always make requests from an HTTPS version of the site, and resist
the temptation to turn off certificate verification – it's there to protect you!

Documenting scripts
Just as with any kind of programming, it's important to write some documentation to help
your users understand and run your program, and to know all of its available features.
We'll look at three documentation methods: writing comments, providing help output, and
writing manual pages.

Best Practices Chapter 8

[155]

Writing comments
It's good practice to add comments to any code to explain what it's doing to the curious (or
debugging) reader, and Bash is no exception. Keep your comments concise, up-to-date, and
most of all, useful. Remember: don't just rephrase what the code is doing; explain why
you're doing it, not just what it does.

Consider this comment and line of shell script:

Loop to end of positional params
for targetdir ; do : ; done

Is the comment here helpful to someone reading the script? Can you tell what the code is
doing? Consider the following comment instead, which explains the purpose of the unclear
code, even to a user who may not do much shell programming:

Save last command line argument as target directory
for targetdir ; do : ; done

That's much better.

Providing help output
Consider providing a little help to users of your script if they try running it with a -h or --
help option; even a single line showing which arguments are expected and in what order
can be very helpful:

case $1 in
 -h|--help)
 printf 'USAGE: myscript [--verbose] FILE1 [FILE2...] TARGETDIR\n'
 ;;
esac

The manual page describing manual pages on GNU/Linux systems, viewable with man
man-pages, gives some information on common expected formats for these usage strings.

Writing manual pages
To really do your scripts' users a service, consider writing a fully-fledged manual page for
the man reader tool, in a format such as mandoc: https:/ /mandoc. bsd.lv/ .

https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/
https://mandoc.bsd.lv/

Best Practices Chapter 8

[156]

In addition to trying myscript -h or myscript --help, many users will try man
myscript in their search for help. Why not impress them with a full page of readily-
available documentation, showing a detailed explanation of what the tool is for, some
usage instructions, and even some examples? You can even convert the manual page to be
published on the web using mandoc, for those users more inclined to use the web to search
for answers to a problem.

Don't underestimate the importance of writing comments, help, and
documentation even just for yourself in the future – it's very easy to forget
how even your own code works. Writing about your code also helps you
to think more clearly about its design, and what it should (and should not)
do.

Using temporary files cleanly
If you need a temporary file in your script to store data for the script's run, it can be
tempting to assume a fixed path for the file in /tmp:

Store the current date for later
Requires GNU/BSD `date` with non-POSIX %s format
date +%s > /tmp/myscript-timestamp

/tmp exists on virtually all Unix systems, which makes it a popular choice. However, this
approach has some risks:

There may be a safer or more suitable location for temporary files specified by
the system, or preferred by the user, such as /var/tmp. The /tmp directory
might be very strictly locked down in some environments, especially PCI-DSS-
compliant systems.
If the temporary filename name is not unique, and more than one instance of the
script runs at once, the behavior can be unpredictable and hard to debug.
Because /tmp is world-writable, if an attacker can write to and predict the name
of the data file in /tmp, they could edit it before the script finishes, possibly
hijacking the script.

The name of the temporary directory is often available in the TMPDIR environment variable,
which can improve this approach a little, while still using /tmp as a fallback:

date +%s > "${TMPDIR:-/tmp}"/myscript-timestamp

Best Practices Chapter 8

[157]

However, perhaps the best approach is the use of the mktemp tool, if it's available. It creates
temporary files or directories, and prints the name of whatever it created. It should do this
creation relatively safely, with a randomized name, and in a location and pattern that's
consistent with the system's settings:

$ mktemp -d
/tmp/tmp.mmfGKhMxtv

We can use this to safely pick a temporary directory for our script each run:

tempdir=$(mktemp -d) || exit
date +%s > "$tempdir"/myscript-timestamp

Note that we abort the script if the temporary directory could not be created; || exit runs
only if the mktemp command in the variable assignment fails.

mktemp is not a standard POSIX tool, so it's not guaranteed to be
available, but it's very common on many Unix-like systems, including
Linux and BSD. Use it if you can.

Cleaning up after a script
Dropping temporary files without cleaning them up is a little untidy; at the end of a script
where temporary files are used, we should have a safe rm command to remove them
afterward:

#!/bin/bash

Code setting and using tempdir goes here, and then ...

Remove the directory
if [[-n $tempdir]] ; then
 rm -- "$tempdir"/myscript-timestamp
 rmdir -- "$tempdir"
fi

Notice that we're careful to check that tempdir actually has a value, using the -n test
before we run this code, even if we don't think anything might have changed it; otherwise
we'd be running rm -- /myscript-timestamp.

