
[1]

Boost.Asio C++ Network
Programming
Second Edition

Learn effective C++ network programming
with Boost.Asio and become a proficient
C++ network programmer

Wisnu Anggoro

John Torjo

BIRMINGHAM - MUMBAI

Boost.Asio C++ Network Programming
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Second published: September 2015

Production reference: 1100915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-307-9

www.packtpub.com

www.packtpub.com

Credits

Authors
Wisnu Anggoro

John Torjo

Reviewers
Toma Becea

Iyed Bennour

Vic Taylor

Commissioning Editor
Veena Pagare

Acquisition Editor
Tushar Gupta

Content Development Editor
Rashmi Suvarna

Technical Editor
Abhishek R. Kotian

Copy Editor
Neha Vyas

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Authors

Wisnu Anggoro is a Microsoft Certified Professional in C# programming and
an experienced C/C++ developer. He has been programming since he was in
junior high school, and he started developing computer applications using basic
programming in the MS-DOS environment. He has good experience in smart
card programming as well as desktop and web application programming, such as
designing, developing, and supporting live use applications for SIM Card Operating
System Porting, personalization, PC/SC communication, and other smart card
applications that require the use of C# and C/C++.

He is currently a senior smart card software engineer at Cipta Srigati Lestari (www.
cslgroup.co.id), an Indonesian company that specializes in the innovation and
technology of smart cards. There, he holds the position of the smart card tools
team leader. He has the responsibility of managing the smart card tools team and
developing various applications and tools in order to create smart cards that can
connect to any computer application.

Before this, he worked as a platform engineer at the same company. In this position,
he successfully ported the GSM operating system from Tongfang THC20F17BD Chip
(MCS51) to Xirka XSTSCSIM864 Chip (MCS51) and the RUIM operating system
from Samsung S3FC9xx Chip (ARM) to EMTG97 Chip (MCS51). He also successfully
developed a personalization tool for the MIFARE Classic card, a smart card key
generator dongle used to activate the operating system based on the ICCID number
using its own cryptography algorithm, and various smart card applications. He did
this by accessing smart card readers using P/Invoke C#, RESTful applications that
use HttpNet and JSON XML serialization in C#, and responsive applications that
use multithreading and asynchronous processing in C#.

This is his first, and he plans to write as many books about C/C++ and C#
programming in the future as possible. You can reach him through his e-mail at
wisnu@anggoro.net.

www.cslgroup.co.id
www.cslgroup.co.id
wisnu@anggoro.net

Acknowledgements

First and foremost, I would like to thank God, whose many blessings have made me
who I am today. To my wife, Vivin, for her constant love and support and for not
letting me give up on writing this book. To my beloved son, Olav, who has given me
so much happiness and has kept me hopping. To my parents and family for their
inspiration.

Also, thank you to the following individuals; without their contributions and
support, this book would not have been written.

The great team at Packt Publishing, especially Tushar Gupta, my acquisition editor,
who invited me to author this book and guided me to start writing it. Rashmi
Suvarna, my content development editor, for her efforts in making my book's
content awesome. Abhishek Kotian, my technical editor, who ensured that all the
source code is valid; thanks for correcting my confusing phrases.

My superiors at Cipta Srigati Lestari, Abdul Hakim and Benediktus Dwi Desiyanto,
for all the knowledge you have shared—not only about technical stuff, but also about
soft skills. It proved to be really helpful while I was writing this book.

Christopher Kohlhoff, the founder of Boost Asio; thanks for your video presentation
on YouTube titled Thinking Asynchronously: Designing Applications with Boost.Asio,
which can be found at https://www.youtube.com/watch?v=D-lTwGJRx0o.

Boris Schäling, the author of The Boost C++ Libraries and the owner of http://www.
theboostcpplibraries.com; thanks for your site. It has inspired me a lot.

Drew Benton, thanks for sharing your knowledge of Boost.Asio on the gamedev.
net forum at http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-
getting-started-with-boostasio/?pg=1.

Thanks to Harvard University for providing free lectures on GDB at http://www.
sourceware.org/gdb/current/onlinedocs/gdb.html and also for providing
quick and easy-to-understand videos about GDB on YouTube at https://www.
youtube.com/watch?v=sCtY--xRUyI.

https://www.youtube.com/watch?v=D-lTwGJRx0o
http://www.theboostcpplibraries.com
http://www.theboostcpplibraries.com
gamedev.net
gamedev.net
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio/?pg=1
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio/?pg=1
http://www.sourceware.org/gdb/current/onlinedocs/gdb.html
http://www.sourceware.org/gdb/current/onlinedocs/gdb.html
https://www.youtube.com/watch?v=sCtY--xRUyI
https://www.youtube.com/watch?v=sCtY--xRUyI

John Torjo is a renown C++ expert. He has been programming for over 15 years,
most of which were spent doing C++. Sometimes, he also codes C# or Java. He's
also enjoyed writing articles about programming in C++ Users Journal (currently,
Dr. Dobbs) and other magazines. In his spare time, he likes playing poker and
driving fast cars. One of his freelance projects lets him combine two of his passions,
programming and poker. You can reach him at john.code@torjo.com.

john.code@torjo.com

About the Reviewers

Toma Becea is a passionate programmer and an employee at Macadamian Inc.
He loves to delve into technologies such as WPF, WebRTC, and iOS. He also likes
cycling, playing football, and hang gliding.

Iyed Bennour is a senior software engineer. He spent the last 10 years developing
large-scale multithreading and networking C++ software in the telecommunication
industry. He sees software development as a craft that needs to be mastered and
likes to think of himself as a software craftsman.

Vic Taylor is a formally trained educator who received his PhD in urban education
from the University of Wisconsin—Milwaukee in 1999. He has been programming
since he fell in love with it in 1979, when he was still in graduate school (University
of Wisconsin—Madison) and completing a data analysis that required him to learn
enough of Fortran to use IMSL.

Vic has been a professional programmer/consultant for about 35 years now, and
he has been contracted by Nevelex Corporation to write C++11 code for several
DirecTV projects. Some of his previous accomplishments include single-handedly
analyzing, designing, and implementing four major industrial control applications
for Badger Meter Incorporated (Milwaukee, WI) on a contractual basis between 1994
and 2005.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Simplifying Your Network Programming in C++	 1

Setting up the MinGW compiler and Text Editor	 1
Installing MinGW-w64	 2
Setting up the Path environment	 3
Choosing and installing the Text Editor	 5

Using the GCC C++ compiler	 6
Compiling a C++ program	 6
Compiling multiple source files	 10
Compiling and linking a program separately	 13
Detecting a warning in the C++ program	 14

Knowing other important options in the GCC C++ compiler	 15
Troubleshooting in the GCC C++ compiler	 17

Help for command-line options	 18
Version numbers	 18
The verbose compilation	 19

Summary	 19
Chapter 2: Understanding the Networking Concepts	 21

An introduction to networking systems	 21
The OSI reference model	 22

The Physical layer	 22
The Data Link layer	 22
The Network layer	 24
The Transport layer	 24
The Session layer	 24
The Presentation layer	 25
The Application layer	 25

The TCP/IP reference model	 27

Table of Contents

[ii]

Understanding TCP and UDP	 28
Transmission Control Protocol	 28
User Datagram Protocol	 29
Understanding ports	 30

Exploring the Internet Protocol	 31
Internet Protocol Version 4 – IPv4	 32
Internet Protocol Version 6 – IPv6	 35

Using TCP/IP tools for troubleshooting	 37
The ipconfig command	 37

Displaying the full configuration information	 37
Displaying DNS	 37
Flushing DNS	 38
Renewing the IP address	 39
Releasing the IP address	 39

The ping command	 39
The tracert command	 42
The pathping command	 43
The netstat command	 45
The telnet command	 47

Summary	 48
Chapter 3: Introducing the Boost C++ Libraries	 49

Introducing the C++ standard template library	 49
Introducing the Boost C++ libraries	 52

Advantages of Boost libraries	 53
Preparing Boost libraries for the MinGW compiler	 53

Downloading Boost libraries	 53
Deploying Boost libraries	 54
Using Boost libraries	 55
Building Boost libraries	 58

Summary	 65
Chapter 4: Getting Started with Boost.Asio	 67

Getting closer to the Boost.Asio library	 67
Examining the I/O service in the Boost.Asio library	 71

Using and blocking the run() function	 71
Using the non-blocking poll() function	 73
Removing the work object	 75
Dealing with many threads	 76

Table of Contents

[iii]

Understanding the Boost.Bind library	 79
Wrapping a function invocation	 80
Working with the Boost.Bind library	 83
Synchronizing data access with the Boost.Mutex library	 85

Giving some work to the I/O service	 87
Using the post() function	 87
Using the dispatch() function	 91

Summary	 94
Chapter 5: Delving into the Boost.Asio Library	 95

Serializing the I/O service work	 95
Using the strand function	 96
Wrapping a handler through the strand object	 102

Handling exceptions and errors	 104
Handling an exception	 105
Handling an error	 110

Timing the work execution using the timer class	 116
An expiring timer	 116
Using the timer along with the boost::bind function	 119
Using the timer along with the boost::strand function	 123

Summary	 126
Chapter 6: Creating a Client-server Application	 127

Establishing a connection	 127
A synchronous client	 128
An asynchronous client	 132
An asynchronous server	 135

Reading and writing to the socket	 140
The Send() and OnSend() functions	 146
The Recv() and OnRecv() functions	 147

Wrapping the network code	 147
Developing a client and server program	 147

Creating a simple echo server	 147
Creating a simple client program	 152

Summary	 156
Chapter 7: Debugging the Code and Solving the Error	 157

Choosing a debugging tool	 157
Installing a debugging tool	 158
Preparing a file for debugging	 159

Table of Contents

[iv]

Running the program under GDB	 160
Starting the debugging process	 161
The continuing and stepping debugging process	 162
Printing the source code	 164
Setting and deleting the breakpoint	 165
Printing a variable value	 166
Modifying a variable value	 167
Calling the command prompt	 169

Solving the error	 170
What's next?	 171
Summary	 172

Index	 173

[v]

Preface
Network applications were not very easy to develop about two decades ago.
But thanks to Boost.Asio, which has provided us with the network programming
function as well as the asynchronous operations functionality to program a network
application, we can now develop them easily. Since data transmission over a
network can take a long time, which means acknowledgments and errors may
not be available as fast as the functions that send or receive data can execute, the
asynchronous operations functionality is really required in network application
programming. In this book, you will learn the basics of networking and also how
to develop a network application using the Boost.Asio libraries.

What this book covers
Chapter 1, Simplifying Your Network Programming in C++, explains the preparation of
a C++ compiler, which will be used to compile all the source code in this book. Also,
it will tell us how to compile a single source code and link to multiple source codes.

Chapter 2, Understanding the Networking Concepts, covers the network reference
models, which are OSI and TCP/IP. It also provides various TCP/IP tools that
we will often be using to detect whether an error has occurred in our network
connection.

Chapter 3, Introducing the Boost C++ Libraries, explains how to set up the compiler
in order to compile the code that contains the Boost libraries and how to build the
binaries of libraries that we have to compile separately.

Chapter 4, Getting Started with Boost.Asio, talks about concurrent and nonconcurrent
programming. It also discusses the I/O service, which is used to access the operating
system's resources and establish communication between our program and the
operating system that performs I/O requests.

Preface

[vi]

Chapter 5, Delving into the Boost.Asio Library, walks us through how to serialize an
I/O service's work in order to ensure that the order of work completely matches
the order we have designed. It also covers how to handle errors and exceptions and
create time delays in network programming.

Chapter 6, Creating a Client-server Application, discusses developing a server that is
able to send and receive data traffic from a client and also how to create a client-side
program to receive data traffic.

Chapter 7, Debugging the Code and Solving the Error, covers the debugging process to
trace the errors that may be produced by an unexpected result, such as getting crash
in the middle of a program execution. After reading this chapter, you will be able to
solve various errors by debugging the code.

What you need for this book
To walk through this book and to successfully compile all source codes, you need a
personal computer that runs Microsoft Windows 8.1 (or a later version) and contains
the following software:

•	 MinGW-w64 for Windows, version 4.9.2
•	 The latest version of Notepad++
•	 The Boost C++ libraries, version 1.58.0

Who this book is for
This book is for C++ network programmers who have basic knowledge
of network programming, but no knowledge of how to use Boost.Asio for
network programming.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "Wait for a moment until the mingw-w64-install.exe file is completely
downloaded."

Preface

[vii]

A block of code is set as follows:

/* rangen.cpp */
#include <cstdlib>
#include <iostream>
#include <ctime>
int main(void) {

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

int guessNumber;
std::cout << "Select number among 0 to 10: ";
std::cin >> guessNumber;

Any command-line input or output is written as follows:

rundll32.exe sysdm.cpl,EditEnvironmentVariables

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You will
be greeted by a Welcoming dialog box. Just press the Next button to go to the Setup
Setting dialog box."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Simplifying Your Network
Programming in C++

There are several C++ compilers that we can choose from the Web. To make it easier
for you to follow all the code in this book, I have chosen a compiler that will make
the programming process simpler—definitely the easiest one. In this chapter, you
will discover the following topics:

•	 Setting up the MinGW compiler
•	 Compiling in C++
•	 Troubleshooting in GCC C++

Setting up the MinGW compiler and
Text Editor
This is the hardest part—where we have to choose one compiler over the others.
Even though I realize that every compiler has its own strength and weakness, I want
to make it easier for you to go through all the code in this chapter. So, I suggest that
you apply the same environment that we have, including the compiler that we use.

I am going to use GCC, the GNU Compiler Collection, because of its widely used
open source. Since my environment includes Microsoft Windows as the operating
system, I am going to use Minimalistic GCC for Windows (MinGW) as my
C++ compiler. For those of you who have not heard about GCC, it is a C/C++
compiler that you can find in a Linux operating system and it is included in a Linux
distribution as well. MinGW is a port of GCC to a Windows environment. Therefore,
the entire code and examples in this book are applicable to any other GCC flavor.

Simplifying Your Network Programming in C++

[2]

Installing MinGW-w64
For your convenience, and since we use a 64-bit Windows operating system,
we chose MinGW-w64 because it can be used for Windows 32-bits and 64-bits
architecture. To install it, simply open your Internet browser and navigate to
http://sourceforge.net/projects/mingw-w64/ to go to the download page,
and click on the Download button. Wait for a moment until the mingw-w64-
install.exe file is completely downloaded. Refer to the following screenshot
to locate the Download button:

Now, execute the installer file. You will be greeted by a Welcoming dialog box.
Just press the Next button to go to the Setup Setting dialog box. In this dialog box,
choose the latest GCC version (at the writing time this, it is 4.9.2), and the rest of the
options are to be chosen, as follows:

http://sourceforge.net/projects/mingw-w64/

Chapter 1

[3]

Click on the Next button to continue and go to the installation location option. Here,
you can change the default installation location. I am going to change the installation
location to C:\MinGW-w64 in order to make our next setting easier, but you can keep
this default location if you want.

Click on the Next button to go to the next step and wait for a moment until the files
are downloaded and the installation process is complete.

Setting up the Path environment
Now you have the C++ compiler installed on your machine, but you can only access
it from its installed directory. In order to access the compiler from any directory in
your system, you have to set the PATH environment by performing the following
steps:

1.	 Run Command Prompt as an administrator by pressing the Windows + R key.
Type cmd in the text box and, instead of pressing the Enter key, press Ctrl
+ Shift + Enter to run the command prompt in Administrator mode. The
User Account Control dialog box will then appear. Choose YES to confirm
that you intend to run Command Prompt in Administrator mode. If you
do this correctly, you will get a title bar labeled Administrator: Command
Prompt. If you do not get it, you might not have the administrator
privilege. In this case, you have to contact the administrator of your
computer.

Simplifying Your Network Programming in C++

[4]

2.	 Type the following command in Command Prompt in Administrator mode:
rundll32.exe sysdm.cpl,EditEnvironmentVariables

3.	 Press the Enter key and the command prompt will immediately run the
Environment Variables window. Afterwards, go to System variables, select
the variable named Path, click on the Edit button to open the Edit System
Variable dialog box, and then append the last Variable value parameter
with the following string:
;C:\MinGW-w64\mingw64\bin

(Otherwise, you will have to adjust the path of the installation directory if
you use the default location the installation wizard is given in the previous
step)

4.	 Click on the OK button on the Edit System Variable dialog box, and click on
the OK button again in the Environment Variables dialog box to save these
changes.

It is time to try our Environment Variable setting. Open a new Command Prompt
window, either in Administrator or non-Administrator mode, in any active directory
except C:\MinGW-w64 and type the following command:

g++ --version

You have configured the proper settings if you see the output informing you the
following:

g++ (x86_64-posix-seh-rev2, Built by MinGW-W64 project) 4.9.2

If you are showed a different version number, you might have another GCC
compiler on your computer. To solve this problem, you can modify Environment
Variable and remove all path environment settings associated with the other GCC
compiler, for instance, C:\StrawberryPerl\c\bin.

However, if you do believe that you have followed all the steps correctly, but you
still get an error message, as shown in the following snippet, you might have to
restart your machine for your new system settings to be set:

'g++' is not recognized as an internal or external command, operable
program or batch file.

Chapter 1

[5]

Choosing and installing the Text Editor
Microsoft Windows has been equipped with Notepad, a simple text editor to create
plain text files. You can use Notepad to create a C++ file, where the file must contain
only plain text formatting. You can also turn to a heavy Integrated Development
Environments (IDE) when you want to edit your code, but I prefer a simple,
lightweight, and extensible programming plain-text editor, so I choose to use a text
editor instead of IDE. Since I will need syntax highlighting when writing code to
make it easier to read and understand, I pick Notepad++ as our text editor. You can
choose your favorite text editor as long as you save the output file as plain text. Here
is the sample of syntax highlighting in Notepad++:

If you decide to use Notepad++ as I did, you can go to http://notepad-plus-
plus.org/ to grab the latest version of Notepad++. Find the Download menu on the
main page and select the current version link. There, you will find a link to download
the installer file. Use the Notepad++ Installer file instead of the package file to get
the easiest way to set it up on your machine by following all the instructions on the
installer wizard.

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Simplifying Your Network Programming in C++

[6]

Using the GCC C++ compiler
Now that we have our development ready, we can write our first C++ program. To
keep it clean, create a CPP folder in the C drive (C:\CPP) to store our sample code.
You can have the same directory location on your system in order to follow all the
steps more conveniently. Otherwise, you will have to make a little bit of modification
if you decide to use a different directory location.

Compiling a C++ program
We won't create the Hello World! program for our first example code. It is boring in
my opinion and, by now, you should already know how to code the Hello World!
program. We are going to create a simple random number generator. You can use
this program to play with your friends. They have to guess which number will be
displayed by the program. If the answer is incorrect, you can cross out his/her face
with a marker and continue playing until you are not able to recognize your friend's
face anymore. Here is the code to create this generator:

/* rangen.cpp */
#include <cstdlib>
#include <iostream>
#include <ctime>
int main(void) {
 int guessNumber;
 std::cout << "Select number among 0 to 10:";
 std::cin >> guessNumber;
 if(guessNumber < 0 || guessNumber > 10) {
 return 1;
 }
 std::srand(std::time(0));
 int randomNumber = (std::rand() % (10 + 1));
 if(guessNumber == randomNumber) {
 std::cout << "Congratulation, " <<guessNumber<<" is your
 lucky number.\n";
 }
 else {
 std::cout << "Sorry, I'm thinking about number \n" <<
 randomNumber;
 }
 return 0;
}

Type the code in your text editor and save it with the name of the file rangen.cpp in
the C:\CPP location. Then, open Command Prompt and point the active directory to
the C:\CPP location by typing the following command in Command Prompt:

cd C:\CPP

Chapter 1

[7]

Next, type the following command in the console to compile the code:

g++ -Wall rangen.cpp -o rangen

The preceding command compiles the rangen.cpp file with an executable file
named rangen.exe, which contains a bunch of machine code (the exe extension
is automatically added to indicate that this file is an executable file in Microsoft
Windows). The output file for the machine code is specified using the -o option.
If you use this option, you have to specify the name of the output file as well;
otherwise, the compiler will give you an error of a missing filename. If you omit both
the -o option and the output's filename, the output is written to a default file called
a.exe.

The existing executable file that has the same name as the compiled
source file in the current directory will be overwritten.

I recommend that you use the -Wall option and make it a habit since this option will
turn on all the most commonly used compiler warnings. If the option is disabled,
GCC will not give you any warning. Because our Random Number Generator code
is completely valid, GCC will not give out any warnings while it is compiled. This is
why we depend on the compiler warnings to make sure that our code is valid and is
compiled cleanly.