Best Practices Chapter 8

[158]

Notice also that we're carefully removing only the files we know we've created, rather than
just specifying "$tempdir"/*. An empty value for the tempdir variable in such a case
could have terrible consequences!

The preceding code is a good start for the ending of a script – but what about cases where a
script is interrupted? Ideally, we'd delete the files even if someone pressed Ctrl + C to
interrupt the script before it was finished.

Bash provides an EXIT trap for this purpose; we can define a command that should be run
whenever the script exits, if it can possibly run it. The very start of our Bash script might
look like this:

cleanup() {
 if [[-n $tempdir]] ; then
 rm -f -- "$tempdir"/myscript-timestamp
 rmdir -f -- "$tempdir"
 fi
}
trap cleanup EXIT
tempdir=$(mktemp -d) || exit

The cleanup function is run whenever the Bash script exits, and hasn't been sent the
SIGKILL or kill -9 signal. If the tempdir variable is set, it tries to clear away a
temporary file in it, and then remove the temporary directory itself. Notice that we set up
the hook first, before the temporary directory is even created, to get it in place as soon as
possible.

If this boilerplate code bothers you, see whether you can write your script
without using temporary files. Compound commands and creative use of
pipes can help a lot here.

Tools to check shell scripts for problems
The ShellCheck tool is a linter for shell script, designed to find bugs and trouble spots in
various flavors of shell scripts, including Bash. It identifies many of the common errors
discussed in this book, and many more besides. It is available as both an online service and
a command-line tool at https:/ / www. shellcheck. net/ .

https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/
https://www.shellcheck.net/

Best Practices Chapter 8

[159]

The output of ShellCheck points you directly to trouble spots in your code, including error
codes for reference with its online documentation:

Summary
We've gone over some of the most important techniques in good use of Bash shell script,
with particular emphasis on keeping things small, simple, and robust. With all we've
learned, however, we've still only just scratched the surface.

As we mentioned in the first few chapters, because Bash is largely designed to run other
programs and make them work together—sometimes in novel ways the authors of those
programs could never have imagined—we could fill a book this size many times over just
with various tips and tricks for elegant shell script programming for many of our favourite
commands.

We hope that this short book has given you a running start in becoming an expert shell
script user, and helped you begin to appreciate the power and flexibility that
knowledgeable use of the Bash shell offers you. Your author believes that mastering some
form of command shell is one of the best decisions a programmer or systems administrator
can make, and Bash is a great choice. It provides amazing possibilities for writing powerful
programs very quickly in only a few lines, and automating boring or error-prone jobs to
make your work more productive, satisfying, challenging, and—maybe best of all—more
fun.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Penetration Testing with the Bash shell
Keith Makan

ISBN: 978-1-84969-510-7

Perform network enumeration techniques with Dig, whois, dnsenum, dnsmap,
and others
Learn how to fuzz and reverse engineer using the Kali Linux command line tools
Exploit common web application vulnerabilities using skipfish, arcachi, and
sqlmap
Accomplish man-in-the-middle attacks straight from your command line
Assess SSL security using sslyze and openssl
Carry out network traffic analysis using tcpdump

https://www.packtpub.com/networking-and-servers/penetration-testing-bash-shell

Other Books You May Enjoy

[161]

Bash Cookbook
Ron Brash, Ganesh Naik

ISBN: 978-1-78862-936-2

Understand the basics of Bash shell scripting on a Linux system
Gain working knowledge of how redirections and pipes interact
Retrieve and parse input or output of any command
Automate tasks such as data collection and creating and applying a patch
Create a script that acts like a program with different features
Customize your Bash shell and discover neat tricks to extend your programs
Compile and install shell and log commands on your system's console using
Syslog

https://www.packtpub.com/application-development/bash-cookbook

Other Books You May Enjoy

[162]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
aliases
 about 122
 defining 123
 shortcomings with 124
arithmetic expression 91, 106
array variables 145
arrays
 about 98
 associative arrays 100
 glob expansion 99
 using 98
AWK programming language 75

B
Bash builtin commands
 about 30
 cd command 36
 declare command 38
 echo command 32
 printf command 33
 pwd command 34
 set command 37
 test command 39
 type command 31
Bash subprocess 136
Bash's C-style for loop
 using 112
Bourne Again Shell (Bash)
 about 7, 8
 applying 15
 avoiding 16
 avoiding, for user input 154
 execution, checking 9
 features 12, 14
 login shell, switching 10

 need for 15
 obtaining 8, 17
 POSIX shell script, features 13
 upgrading, on macOS X 12
 using 19
 version number, identifying 11