To run the program, type rangen in the console with the C:\CPP location as the
active directory, and you will be showed a welcoming word: Select number among
0 to 10. Do what it instructs you to and choose a number between 0 to 10. Then, press
Enter and the program will give out a number. Compare it with your own. If both
the numbers are same, you will be congratulated. However, if your chosen number
is different from the number the code generated, you will be informed the same. The
output of the program will look as shown in the following screenshot:

Simplifying Your Network Programming in C++

[8]

Unfortunately, I never guessed the correct number in the three times that I tried.
Indeed, it is not easy to guess which number the rand() function has generated,
even if you use a new seed every time the number is generated. In order to minimize
confusion, I am going to dissect the rangen.cpp code, as follows:

int guessNumber;
std::cout << "Select number among 0 to 10: ";
std::cin >> guessNumber;

I reserved a variable called guessNumber to store the integer number from the user
and used the std::cin command to obtain the number that was input from the
console.

if(guessNumber < 0 || guessNumber > 10) {
 return 1;
}

If the user gives an out-of-range number, notify the operating system that there is an
error that has occurred in the program—I sent Error 1, but in practice, you can send
any number—and let it take care of the error.

std::srand(std::time(0));
int randomNumber = (std::rand() % (10 + 1);

The std::srand function is used to initialize the seed, and in order to generate a
different random number every time the std::rand() function is invoked, we use
the std::time(0) function from the header ctime. To generate a range of random
numbers, we use the modulo method that will generate a random number from 0
to (n-1) if you invoke a function like std::rand() % n. If you want to include the
number n as well, simply add n with 1.

if(guessNumber == randomNumber) {
 std::cout << "Congratulation ,"<< guessNumber<<" is your
 lucky number.\n";
}
else {
 std::cout << "Sorry, I'm thinking about number " <<
 randomNumber << "\n";
}

Here is the fun part, the program compares the user's guessed number with the
generated random number. Whatever happens, the user will be informed of the
result by the program. Let's take a look at the following code:

return 0;

Chapter 1

[9]

A 0 return tells the operating system that the program has been terminated normally
and that there is no need to worry about it. Let's take a look at the following code:

#include <cstdlib>
#include <iostream>
#include <ctime>

Do not forget to include the first three headers in the preceding code since they
contain the function that we used in this program, such as the time() function is
defined in the <ctime> header, the srand() function and the rand() function are
defined in the <cstdlib> header, and the cout() and cin() functions are defined in
the <iostream> header.

If you find that it is hard to guess a number that the program has generated, this is
because we use the current time as the random generator seed, and the consequence
of this is that the generated number will always be different in every invocation of
the program. Here is the screenshot of when I could guess the generated random
number correctly after about six to seven attempts (for all the program invocations,
we guessed the number incorrectly except for the last attempt):

Simplifying Your Network Programming in C++

[10]

Compiling multiple source files
Sometimes, we have to modify our code when it has bugs or errors. If we just make
a single file that contains all the lines of code, we will be confused when we want to
modify the source or it will be hard for us to understand the flow of the program.
To solve the problem, we can split up our code into multiple files where every file
contains only two to three functions so that it is easy to understand and maintain
them.

We have already been able to generate random numbers, so now, let's take a look at
the password generator program. We are going to use it to try compiling multiple
source files. I will create three files to demonstrate how to compile multiple source
files, which are pwgen_fn.h, pwgen_fn.cpp, and passgen.cpp. We will start from
the pwgen_fn.h file whose code is as follows:

/* pwgen_fn.h */
#include <string>
#include <cstdlib>
#include <ctime>
class PasswordGenerator {
 public:
 std::string Generate(int);
};

The preceding code is used to declare the class name. In this example, the class name
is PasswordGenerator, and what it will do in this case is generate the password
while the implementation is stored in the .cpp file. The following is a listing of the
pwgen_fn.cpp file, which contains the implementation of the Generate() function:

/* pwgen_fn.cpp */
#include "pwgen_fn.h"
std::string PasswordGenerator::Generate(int passwordLength) {
 int randomNumber;
 std::string password;
 std::srand(std::time(0));
 for(int i=0; i < passwordLength; i++) {
 randomNumber = std::rand() % 94 + 33;
 password += (char) randomNumber;
 }
 return password;
}

Chapter 1

[11]

The main entry file, passgen.cpp, contains a program that uses the
PasswordGenerator class:

/* passgen.cpp */
#include <iostream>
#include "pwgen_fn.h"
int main(void) {
 int passLen;
 std::cout << "Define password length: ";
 std::cin >> passLen;
 PasswordGenerator pg;
 std::string password = pg.Generate(passLen);
 std::cout << "Your password: "<< password << "\n";
 return 0;
}

From the preceding three source files, we will produce a single executable file. To do
so, go to Command Prompt and type the following command in it:

g++ -Wall passgen.cpp pwgen_fn.cpp -o passgen

I did not get any warning or error, so even you should not. The preceding command
compiles the passgen.cpp and pwgen_fn.cpp files and then links them together
to a single executable file named passgen.exe. The pwgen_fn.h file, since it is the
header file that has same name as the source file, does not need to state the same in
the command.

Here is what you will get if you run the program by typing the passgen command
in the console window; you will get a different password every time the program
is run:

Simplifying Your Network Programming in C++

[12]

Now, it is time for us to dissect the preceding source code. We will start from the
pwgen_fn.h file, which only contains the function declaration, as follows:

std::string Generate(int);

As you can see from the declaration, the Generate() function will have a parameter
with the int type and will return the std::string function. We do not define a
name for the parameter in the header file since it will be matched with the source
file automatically.

Open the pwgen_fn.cpp file, to see the following statement:

std::string PasswordGenerator::Generate(int passwordLength)

Here, we can specify the parameter name, which is passwordLength. In this case,
we can have two or more functions with the same name as long as they are in
different classes. Let's take a look at the following code:

int randomNumber;
std::string password;

I reserved the variable named randomNumber to store random numbers generated by
the rand() function and the password parameter to store the ASCII converted from
the random number. Let's take a look at the following code:

std::srand(std::time(0));

The seed random srand() function is the same as what we used in our previous
code to generate a random seed. We used it in order to produce a different number
every time the rand() function is invoked. Let's take a look at the following code:

for(int i=0; i < passwordLength; i++) {
 randomNumber = std::rand() % 94 + 33;
 password += (char) randomNumber;
}
return password;

The for iteration depends on the passwordLength parameter that the user has
defined. With the random number generator statement std::rand() % 94 + 33,
we can generate the number that represents the ASCII printable character based on
its code from 33 to 126. For more detailed information about the ASCII code table,
you can go to http://en.wikipedia.org/wiki/ASCII. Let's take a look at the
following code:

#include "pwgen_fn.h"

http://en.wikipedia.org/wiki/ASCII

Chapter 1

[13]

The #include header's single line will call all headers included in the pwgen_fn.h
file, so we do not need to declare the included header in this source file as follows:

#include <string>
#include <cstdlib>
#include <ctime>

Now, we move to our main entry code, which is stored in the passgen.cpp file:

int passLen;
std::cout << "Define password length: ";
std::cin >> passLen;

First, the user decides how long a password he/she wants to have, and the program
stores it in the passLen variable:

PasswordGenerator pg;
std::string password = pg.Generate(passLen);
std::cout << "Your password: "<< password << "\n";

Then, the program instantiates the PasswordGenerator class and invokes the
Generate() function to produce a password with the length that the user has
defined before.

If you look at the passgen.cpp file again, you will find that there is a difference
between the two forms of the include statement #include <iostream> (with angle
brackets) and #include "pwgen_fn.h" (with quotation marks). By using angle
brackets in the #include header statement, the compiler will look for the system
header file directories, but does not look inside the current directory by default. With
the quotation marks in the #include header statement, the compiler will search
for the header files in the current directory before looking in the system header file
directories.

Compiling and linking a program separately
We can split up a large program into a set of source files and compile them
separately. Suppose we have many tiny files and we just want to edit a single line
in one of the files, it will be very time consuming if we compile all the files while we
just need to modify a single file.

Simplifying Your Network Programming in C++

[14]

By using the -c option, we can compile the individual source code to produce an
object file that has the .o extension. In this first stage, a file is compiled without
creating an executable file. Then, in the second stage, the object files are linked
together by a separate program called the linker. The linker combines all the object
files together to create a single executable file. Using the previous passgen.cpp,
pwgen_fn.cpp, and pwgen_fn.h source files, we will try to create two object files and
then link them together to produce a single executable file. Use the following two
commands to do the same:

g++ -Wall -c passgen.cpp pwgen_fn.cpp

g++ -Wall passgen.o pwgen_fn.o -o passgen

The first command, using the -c option, will create two object files that have the
same name as the source file name, but with different extensions. The second
command will link them together and produce the output executable file that has the
name stated after the -o option, which is the passgen.exe file.

In case you need to edit the passgen.cpp file without touching the two other files,
you just require to compile the passgen.cpp file, as follows:

g++ -Wall -c passgen.cpp

Then, you need to run the linking command like the preceding second command.

Detecting a warning in the C++ program
As we discussed previously, a compiler warning is an essential aid to be sure of the
code's validity. Now, we will try to find the error from the code that we created.
Here is a C++ code that contains an uninitialized variable, which will give us an
unpredictable result:

/* warning.cpp */
#include <iostream>
#include <string>
int main (void) {
 std::string name;
 int age;
 std::cout << "Hi " << name << ", your age is " << age << "\n";
}

Chapter 1

[15]

Then, we will run the following command to compile the preceding warning.cpp
code:

g++ -Wall -c warning.cpp

Sometimes, we are unable to detect this error since it is not obvious at the first
sight. However, by enabling the -Wall option, we can prevent the error because if
we compile the preceding code with the warning option enabled, the compiler will
produce a warning message, as shown in the following code:

warning.cpp: In function 'int main()':

warning.cpp:7:52: warning: 'age' may be used uninitialized in this
function [-Wmaybe-uninitialized]

std::cout << "Hi " << name << ", your age is " << age << "\n";]

The warning message says that the age variable is not initialized in the warning.
cpp file on the line 7, column 52. The messages produced by GCC always have
the file:line-number:column-number:error-type:message form. The error type
distinguishes between the error messages, which prevent the successful compilation,
and warning messages, which indicate the possible problems (but do not stop the
program from compiling).

Clearly, it is very dangerous to develop a program without checking for compiler
warnings. If there are any functions that are not used correctly, they can cause the
program to crash or produce incorrect results. After turning the compiler warning
option on, the -Wall option catches many of the common errors that occur in C++
programming.

Knowing other important options in the
GCC C++ compiler
GCC supports ISO C++ 1998, C++ 2003, and also C++ 2011 standard in version
4.9.2. Selecting this standard in GCC is done using one of these options: -ansi,
-std=c++98, -std=c++03, or –std=c++11. Let's look at the following code and give
it the name hash.cpp:

/* hash.cpp */
#include <iostream>
#include <functional>
#include <string>
int main(void) {
 std::string plainText = "";

Simplifying Your Network Programming in C++

[16]

 std::cout << "Input string and hit Enter if ready: ";
 std::cin >> plainText;
 std::hash<std::string> hashFunc;
 size_t hashText = hashFunc(plainText);
 std::cout << "Hashing: " << hashText << "\n";
 return 0;
}

If you compile and run the program, it will give you a hash number for every plain
text user input. However, it is little tricky to compile the preceding code. We have
to define which ISO standard we want to use. Let's take a look at the following five
compilation commands and try them one by one in our Command Prompt window:

g++ -Wall hash.cpp -o hash

g++ -Wall -ansi hash.cpp -o hash

g++ -Wall -std=c++98 hash.cpp -o hash

g++ -Wall -std=c++03 hash.cpp -o hash

g++ -Wall -std=c++11 hash.cpp -o hash

When we run the first four preceding compilation commands, we should get the
following error message:

hash.cpp: In function 'int main()':

hash.cpp:10:2: error: 'hash' is not a member of 'std'

 std::hash<std::string> hashFunc;

hash.cpp:10:23: error: expected primary-expression before '>' token

 std::hash<std::string> hashFunc;

hash.cpp:10:25: error: 'hashFunc' was not declared in this scope

 std::hash<std::string> hashFunc;

It says that there is no hash in the std class. Actually, this is not true as a hash has
been defined in the header <string> since C++ 2011. To solve this problem, we
can run the last preceding compilation command, and if it does not throw an error
anymore, then we can run the program by typing hash in the console window.

Chapter 1

[17]

As you can see in the preceding screenshot, I invoked the program twice and gave
Packt and packt as the input. Although I just changed a character, the entire hash
changed dramatically. This is why hashing is used to detect any change in data or a
file if they are transferred, just to make sure the data is not altered.

For more information about ISO C++11 features available in GCC, go to http://
gcc.gnu.org/projects/cxx0x.html. To obtain all the diagnostics required by the
standard, you should also specify the -pedantic option (or the -pedantic-errors
option if you want to handle warnings as errors).

The -ansi option alone does not cause non-ISO programs to
be rejected gratuitously. For that, the -pedantic option or the
-pedantic-errors option is required in addition with the
-ansi option.

Troubleshooting in the GCC C++
compiler
GCC provides several help and diagnostic options to assist in troubleshooting
problems with the compilation process. The options that you can use to ease your
troubleshooting process are explained in the upcoming sections.

http://gcc.gnu.org/projects/cxx0x.html
http://gcc.gnu.org/projects/cxx0x.html

Simplifying Your Network Programming in C++

[18]

Help for command-line options
Use the help options to get a summary of the top-level GCC command-line options.
The command for this is as follows:

g++ --help

To display a complete list of the options for GCC and its associated programs, such
as the GNU Linker and GNU Assembler, use the preceding help option with the
verbose (-v) option:

g++ -v --help

The complete list of options produced by the preceding command is extremely
long—you may wish to go through it using the more command or redirect the output
to a file for reference, as follows:

g++ -v --help 2>&1 | more

Version numbers
You can find the version number of your installed GCC installation using the
version option, as shown in the following command:

g++ --version

In my system, if I run the preceding command, I will get an output like this:

g++ (x86_64-posix-seh-rev2, Built by MinGW-W64 project) 4.9.2

This depends on your setting that you adjust at the installation process.

The version number is important when investigating compilation problems, since
older versions of GCC may be missing some features that a program uses. The
version number has the major-version.minor-version or major-version.minor-
version.micro-version form, where the additional third "micro" version number
(as shown in the preceding command) is used for subsequent bug fix releases in a
release series.

Chapter 1

[19]

The verbose compilation
The -v option can also be used to display detailed information about the exact
sequence of commands that are used to compile and link a program. Here is an
example that shows you the verbose compilation of the hello.cpp program:

g++ -v -Wall rangen.cpp

After this, you will get something like this in the console:

Using built-in specs.

COLLECT_GCC=g++

COLLECT_LTO_WRAPPER=C:/mingw-w64/bin/../libexec/gcc/x86_64-w64-
mingw32/4.9.2/lto-wrapper.exe

Target: x86_64-w64-mingw32

Configured with: ../../../src/gcc-4.9.2/configure –

...Thread model: posix

gcc version 4.9.2 (x86_64-posix-seh-rev2, Built by MinGW-W64 project)

...

The output produced by the -v option can be useful whenever there is a problem
with the compilation process itself. It displays the full directory paths used to search
for header files and libraries, the predefined preprocessor symbols, and the object
files and libraries used for linking.

Summary
We successfully prepared the C++ compiler and you learned how to compile the
source code file you created using the compiler. Do not forget to use the -Wall
(Warning All) option every time you compile the source code because it is
important to avoid a warning and subtle error. Also, it is important to use the
-ansi and -pedantic options so that your source code is able to be compiled
in any compiler, as it will check the ANSI standard and reject non-ISO programs.

Now, we can go to the next chapter to learn the networking concept so that you
can understand network architecture in order to ease your network application
programming process.

[21]

Understanding the
Networking Concepts

Before we start coding a network application, it is better for us to understand how a
network works. In this chapter, we will dig up network concepts with their contents.
The topics that we'll cover in this chapter are as follows:

•	 Distinguishing between the OSI model and the TCP/IP model
•	 Exploring IP addresses in both IPv4 and IPv6
•	 Troubleshooting TCP/IP problems using various tools

An introduction to networking systems
Network architecture is structured with layers and protocols. Each layer in the
architecture has its own role, while its main purpose is to offer a certain service to
the higher layer and communicate with the adjoining layers. However, a protocol is
a collection of rules and conventions that are used by all the communicating parties
to standardize the communication process. For instance, when the layer n in a device
communicates with another layer n in another device, for the communication to take
place, they have to use the same protocol.

There are two popular network architectures that are used nowadays: the Open
Systems Interconnection (OSI) and TCP/IP reference models. We will dig deeper to
understand each reference model with its advantages and disadvantages so that we
can decide which model should be used in our network application.

Understanding the Networking Concepts

[22]

The OSI reference model
The OSI model is used to connect to the open systems—these are the systems that are
open and communicate with other systems. By using this model, we do not depend
on an operating system anymore, so we are allowed to communicate with any
operating system on any computer. This model contains seven layers, where each
layer has a specific function and defines the way data is handled on certain different
layers. The seven layers that are contained in this model are the Physical layer, Data
Link layer, Network layer, Transport layer, Session layer, Presentation layer, and
the Application layer.

The Physical layer
This is the first layer in the OSI model and contains a definition of the network's
physical specification, including the physical media (cables and connectors) and
basic devices (repeaters and hubs). The layer is responsible for the input raw bits
transmission data stream into zeros and for the ones that are on the communication
channel. It then places the data onto the physical media. It is concerned with data
transmission integrity and makes sure that the bits that are sent from one device are
exactly the same as the data that is received by the other device.

The Data Link layer
The main role of the Data Link layer is to provide a link for raw data transmission.
Before the data is transmitted, it is broken up into data frames, and the Data Link
layer transmits them consecutively. The receiver will send back an acknowledge frame
for each frame that has been sent if the service is reliable.

This layer consists of two sublayers: Logical Link Control (LLC) and Media Access
Control (MAC). The LLC sublayer is responsible for transmission error checking and
deals with frame transmission, while the MAC sublayer defines how to retrieve data
from the physical media or store data in the physical media.

We can also find the MAC address, also called as the physical address, in this layer.
The MAC address is used to identify every device that connects to the network
because it is unique for each device. Using Command Prompt, we can obtain the
address by typing the following command in the console window:

ipconfig /all

Chapter 2

[23]

We will get the console output, as follows, after ignoring all other information except
Windows IP Configuration and Wireless LAN adapter Wi-Fi. We can find the MAC
address in the Physical Address section, which is 80-19-34-CB-BF-FB for my own
environment. You will get a different result since the MAC address is unique for
every device:

Windows IP Configuration

 Host Name : HOST1

 Primary Dns Suffix :

 Node Type : Hybrid

 IP Routing Enabled. : No

 WINS Proxy Enabled. : No

Wireless LAN adapter Wi-Fi:

 Connection-specific DNS Suffix . :

 Description : Intel(R) Wireless-N 7260

 Physical Address. : 80-19-34-CB-BF-FB

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::f14e:d5e6:aa0a:5855%3
 (Preferred)

 IPv4 Address. : 192.168.1.4(Preferred)

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.1.254

 DHCP Server : 192.168.1.254

 DHCPv6 IAID : 58726708

 DHCPv6 Client DUID. : 00-01-00-01-1C-89-E6-3E-68-F7-
 28-1E-61-66

 DNS Servers : 192.168.1.254

 NetBIOS over Tcpip. : Enabled

The MAC address contains twelve hexadecimal characters, where two digits are
paired with each other. The first six digits represent the organizationally unique
identifier and the remaining digits represent the manufacturer serial number.
If you are really curious to know what this number means, you can go to www.
macvendorlookup.com and fill the text box with our MAC address to know more
about it. In my own system, I got Intel Corporate as the vendor company name,
which is the same as the brand of my installed network card.

www.macvendorlookup.com
www.macvendorlookup.com

Understanding the Networking Concepts

[24]

The Network layer
The Network layer is responsible for defining the best way to route the packets from
a source to the destination device. It will generate routing tables using Internet
Protocol (IP) as the routing protocol, and the IP address is used to make sure that
the data gets its route to the required destination. There are two versions of IP
nowadays: IPv4 and IPv6. In IPv4, we use 32-bit addresses to address the protocol
and we use 128-bit addresses in IPv6. You are going to learn more about Internet
Protocol, IPv4, and IPv6 in the next topic.

The Transport layer
The Transport layer is responsible for transferring data from a source to destination.
It will split up the data into smaller parts, or in this case segments, and then will join
all the segments to restore the data to its initial form in the destination.

There are two main protocols that work in this layer: the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP). TCP supplies the delivery
of data by establishing a session. The data will not be transmitted until a session
is established. TCP is also known as the connection-oriented protocol, which
means that the session has to be established before transmitting the data. UDP is
a method of delivering data with the best efforts, but does not give a guaranteed
delivery because it does not establish a session. Therefore, UDP is also known as the
connection-less protocol. In-depth explanation about TCP and UDP can be found in
the next topic.

The Session layer
The Session layer is responsible for the establishment, maintenance, and termination
of the session. We can analogize the session like a connection between two devices
on the network. For example, if we want to send a file from a computer to another,
this layer will establish the connection first before the file can be sent. This layer will
then make sure that the connection is still up until the file is sent completely. Finally,
this layer will terminate the connection if it is no longer needed. The connection we
talk about is the session.

This layer also makes sure that the data from a different application is not
interchanged. For example, if we run the Internet browser, chat application, and
download manager at the same time, this layer will be responsible for establishing
the session for every single application and ensure that they remain separated from
other applications.

Chapter 2

[25]

There are three communication methods that are used by this layer: the simplex,
half-duplex, or full-duplex method. In the simplex method, data can only be
transferred by one party, so the other cannot transfer any data. This method is no
longer common in use, since we need applications that can interact with each other.
In the half-duplex method, any data can be transferred to all the involved devices,
but only one device can transfer the data in the time, after it completes the sending
process. Then, the others can also send and transfer data. The full-duplex method
can transfer data to all the devices at the same time. To send and receive data, this
method uses different paths.

The Presentation layer
The Presentation layer role is used to determine the data that has been sent, to
translate the data into the appropriate format, and then to present it. For example,
we send an MP3 file over the network and the file is split up into several segments.
Then, using the header information on the segment, this layer will construct the file
by translating the segments.

Moreover, this layer is responsible for data compression and decompression because
all the data transmitted over the Internet is compressed to save the bandwidth.
This layer is also responsible for data encryption and decryption in order to secure
communication between two devices.

The Application layer
The Application layer deals with the computer application that is used by a user.
Only the application that connects to a network will connect to this layer. This layer
contains several protocols that are needed by a user, which are as follows:

•	 The Domain Name System (DNS): This protocol is the one that finds the
hostname of an IP address. With this system, we do not need to memorize
every IP address any longer, just the hostname. We can easily remember a
word in the hostname instead of a bunch of numbers in the IP address.