C
C compiler 9
calling programs
 with environment variables 85
case keyword
 switching with 107
cd command
 scripts directory, changing 36
command list
 stopping, on error 26
command substitution 132
command types
 distinguishing 29
 Runtime commands 29
 Shell builtin commands 29
 System commands 29
command
 executing, in background 27
commands
 executing, in sequence 25
compound command 73, 115, 126
conditional expression 103
conditionals 101
control flow 101

D
delimiter 68, 98
diagnostics
 separating 147

[164]

E
environment variables 83
errors
 blocking 64
 combining, with output 63
 output, sending 65
 redirecting 62
executable bit 136
exit values 25, 130

F
filenames
 handling, with dashes 146
find command
 executing 51
 xargs 52
fixed arithmetic 93
floating-point arithmetic 92
forked process 82
functions
 about 126
 arguments, obtaining 129
 arguments, passing 127
 defining 126
 input and output 131
 options, separating from filenames 128
 reloading, at shell startup 134
 scope 132
 used, in script 142
 values, returning 130
 versus script 141

G
globs
 case-insensitive globbing 97
 configuring 95
 dot and dot-dot file, excluding 95
 dot files, including 95
 expanding 96
 extended globbing 97
 using 93
group command 73

H
hash-bang 136
here-document 68

I
if keyword
 [command, using 104
 [[keyword, using 104
 arithmetic conditions 105
 test command, using 103
 using 101
infinite loop 114
input redirection 66
input
 long string, used with here-documents 68
 redirecting 66
integers 106
interactive key bindings 20
interpreter 136
Is command
 filename lists, obtaining 41
iteration 108

L
lexicographic tests 106
linter 158
locale settings 85
logical binary directories (bindirs) 138
loops 101

M
metacharacters 21

O
option terminator 128
output
 created file permissions 59
 created files, permissions selecting 61
 files, appending 59
 overwrites, avoiding 58
 redirecting 56
 redirection paths 57
 separating 147

[165]

P
parameter expansion 75, 86
parameter expansion forms
 about 88
 case, changing 91
 combining 91
 default values, specifying 88
 string chopping 88
 string length 90
 strings, substituting 90
 substrings, extracting 89
path anti-patterns
 avoiding 153
pipe operator 70
pipes
 about 56
 file contents, adding to stream 71
 output, piping from multiple programs 72
 programs, filtering 73
 using 70
positional parameter 109, 127, 145
POSIX shell script
 features 13
process substitution 119
prototyping language 148
pseudo-device 72
pwd command
 tilde paths 35

Q
quotes 144, 145
quoting
 about 22
 double quotes 24
 escaping 22
 quote concatenation 24
 single quotes 23

R
redirection operators 57
regular expression 14, 45
return values 130

S
script, documentation method
 comments, writing 155
 help output, providing 155
 manual pages, writing 155
script
 about 135, 148
 arguments 140
 cleaning up 157
 documenting 154
 env, using 141
 executing, without user input 149
 finding, with $PATH 137
 methods 135
 sh, versus bash 140
 shebang script, writing 136
 system bindir 138
 user bindir 139
 versus functions 141
sed stream editor 74
shebang 136
shell keyword 104
shell metacharacters 21
shell script tool
 checking, for problem 158
shell state changes
 scope, limiting 151
shell words
 for loop, misusing 111
 iteration, skipping 109
 loop, ending 110
 looping, with for loop 108
short-circuiting 131
simple commands 20
sourcing 135
stream editor 74
subshell 145
subshell body 133
subshell problem
 avoiding 118
subshells 119
system commands
 about 40
 cp command 43

 cut command 47
 find command 49
 grep command 45
 Is command 40
 mv command 42
 rm command 44
 rmdir command 44
 sort and uniq commands 53
 wc command 48

T
temporary files
 using 156
terminal emulators 8

U
umask value 59
user's configuration
 applying 149
 respecting 149

V
variable name case 80
variables

 clearing variables 81
 command output 87
 environment variables 82
 expanding variables 86
 listing variables 79
 math, creating in Bash 92
 naming variables 80
 parameter expansion forms 88
 using 78
 value, reading 86

W
wc command
 file sizes, obtaining 49
while loop
 data, reading 114
 field splitting 116
 fields, saving into arrays 116
 infinite loop 113
 input problem, avoiding with ssh 120
 process output, reading 118
 splitting character, selecting 117
 using 113
 whitespace trimming, disabling 118
wrapper script 114

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: What is Bash?
	What Bash is and is not
	Getting Bash
	Checking Bash is running
	Switching the login shell to Bash

	Identifying the Bash version number
	Upgrading Bash on macOS X
	Understanding Bash features
	POSIX shell script features
	Bash-specific features
	Do I need Bash?