•	 The Hypertext Transfer Protocol (HTTP): This protocol is the one that
transmits data over the Internet on web pages. We also have the HTTPS
format that is used to send encrypted data for security issues.

•	 The File Transfer Protocol (FTP): This protocol is the one that is used to
transfer files from or to an FTP server.

•	 The Trivial FTP (TFTP): This protocol is similar to FTP, which is used to
send smaller files.

Understanding the Networking Concepts

[26]

•	 The Dynamic Host Configuration Protocol (DHCP): This protocol is a
method that is used to assign the TCP/IP configuration dynamically.

•	 The Post Office Protocol (POP3): This protocol is an electronic mail protocol
used to get back e-mails from POP3 servers. The server is usually hosted by
an Internet Service Provider (ISP).

•	 The Simple Mail Transfer Protocol (SMTP): This protocol is in contrast with
POP3 and is used to send electronic mails.

•	 The Internet Message Access Protocol (IMAP): This protocol is used to
receive e-mail messages. With this protocol, users can save their e-mail
messages on their folder on a local computer.

•	 The Simple Network Management Protocol (SNMP): This protocol is used
to manage network devices (routers and switches) and detect problems to
report them before they become significant.

•	 The Server Message Block (SMB): This protocol is an FTP that is used on
Microsoft networks primarily for file and printer sharing.

This layer also decides whether enough network resources are available for network
access. For instance, if you want to surf the Internet using an Internet browser, the
Application layer decides whether access to the Internet is available using HTTP.

Let's see the following figure to see which all protocols are included in the OSI layer:

We can divide all the seven layers into two section layers: the Upper Layer and
Lower Layer. The upper layer is responsible for interacting with the user and is less
concerned about the low-level details, whereas the lower layer is responsible for
transferring data over the network, such as formatting and encoding.

The format of data traveling is different for each layer. There are bits for the Physical
layer, frame for the Data Link layer, and so on.

Chapter 2

[27]

The TCP/IP reference model
The TCP/IP model was created before the OSI model. This model works in a similar
way to the OSI model, except that it just contains four layers. Each layer on the TCP/
IP model corresponds to the layers of the OSI model. The TCP/IP Application layer
maps the 5, 6, and 7 layers of the OSI model. The TCP/IP Transport layer maps
the layer 4 of the OSI model. The TCP/IP Internet layer maps the layer 3 of the OSI
model. The TCP/IP Link layer maps the layers 1 and 2 of the OSI model. Let's see the
following figure for further details:

These are the main roles of each layer in the TCP/IP model:

•	 The Link layer is responsible for determining the protocols and physical
devices that are used in the data transmission process.

•	 The Internet layer is responsible for determining the best routing for the data
transmission process by addressing the packet.

•	 The Transport layer is responsible for establishing the communication
between the two devices and sending the packet.

•	 The Application layer is responsible for providing services to applications
that run on a computer. Because of the absence of the session and
presentation layers, applications have to be included in any required session
and presentation functions.

Understanding the Networking Concepts

[28]

Here are the protocols and devices that are involved in the TCP/IP model:

Layer Protocol Device
Application HTTP, HTTPS, SMTP, POP3, and DNS Proxy Server and Firewall
Transport TCP and UDP -
Internet IP and ICMP Router
Link Ethernet, Token Ring, and Frame

Relay
Hub, Modem, and Repeater

Understanding TCP and UDP
As we discussed earlier in this chapter in the Transport layer section, TCP and UDP
are the main protocols that are used to transfer data across a network. The delivery
mechanisms that they have are different from each other. TCP has acknowledgments,
sequence numbers, and flow control in transferring data process to provide a
guaranteed delivery, whereas UDP does not provide a guaranteed delivery but
provides a delivery with best efforts.

Transmission Control Protocol
TCP performs a three-way handshaking process before the protocol establishes the
session. This is done in order to provide a guaranteed delivery. Refer to the following
figure to understand the three-way handshaking process:

From the preceding image, imagine that Carol's device wants to transfer data to
Bryan's device and that they need to perform a three-way handshaking process.
First, Carol's device sends a packet to Bryan's device with the synchronize (SYN)
flag enabled. Once Bryan's device receives the packet, it replies with sending another
packet that has both the SYN and acknowledge (ACK) flags enabled. Lastly, Carol's
device completes the handshaking process by sending a third packet with the ACK
flag enabled. Now, both devices have an established session and an assurance that
the other device is working. The data transmission is then ready to take place after
the session is established.

Chapter 2

[29]

In the security area, we know the term "SYN-Flood", which is a
denial-of-service attack, where an attacker sends a succession of SYN
requests to a target's system in an attempt to consume enough server
resources to make the system unresponsive to legitimate traffic. The
attacker just sends SYN without sending the expected ACK, causing
the server to send the SYN-ACK to a falsified IP address—which will
not send an ACK because it "knows" that it never sent the SYN.

TCP also splits up the data into smaller segments and uses sequence numbers
to track these segments. Each separated segment is assigned different sequence
numbers, such as 1 to 20. The destination device then receives each segment and uses
the sequence numbers to reassemble the file based on the order of the sequence.

For instance, consider that Carol wants to download a JPEG image file from Bryan's
device. After establishing the session in a three-way handshaking process, the two
devices determine how big the single segment is and how many segments need
to be sent between acknowledgments. The total number of segments that can be
sent at a time is known as the TCP sliding window. The data in the segment is not
valid anymore if a single bit is broken or lost in transmission. TCP uses Cyclical
Redundancy Check (CRC) to identify the broken or lost data by verifying that
the data is intact in each segment. If there is any corrupt or missing segment in
transmission, Carol's device will send a negative acknowledge (NACK) packet and
then will request the corrupt or missing segment; otherwise, Carol's device will send
an ACK packet and request the next segment.

User Datagram Protocol
UDP does not perform any handshaking process before sending data. It just sends
the data directly to the destination device; however, it puts in its best effort to
forward the messages. Imagine that we are waiting to receive a message from our
friend. We call his/her phone to receive our message. If our call is not answered, we
can send the e-mail or text message to inform our friend. If our friend does not reply
to our e-mail or text messages, we can send regular e-mails. However, all techniques
that we talked about do not give any assurance that our message was received. But
still, we make our best efforts to forward the message until this works. This our best
effort in analogy of sending e-mails is similar with best-effort term for UDP. It will
give its best effort to ensure that the data is received by the receiver, even though
there is no assurance that the data was received.

Understanding the Networking Concepts

[30]

So, why is UDP used even though it is not reliable? Sometimes we need a
communication which has fast speed data transfer even though has a little bit data
corruption. For instance, streaming audio, streaming video, and Voice over IP
(VoIP) use UDP to make sure that they have fast speed data transfer. Although the
UDP must have had lost packets, we are still able to get all the messages clearly.

However, although UDP does not check the connection before transmitting data, it
actually uses a checksum to validate the data. The checksum can check whether the
received data is altered or not by comparing the checksum value.

Understanding ports
In computer networking, a port is an endpoint to send or receive data. A port is
recognized by its port number, which contains a 16-bit number. The logical port
number is used by both TCP and UDP to trace the contents of a packet and helps
TCP/IP obtain the packet of the application or service that will process the data
when it is received by the device.

There are a total of 65536 TCP ports and 65536 UDP ports. We can divide the TCP
ports into three port ranges, which are:

•	 Well-known ports from 0 to 1023 are ports that have been registered by the
Internet Assigned Numbers Authority (IANA) to associate with specific
protocols or applications.

•	 Registered ports from 1024 to 49151 are ports that have been registered by
IANA for a specific protocol, but unused ports in this range can be assigned
by computer applications.

•	 Dynamic ports from 49152 to 65535 are unregistered ports and can be
assigned for any purpose.

To get more details about all the ports in TCP and UDP, we can go
to en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_
numbers. Also, to know about all the assigned ports that have been
registered by IANA, go to www.iana.org/assignments/port-
numbers.

en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
www.iana.org/assignments/port-numbers
www.iana.org/assignments/port-numbers

Chapter 2

[31]

To understand the port concept, consider that we have an e-mail client installed in
our computer, such as Thunderbird or Microsoft Outlook. Now, we want to send an
e-mail to the Gmail server and then grab all the incoming e-mails from the server to
save them on our local computer. The steps to send an e-mail are as follows:

1.	 Our computer assigns a random unused port number, such as 48127, to send
the e-mail to the Gmail SMTP server to the port 25.

2.	 When the e-mail arrives at the SMTP server, it recognizes that the data
has come from the port 25 and then forwards the data to the SMTP, which
handles the service.

3.	 Once the e-mail is received, the server sends the acknowledgement to the
port 48127 in our computer to inform the computer that the e-mail has been
received.

4.	 After our computer completely receives the acknowledgement from the port
48127, it sends an e-mail to the e-mail client, and the e-mail client then moves
the e-mail from Outbox to the Sent folder.

Similar to the steps for sending an e-mail, to receive an e-mail, we have to deal with a
port. The steps for which are as follows:

1.	 Our computer assigns a random unused port number, such as 48128, to send
a request to the Gmail POP3 server to the port 110.

2.	 When the e-mail arrives at the POP3 server, it recognizes that the data has
come from the port 110 and then forwards the data to POP3, which handles
the service.

3.	 The POP3 server then sends an e-mail to our computer on the port 48128.
4.	 After our computer receives the e-mail from the port 48128, it sends the

e-mail to our e-mail client and then moves it to the Inbox folder. It also
automatically saves the mail to the local computer.

Exploring the Internet Protocol
IP is a primary communication protocol that is used to deliver a datagram across
networks. The datagram itself is a transfer unit associated with a packet-switched
network. The role of IP is to deliver packets from the host to the host based on the IP
address, which is stated in the packet's header. There are two versions of IP that are
commonly used nowadays, which are IPv4 and IPv6.

Understanding the Networking Concepts

[32]

Internet Protocol Version 4 – IPv4
IPv4 has become the standard IP address since 1980s and is used to obtain TCP/
IP traffic from a computer to another over the network. An IP address is unique for
every device connected over the Internet, and all devices can communicate with each
other over the Internet as long as they have a valid IP address.

A valid IP address is constructed by four decimal numbers that are separated by
three dots. The address only contains a decimal number from 0 to 255. We can
say that 10.161.4.25 is a valid IP address since it contains four decimal numbers
between 0 to 255 and is separated by three dots, while 192.2.256.4 is an invalid IP
address because it contains decimal numbers greater than 255.

The decimal numbers actually convert the result from 8 binary digits. So, for the
maximum 8-bit number, we will have 1111 1111 or 255 in decimal. This is why the
range of a decimal number in an IP address is from 0 (0000 0000) to 255 (1111 1111).

To know our IP address configuration, we can use the ipconfig /all command
again in our Command Prompt window. Then, it will display the output as follows:

Wireless LAN adapter Wi-Fi:

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::f14e:d5e6:aa0a:5855%3

 IPv4 Address. : 10.1.6.165

 Subnet Mask : 255.255.255.0

 Default Gateway : 10.1.6.1

The output will show the IP address in the IPv4 address and the IPv6 address. We
can also see that in my device, 10.1.6.1 is used as a default gateway of the system.
The Default Gateway parameter is a point on the computer network that is used to
provide a path for the unmatched IP address or subnets.

An IP address must contain these two components: a network ID to identify the
subnetwork or subnet where the computer is located and a host ID to identify the
computer within that subnet. Every network ID indicates a group of hosts on a
subnet of a network. Devices that have the same network IDs must have unique
host IDs. If two or more devices have the same host ID and the same network ID
(the IP address is the same for all four decimal numbers), there will be an IP address
conflict.

Chapter 2

[33]

For local networks, the subnet mask is used to identify the portion of a network ID
and a host ID in the IP address. The following are a few common subnet masks:

•	 255.0.0.0

•	 255.255.0.0

•	 255.255.255.0

Imagine that we have the IP address 190.23.4.51 and the subnet mask
255.255.0.0. Now, we can find the network ID using the Boolean AND logic for
each bit of the IP address corresponding to the subnet mask. The following table will
convert the IP address and subnet mask into a binary digit and then use the Boolean
AND logic to find out the network ID:

1st Octet 2nd Octet 3rd Octet 4th Octet
190.23.4.51 1011 1110 0001 0111 0000 0100 0011 0011
255.255.0.0 1111 1111 1111 1111 0000 0000 0000 0000
Network ID: 1011 1110 0001 0111 0000 0000 0000 0000

From the preceding table, we can obtain the network ID, which is 190.23.0.0.

The adjacent maximum number has to be applied in a subnet mask. This means that if the
first zero is decided to be used, the remaining numbers have to be zero. So, a subnet mask of
255.0.255.0 is invalid. A subnet mask is also not allowed to begin with zero. This means
that a subnet mask of 0.255.0.0 is invalid as well.

IPv4 can be classified into three primary address classes: Class A, Class B, and Class
C. The class of the address is defined by the first number in the IP address and the
subnet mask is predefined for each class. Here are the three ranges for each class:

Class The first
number

Range of the IP address Subnet mask

Class A 1 to 126 1.0.0.0 to 126.255.255.254 255.0.0.0
Class B 128 to 191 128.0.0.0 to 191.255.255.254 255.255.0.0
Class C 192 to 223 192.0.0.0 to 223.255.255.254 255.255.255.0

Understanding the Networking Concepts

[34]

Our computer is able to determine the class of the IP address by just looking at
the first two bits after converting the first decimal number in the IP address. For
instance, in Class A with the range 1 to 126, the binary digit is between 0000 0001 to
0111 1110. The first two bits might be 0 and 0 or 0 and 1. Class B with the range from
128 to 191 has the range in binary digits from 1000 0000 to 1011 1111. This means
that the highest first bit is always 1 and the second is always 0. Class C with the
range from 192 to 223 has the range in binary digits from 1100 0000 to 1101 1111. The
bits will be all 1 for the first two bits. Refer to the following table to conclude how a
computer determines the class of an IP address by just checking the first two bits of
the IP address (here, X is ignored and can be any hexadecimal character):

Class First number in binary digits
Class A 00XXXXXX

01XXXXXX
Class B 10XXXXXX
Class C 11XXXXXX

By classifying the IP address, we can also determine the subnet mask by just looking
at the IP address because each class has a different subnet mask, shown as follows:

Class Range Subnet Mask
Class A addresses 0 -126 255.0.0.0
Class B addresses 128 to 191 255.255.0.0
Class C addresses 192 to 223 255.255.255.0

By knowing the subnet mask, we can easily know the network ID. Suppose that we
have these three IP addresses:

•	 174.12.1.8

•	 192.168.1.15

•	 10.70.4.13

Now, we can determine the network ID as follows:

The IP address Class Subnet mask The Network ID
174.12.1.8 Class B 255.255.0.0 174.12.0.0
192.168.1.15 Class C 255.255.255.0 192.168.1.0
10.70.4.13 Class A 255.0.0.0 10.0.0.0

Chapter 2

[35]

A subnet mask is also able to reference with an indicator known as Classless Inter-
Domain Routing (CIDR), which is defined based on the number of bits. For instance,
the subnet mask 255.0.0.0 uses 8 bits (a bit with the value of 0 is considered as
unused bits), so it is referenced as /8. Similarly, the subnet mask 255.255.0.0 uses 16
bits and can be referenced as /16, and the subnet mask 255.255.255.0 uses 24 bits and
can be referenced as /24. These are the CIDR notations for our previous IP address
sample:

IP address Subnet mask CIDR notation
174.12.1.8 255.255.0.0 174.12.1.8 /16
192.168.1.15 255.255.255.0 192.168.1.15 /24
10.70.4.13 255.0.0.0 10.70.4.13 /8

Internet Protocol Version 6 – IPv6
IPv6 contains 128 bits and is launched to improve IPv4, which only consists 32 bits.
With 32 bits in IPv4, it can address 4,294,967,296 addresses. The number was very
high at the beginning, but now it has become insufficient because there are many
devices that need an IP address. IPv6 is created to solve the problem because it can
address more than 340,000,000,000,000,000,000,000,000,000,000,000,000, or about
3.4028e+38, which is more than enough—at least for now.

IPv5 had been developed so that it consisted of 64 bits, but it was never
adopted because it was believed that the Internet would run out of IP
addresses quickly if it was used.

The prominent difference between the IPv4 address and IPv6 address is that instead
of displaying the IP address in decimal numbers, IPv6 expresses the address in
hexadecimal characters. We can determine whether it is IPv4 or IPv6 at first sight
by just looking at this format number. We can call the ipconfig /all command
to know our IPv6 address and see it in the Ethernet Adapter Network. I have
fe80::f14e:d5e6:aa0a:5855%3, but yours must be different. The address itself is
fe80::f14e:d5e6:aa0a:5855, and the last %3 variable is a zone index that is used
to identify the network interface card. The number fe80 in the first IPv6 address is
stated as a link-local address, which is an IP address that is automatically assigned
on the network because it is not automatically configured by DHCP or has not been
manually configured yet.

Understanding the Networking Concepts

[36]

As we know, IPv6 is actually a set of 128 bits and converts its bits into a hexadecimal
character in order to simplify its notation. Consider that we have a set of binary
digits that form IPv6, as follows:

0010 0000 0000 0001 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0100 1111 0000 1001 0111 0011
1111 0101 1111 1110 1111 1000 1011 0110

Instead of memorizing all these digits, it is easier if we convert it into the IPv6
address format. First, we convert each four digits group into a hexadecimal character
and we will get these hexadecimal characters:

2001000000000000004f0973f5fef8b6

Second, we separate each set of four characters with a colon, as follows:

2001:0000:0000:0000:004f:0973:f5fe:f8b6

Third, we can throw out the leading zero in each four digit collection, as follows:

2001:0:0:0:4f:973:f5fe:f8b6

Fourth, we collapse the consecutive zero groups into an empty group, shown as
follows:

2001::4f:973:f5fe:f8b6

Now it is easier for us to memorize this IPv6 address.

An empty group, which is indicated by two colons (::), means
inserting as many as zeros as needed to form this address into 128 bits.
IPv6 address is not allowed to have more than one empty group since it
will be confusing for us to determine how many zeros there are in each
empty group.

Similarly, with IPv4, which classifies the IP address by looking at the first number
(the first two bit actually), the type of IPv6 can also be identified by looking at its
prefix. This is how we write all the addresses that have a network ID 2001:04fe that
begins with a 32-bit prefix:

2001:04fe:: /32

This means that the first 32 bits of all addresses are 0010 0000 0000 0001 000 0100 1111
1110. However, to ease the reading of this address, we use a hexadecimal character
instead.

Chapter 2

[37]

Using TCP/IP tools for troubleshooting
Some of the following commands can be used to track any TCP/IP errors. The
commands can be used to examine whether or not any router is down or any
connection is established. It will then help us a lot to decide on the proper solution.

The ipconfig command
We used the ipconfig command earlier to identify the MAC address and the
IP address. In addition to this, we can use this command to check the TCP/IP
configuration. We can also use this command as explained in the upcoming sections.

Displaying the full configuration information
To display the configuration information completely, we can call the following
command on the console:

ipconfig /all

All the configuration information about the network adapter will be displayed for us,
such as the network interface card, wireless card, and Ethernet adapter, like we
have already tried in The Data Link layer section in this chapter when we looked
for MAC Address.

Displaying DNS
The following command will display the content of the DNS Resolver Cache using
the following option:

ipconfig /displaydns

By calling the preceding command, we will be provided with the information about
DNS in our local system, as follows:

Windows IP Configuration

 ipv4only.arpa

 --

 Record Name : ipv4only.arpa

 Record Type : 1

 Time To Live : 77871

 Data Length : 4

 Section : Answer

Understanding the Networking Concepts

[38]

 A (Host) Record . . . : 192.0.0.170

 Record Name : ipv4only.arpa

 Record Type : 1

 Time To Live : 77871

 Data Length : 4

 Section : Answer

 A (Host) Record . . . : 192.0.0.171

 ieonlinews.microsoft.com

 --

 Record Name : ieonlinews.microsoft.com

 Record Type : 1

 Time To Live : 307

 Data Length : 4

 Section : Answer

 A (Host) Record . . . : 131.253.34.240

The meaning of each field in the output of displaying DNS is as follows:

•	 Record Name: This is the name of the DNS that is to be associated with the
IP address.

•	 Record Type: This is the type of the record and is represented as a number.
•	 Time To Live: This is the cache expired time in seconds.
•	 Data Length: This is the size of the memory to store the text of a record value

in byte.
•	 Section: If the value is Answer, this means that it replies the actual query, but

if the value is Additional, this means that it contains information that will
be needed to find the actual answer.

•	 A (Host) Record: This is the place where the actual value is stored.

Flushing DNS
The following command is used to remove the resolved DNS server item but not the
item in a cache. Type the following command in the command prompt:

ipconfig /flushdns

Chapter 2

[39]

Once it successfully flushes the DNS Resolver Cache, we will be showed this
message in the console:

Successfully flushed the DNS Resolver Cache.

If we call the ipconfig /displaydns command again, the resolved DNS server has
been removed and remaining are the item in the cache.

Renewing the IP address
There are two commands that can be used to renew an IP address, which are:

ipconfig /renew

The preceding command will renew the lease process of IPv4 from a DHCP server,
while the following command will renew the lease process of IPv6:

ipconfig /renew6

Releasing the IP address
Use the following two commands to release the lease process of IPv4 and IPv6
respectively, which is obtained from the DHCP server:

ipconfig /release

ipconfig /release6

These commands only affect the DHCP-assigned (automatically assigned) IP address.