	Choosing when to apply Bash
	Choosing when to avoid Bash
	Getting help with Bash
	Summary

	Chapter 2: Bash Command Structure
	Using Bash interactively
	Interactive key bindings
	Simple commands
	Shell metacharacters
	Quoting
	Escaping
	Single quotes
	Double quotes
	Quote concatenation

	Running commands in sequence
	Exit values
	Stopping a command list on error
	Running a command in the background
	Summary

	Chapter 3: Essential Commands
	Distinguishing command types
	Essential Bash builtin commands
	The type command
	The echo command
	The printf command
	The pwd command
	Tilde paths

	The cd command
	Changing the directory in scripts

	The set command
	The declare command
	The test, [, and [[commands

	Essential system commands
	The ls command
	Getting filename lists without ls

	The mv command
	The cp command
	The rm and rmdir commands
	The grep command
	The cut command
	The wc command
	Getting file sizes with wc or du

	The find command
	Executing commands for each result
	A note about find and xargs

	The sort and uniq commands

	Summary

	Chapter 4: Input, Output, and Redirection
	Redirecting output
	Redirection paths
	Avoiding overwrites
	Appending to files
	Understanding created file permissions
	Choosing permissions for created files

	Redirecting errors
	Combining errors with output
	Blocking errors completely
	Sending output to more than one place

	Redirecting input
	Using a long string as input with here-documents

	Using pipes
	Adding file contents to a stream
	Piping output from multiple programs
	Filtering programs
	The sed stream editor
	The AWK programming language

	Summary

	Chapter 5: Variables and Patterns
	Using variables
	Listing variables
	Naming variables
	Variable name case

	Clearing variables
	Environment variables
	Calling programs with environment variables

	Expanding variables
	Reading a value into a variable
	Getting command output in variables
	Parameter expansion forms
	Specifying default values
	String chopping
	Extracting substrings
	Getting string length
	Substituting strings
	Changing case
	Combining parameter expansion forms

	Doing math in Bash
	Fixed or floating-point arithmetic

	Using globs
	Configuring globbing behavior
	Including dot files, but excluding dot and dot-dot
	Expanding to nothing
	Case-insensitive globbing
	Extended globbing

	Using arrays
	Glob expansion in arrays
	Associative arrays

	Summary

	Chapter 6: Loops and Conditionals
	Using the if keyword
	Using the test command
	Using the [command
	Using the [[keyword
	Arithmetic conditions

	Switching with the case keyword
	Looping over shell words with for
	Skipping an iteration
	Ending the loop
	Misuse of for loops

	Using Bash's C-style for loops
	Using while loops
	Infinite loops
	Reading data line by line
	Field splitting
	Saving fields into arrays
	Choosing the splitting character
	Disabling whitespace trimming
	Reading process output
	Avoiding subshell problems

	Avoiding input problems with ssh

	Summary

	Chapter 7: Scripts, Functions, and Aliases
	Aliases
	Defining new aliases
	Understanding shortcomings with aliases

	Functions
	Defining functions
	Passing arguments to functions
	Using -- to separate options from filenames
	Getting all the arguments

	Returning values from functions
	Understanding function input and output
	Function scope
	Reloading functions at shell startup

	Scripts
	Scripting methods
	Writing a shebang script
	Finding scripts with $PATH
	System bindir
	User bindir
	Arguments to scripts
	Understanding sh vs bash
	Using env

	Choosing between functions and scripts
	Using functions in scripts
	Summary

	Chapter 8: Best Practices
	Quoting correctly
	When you don't want quotes

	Handling filenames starting with dashes
	Separating output and diagnostics
	Keeping scripts brief and simple
	Keeping scripts flexible
	Respecting and applying the user's configuration
	Allowing scripts to run without user input
	Limiting the scope of shell state changes
	Avoiding path anti-patterns
	Avoiding Bash for untrusted user input
	Documenting scripts
	Writing comments
	Providing help output
	Writing manual pages

	Using temporary files cleanly
	Cleaning up after a script
	Tools to check shell scripts for problems
	Summary

	Other Books You May Enjoy
	Index