The ping command
The ping command is used to examine the connectivity with other computers.
It uses Internet Control Message Protocol (ICMP) to send a message to target
computers. We can use the IP address and hostname to ping the target. Suppose
we have a device whose hostname is HOST1, to ping itself, we can use the following
command:

ping HOST1

Understanding the Networking Concepts

[40]

Then, we will get the following output in our console window:

Pinging HOST1 [fe80::f14e:d5e6:aa0a:5855%3] with 32 bytes of data:

Reply from fe80::f14e:d5e6:aa0a:5855%3: time<1ms

Reply from fe80::f14e:d5e6:aa0a:5855%3: time<1ms

Reply from fe80::f14e:d5e6:aa0a:5855%3: time<1ms

Reply from fe80::f14e:d5e6:aa0a:5855%3: time<1ms

Ping statistics for fe80::f14e:d5e6:aa0a:5855%3:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

If we get the IPv6 address and we want to display it in the IPv4 address instead, we
can use the -4 option to force the use of an IPv4 address, as shown in the following
code:

ping HOST1 -4

Then, we will get the output, as follows:

Pinging HOST1 [10.1.6.165] with 32 bytes of data:

Reply from 10.1.6.165: bytes=32 time<1ms TTL=128

Reply from 10.1.6.165: bytes=32 time<1ms TTL=128

Reply from 10.1.6.165: bytes=32 time<1ms TTL=128

Reply from 10.1.6.165: bytes=32 time<1ms TTL=128

Ping statistics for 10.1.6.165:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

However, what if we are displayed the IPv4 address and we need to get inside the
IPv6 address instead? We can use the -6 option to force the use of an IPv6 address,
as follows:

ping HOST1 -6

Chapter 2

[41]

From the ping command, there are two points that occur. First, the computer named
HOST1 is resolved to the IP address 10.1.6.165. If the hostname resolution does not
work, we will get an error like this:

Ping request could not find host HOST1. Please check the name and try
again.

Second, this command sends four packets to HOST1 and receives four packets. This
reply expresses that the computer named HOST1 is working properly and is able to
respond to the command request. If HOST1 does not work or is disabled to respond to
the request, we will see an output as follows:

Pinging HOST1 [10.1.6.165] with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.1.112:

 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

There is some error information that we may encounter when we send the ping
command, some of which are as follows:

•	 Destination Host Unreachable: This indicates that there is a problem with
the routing. This might be because of the misconfiguration of the default
gateway in the local computer or remote computer.

•	 TTL Expired in Transit: This indicates that the ping process has passed
through the number of routers that is greater than the TTL (Time To Live)
value. Every time the ping passes through a router, the TTL value will be
decremented. If the total number of router that a ping has to pass through is
more than the TTL value, this error message will be displayed.

Another option that we can use in the ping command is –t. With this option, instead
of sending four packets, the ping command will continue to send packets until the
user stops the same by pressing Ctrl + C. This is usually used when we wait for the
disconnect status to turn to the connected status. We can send the command to the
console, as follows:

ping HOST1 -t

Understanding the Networking Concepts

[42]

The tracert command
When we have more than one router, we can use the tracert command to trace
the path that is taken by the packets. The tracert command is similar to the ping
command, except that tracert has the information about the router between the
source device and the destination device. Here is the command that I used to trace
the communication track from my device to google.com:

tracert google.com

I got this output in my console window:

Tracing route to google.com [173.194.126.32]

over a maximum of 30 hops:

 1 1 ms 1 ms 1 ms 254.1.168.192.in-addr.arpa
 [192.168.1.254]

 2 23 ms 26 ms * 125.166.200.1

 3 * * 331 ms 189.subnet125-160-
 11.speedy.telkom.net.id [125.1

 60.11.189]

 4 293 ms 76 ms 84 ms 73.171.94.61.in-addr.arpa
 [61.94.171.73]

 5 504 ms 612 ms 612 ms 61.94.117.229

 6 698 ms 714 ms 209 ms 42.193.240.180.in-addr.arpa
 [180.240.193.42]

 7 * * * Request timed out.

 8 * * * Request timed out.

 9 * 668 ms 512 ms 190.221.14.72.in-addr.arpa
 [72.14.221.190]

 10 * * * Request timed out.

 11 * * 582 ms 136.142.85.209.in-addr.arpa
 [209.85.142.136]

 12 184 ms 202 ms 202 ms 233.242.85.209.in-addr.arpa
 [209.85.242.233]

 13 * * 563 ms 241.251.85.209.in-addr.arpa
 [209.85.251.241]

 14 273 ms 96 ms 83 ms kul01s08-in-f0.1e100.net
 [173.194.126.32]

Trace complete.

google.com

Chapter 2

[43]

As you can see, there are 14 rows, and each row represents a hop (a circumstance in
which the ping command passes the router). If we divide one row by a column, for
instance the fourth row, we will get the following table:

Hop # RTT1 RTT2 RTT3 Name/IP address
4 293 ms 76 ms 84 ms 73.171.94.61.in-addr.arpa [61.94.171.73]

The explanation of each row is as follows:

•	 The Hop number: This is the first column and is just the number of hops
along the route.

•	 RTT columns: This is the Round Trip Time (RTT) for our packet to reach
that destination and return to our computer. The RRT is bifurcated into
three columns because the tracecert command sends three separate signal
packets. This is to display the consistency, or a lack of it thereof, in the route.

•	 The domain/IP column: This is the IP address of the router. The domain
name will also be informed if it is available.

The pathping command
The pathping command is used to verify the routed path. It examines the route of
two devices just like the tracert command does, and then checks the connectivity in
each router like the ping command does. The pathping command sends 100 request
commands to each router and expects to get 100 replies back. For every request that
is not replied, the pathping command will count it as 1 percent data loss. So if, for
instance, there are ten requests that do not reply back, there will be 10 percent data
loss. The smaller the percentage of data loss, the better connection we have.

We will try to send the pathping command to google.com with the help of the
following command:

pathping google.com

By doing this, we will get the output as follows:

Tracing route to google.com [173.194.126.67]

over a maximum of 30 hops:

 0 HOST1 [10.1.7.101]

 1 10.1.7.1

 2 ns.csl-group.net [192.168.2.4]

 3 101.255.54.25

 4 115.124.80.209

google.com

Understanding the Networking Concepts

[44]

 5 peer-Exch-D2-out.tachyon.net.id [115.124.80.73]

 6 ip-sdi.net.id [103.11.31.1]

 7 ip-31-253.sdi.net.id [103.11.31.253]

 8 209.85.243.158

 9 216.239.40.129

 10 209.85.242.243

 11 209.85.251.175

 12 kul06s05-in-f3.1e100.net [173.194.126.67]

Computing statistics for 300 seconds...

 Source to Here This Node/Link

Hop RTT Lost/Sent = Pct Lost/Sent = Pct Address

 0 HOST1 [10.1.7.101]

 0/ 100 = 0% |

 1 33ms 1/ 100 = 1% 1/ 100 = 1% 10.1.7.1

 0/ 100 = 0% |

 2 24ms 1/ 100 = 1% 1/ 100 = 1% ns.csl-group.net
 [192.168.2.4]

 0/ 100 = 0% |

 3 19ms 1/ 100 = 1% 1/ 100 = 1% 101.255.54.25

 0/ 100 = 0% |

 4 18ms 1/ 100 = 1% 1/ 100 = 1% 115.124.80.209

 0/ 100 = 0% |

 5 33ms 1/ 100 = 1% 1/ 100 = 1% peer-Exch-D2-
 out.tachyon.net.id [115.124.80.73]

 0/ 100 = 0% |

 6 53ms 0/ 100 = 0% 0/ 100 = 0% ip-sdi.net.id
 [103.11.31.1]

 0/ 100 = 0% |

 7 38ms 2/ 100 = 2% 2/ 100 = 2% ip-31-253.sdi.net.id
 [103.11.31.253]

 0/ 100 = 0% |

 8 44ms 1/ 100 = 1% 1/ 100 = 1% 209.85.243.158

 0/ 100 = 0% |

 9 59ms 0/ 100 = 0% 0/ 100 = 0% 216.239.40.129

 4/ 100 = 4% |

 10 --- 100/ 100 =100% 96/ 100 = 96% 209.85.242.243

 0/ 100 = 0% |

 11 --- 100/ 100 =100% 96/ 100 = 96% 209.85.251.175

Chapter 2

[45]

 0/ 100 = 0% |

 12 62ms 4/ 100 = 4% 0/ 100 = 0% kul06s05-in-
 f3.1e100.net [173.194.126.67]

Trace complete.

In the 10th and 11th rows, we get 100 percent packet loss because 100 of the packets
sent to the network were lost. However, this is not likely because the data does
not arrive at the destination router as ICMP is blocked by the routers. With this
command, we can identify in which specific router we will encounter the large
percentage of data loss, especially in a large network with many routers connected.

We can also change the number of requests to be sent to the router using the –q
option. We just need to state the new number of requests after the option, as follows:

pathping -q 10 google.com

This will send ten requests to the router instead of 100 requests and will be faster.

The netstat command
The netstat (stands for network statistics) command is used to view the TCP/
IP statistics by displaying all the information about the TCP/IP connection in the
current device. It will show information about connections, ports, and applications
that are involved in the network. We can use this command by typing it in the
console window:

netstat

After this, we will get something as shown in the following output:

Active Connections

 Proto Local Address Foreign Address State

 TCP 127.0.0.1:50239 HOST1:50240 ESTABLISHED

 TCP 127.0.0.1:50240 HOST1:50239 ESTABLISHED

 TCP 127.0.0.1:50242 HOST1:50243 ESTABLISHED

 TCP 127.0.0.1:50243 HOST1:50242 ESTABLISHED

 TCP 127.0.0.1:60855 HOST1:60856 ESTABLISHED

 TCP 127.0.0.1:60856 HOST1:60855 ESTABLISHED

 TCP 127.0.0.1:60845 HOST1:60846 ESTABLISHED

 TCP 127.0.0.1:60846 HOST1:60845 ESTABLISHED

 TCP 192.168.1.4:50257 a72-246-188-35:http ESTABLISHED

Understanding the Networking Concepts

[46]

 TCP 192.168.1.4:50258 a72-246-188-35:http ESTABLISHED

 TCP 192.168.1.4:50259 a72-246-188-35:http ESTABLISHED

 TCP 192.168.1.4:50260 a104-78-107-69:http ESTABLISHED

 TCP 192.168.1.4:50261 a72-246-188-35:http TIME_WAIT

 TCP 192.168.1.4:50262 a72-246-188-35:http ESTABLISHED

 TCP 192.168.1.4:50263 151:http SYN_SENT

 TCP [::1]:12372 HOST1:49567 ESTABLISHED

 TCP [::1]:49567 HOST1:12372 ESTABLISHED

We can see that there are four columns in the netstat command's output. The
explanation of each column is as follows:

•	 Proto: This displays the name of the protocol, which is TCP or UDP.
•	 Local Address: This displays the IP address of the local computer along with

the port number being used. If the server is listening on all interfaces, the
asterisk symbol (*) will be shown as the hostname. If the port has not been
established yet, the port number will be shown as an asterisk as well.

•	 Foreign Address: This displays the IP address and port number of the
remote computer to which the socket is connected. If the port has not been
established yet, the port number will be shown as an asterisk (*).

•	 State: This indicates the state of a TCP connection. The possible states that
we will get are as follows:

°° SYN_SEND: This indicates active open systems.
°° SYN_RECEIVED: This indicates that the server just received SYN

from the client.
°° ESTABLISHED: This indicates that the client received the server's

SYN and that the session is established.
°° LISTEN: This indicates that the server is ready to accept the

connection.
°° FIN_WAIT_1: This indicates active close systems.
°° TIMED_WAIT: This indicates that the client enters this state after

active close.
°° CLOSE_WAIT: This indicates passive close, which means that the

server just received its first FIN from a client.
°° FIN_WAIT_2: This indicates that the client just received an

acknowledgment of its first FIN from the server.
°° LAST_ACK: This indicates that the server is in this state when it

sends its own FIN.

Chapter 2

[47]

°° CLOSED: This indicates that the server received ACK from the client
and that the connection is now closed.

For more details and information about these states, you can go to tools.ietf.org/
html/rfc793 and refer to Chapter 3, Functional Specification.

The telnet command
The telnet (stands for Terminal Network) command is used to access remote
computers over the TCP/IP network. In Windows, there are two Telnet features,
which are the Telnet Server and Telnet Client. The former is used to configure
Windows in order to listen for incoming connections and allow others to use it.
Whereas, the latter is used to connect through Telnet with any server.

By default, Telnet is not installed on the Windows system because of the security
risks. It is more secure to keep Telnet disabled since an attacker can check the
opening port on the system using Telnet. However, no one can stop us from
installing it in our system. We can by do so by performing these steps:

1.	 Open the Run window by pressing Windows + R, type %SYSTEMROOT%\
System32\OptionalFeatures.exe in the text box, and then press the OK
button. The Windows Features window will open then.

2.	 Check Telnet Client and Telnet Server options, and then press the OK
button to confirm the change. The checked option will look like the following
screenshot:

tools.ietf.org/html/rfc793
tools.ietf.org/html/rfc793

Understanding the Networking Concepts

[48]

Telnet should be installed by now on our computer. Open the Command Prompt
window and run the following command to start Telnet:

telnet

After pressing Enter, you will be showed the following output with the blinking
cursor at the end:

Welcome to Microsoft Telnet Client

Escape Character is 'CTRL+]'

Microsoft Telnet>_

Now, Telnet is ready to receive our command. To test it, we can run various
commands in it. The complete list of the commands that are available in telnet can be
found at windows.microsoft.com/en-us/windows/telnet-commands.

Summary
In this chapter, we came to know the main role of each layer in both the OSI and
TCP/IP models when we talked about network architecture. We explored the
Internet Protocol and were able to distinguish the difference between IPv4 and
IPv6. We were also able to determine the subnet mask and classify the IP address.
Moreover, we were able to detect whether an error occurs using various TCP/IP
tools.

In the next chapter, we are going to talk about the Boost C++ library, which is the
library that will make us more productive in the C++ programming. Now, let's
prepare our programming tool and go to the next chapter.

windows.microsoft.com/en-us/windows/telnet-commands

[49]

Introducing the Boost
C++ Libraries

Many programmers use libraries since this simplifies the programming process.
Because they do not need to write the function from scratch anymore, using a
library can save much code development time. In this chapter, we are going to get
acquainted with Boost C++ libraries. Let us prepare our own compiler and text editor
to prove the power of Boost libraries. As we do so, we will discuss the following
topics:

•	 Introducing the C++ standard template library
•	 Introducing the Boost libraries
•	 Preparing the Boost C++ libraries in MinGW compiler
•	 Building the Boost libraries
•	 Compiling code that contains Boost C++ libraries

Introducing the C++ standard template
library
The C++ Standard Template Library (STL) is a generic template-based library that
offers generic containers, among other things. Instead of dealing with dynamic
arrays, linked lists, binary trees, or hash tables, programmers can easily use an
algorithm that is provided by STL.

Introducing the Boost C++ Libraries

[50]

The STL is structured by containers, iterators, and algorithms, and their roles are as
follows:

•	 Containers: Their main role is to manage the collection of objects of certain
kinds, such as arrays of integers or linked lists of strings.

•	 Iterators: Their main role is to step through the element of the collections.
The working of an iterator is similar to that of a pointer. We can increment
the iterator by using the ++ operator and access the value by using the *
operator.

•	 Algorithms: Their main role is to process the element of collections. An
algorithm uses an iterator to step through all elements. After it iterates the
elements, it processes each element, for example, modifying the element. It
can also search and sort the element after it finishes iterating all the elements.

Let us examine the three elements that structure STL by creating the following code:

/* stl.cpp */
#include <vector>
#include <iostream>
#include <algorithm>

int main(void) {
 int temp;
 std::vector<int> collection;
 std::cout << "Please input the collection of integer numbers,
 input 0 to STOP!\n";
 while(std::cin >> temp != 0) {
 if(temp == 0) break;
 collection.push_back(temp);
 }
 std::sort(collection.begin(), collection.end());
 std::cout << "\nThe sort collection of your integer numbers:\n";
 for(int i: collection) {
 std::cout << i << std::endl;
 }
}

Name the preceding code stl.cpp, and run the following command to compile it:

g++ -Wall -ansi -std=c++11 stl.cpp -o stl

Chapter 3

[51]

Before we dissect this code, let us run it to see what happens. This program will
ask users to enter as many as integer they want, and then it will sort the numbers.
To stop the input and ask the program to start sorting, the user has to input 0. This
means that 0 will not be included in the sorting process. Since we do not prevent
users from entering non-integer numbers such as 3.14, the program will soon stop
waiting for the next number after the user enters a non-integer number. The code
yields the following output:

We have entered six integers: 43, 7, 568, 91, 2240, and 56. The last entry is 0 in order
to stop the input process. Then the program starts to sort the numbers and we get the
numbers sorted in sequential order: 7, 43, 56, 91, 568, and 2240.

Now, let us examine our code to identify the containers, iterators, and algorithms
that are contained in the STL:

std::vector<int> collection;

The preceding code snippet has containers from STL. There are several containers,
and we use a vector in the code. A vector manages its elements in a dynamic array,
and they can be accessed randomly and directly with the corresponding index. In
our code, the container is prepared to hold integer numbers so we have to define the
type of the value inside the angle brackets <int>. These angle brackets are also called
generics in STL:

collection.push_back(temp);
std::sort(collection.begin(), collection.end());

Introducing the Boost C++ Libraries

[52]

The begin() and end() functions in the preceding code are algorithms in STL. They
play the role of processing the data in the containers that are used to get the first and
the last elements in the container. Before that, we can see the push_back() function,
which is used to append an element to the container:

for(int i: collection) {
 std::cout << i << std::endl;
}

The preceding for block will iterate each element of the integer that is called
as collection. Each time the element is iterated, we can process the element
separately. In the preceding example, we showed the number to the user. That is
how the iterators in STL play their role.

#include <vector>
#include <algorithm>

We include vector definition to define all vector functions and algorithm definition
to invoke the sort() function.

Introducing the Boost C++ libraries
The Boost C++ libraries is a set of libraries to complement the C++ standard libraries.
The set contains more than a hundred libraries that we can use to increase our
productivity in C++ programming. It is also used when our requirements go beyond
what is available in the STL. It provides source code under Boost Licence, which
means that it allows us to use, modify, and distribute the libraries for free, even for
commercial use.

The development of Boost is handled by the Boost community, which consists of
C++ developers from around the world. The mission of the community is to develop
high-quality libraries as a complement to STL. Only proven libraries will be added to
the Boost libraries.

For detailed information about Boost libraries, go to www.boost.org.
And if you want to contribute developing libraries to Boost, you can join
the developer mailing list at lists.boost.org/mailman/listinfo.
cgi/boost.
The entire source code of the libraries is available on the official GitHub
page at github.com/boostorg.

www.boost.org
lists.boost.org/mailman/listinfo.cgi/boost
lists.boost.org/mailman/listinfo.cgi/boost
github.com/boostorg

Chapter 3

[53]

Advantages of Boost libraries
As we know, using Boost libraries will increase programmer productivity. Moreover,
by using Boost libraries, we will get advantages such as these:

•	 It is open source, so we can inspect the source code and modify it if needed.
•	 Its license allows us to develop both open source and close source projects. It

also allows us to commercialize our software freely.
•	 It is well documented and we can find it libraries all explained, along with

sample code from the official site.
•	 It supports almost any modern operating system, such as Windows and

Linux. It also supports many popular compilers.
•	 It is a complement to STL instead of a replacement. It means using Boost

libraries will ease those programming processes that are not handled by STL
yet. In fact, many parts of Boost are included in the standard C++ library.

Preparing Boost libraries for the MinGW
compiler
Before we go through to program our C++ application by using Boost libraries, the
libraries need to be configured in order to be recognized by MinGW compiler. Here,
we are going to prepare our programming environment so that our compiler is able
use Boost libraries.

Downloading Boost libraries
The best source from which to download Boost is the official download page. We
can go there by pointing our internet browser to www.boost.org/users/download.
Find the Download link in Current Release section. At the time of writing, the
current version of Boost libraries is 1.58.0, but when you read this book, the version
may have changed. If so, you can still choose the current release because the higher
version must be compatible with the lower. However, you have to adjust as we're
going to talk about the setting later. Otherwise, choosing the same version will make
it easy for you to follow all the instructions in this book.

www.boost.org/users/download

Introducing the Boost C++ Libraries

[54]

There are four file formats to be choose from for download; they are .zip, .tar.gz,
.tar.bz2, and .7z. There is no difference among the four files but their file size. The
largest file size is of the ZIP format and the lowest is that of the 7Z format. Because of
the file size, Boost recommends that we download the 7Z format. See the following
image for comparison:

From the preceding image, we can see the size of ZIP version is 123.1 MB while the
size of the 7Z version is 65.2 MB. It means that the size of the ZIP version is almost
twice that of the 7Z version. Therefore, they suggest that you choose the 7Z format
to reduce download and decompression time. Let us choose boost_1_58_0.7z to
be downloaded and save it to our local storage.

Deploying Boost libraries
After we have got boost_1_58_0.7z in our local storage, decompress it using the
7ZIP application and save the decompression files to C:\boost_1_58_0.

The 7ZIP application can be grabbed from www.7-zip.org/
download.html.

www.7-zip.org/download.html
www.7-zip.org/download.html

Chapter 3

[55]

The directory then should contain file structures as follows:

Instead of browsing to the Boost download page and searching for the
Boost version manually, we can go directly to sourceforge.net/
projects/boost/files/boost/1.58.0. It will be useful when
the 1.58.0 version is no longer the current release.

Using Boost libraries
Most libraries in Boost are header-only; this means that all declarations and
definitions of functions, including namespaces and macros, are visible to the
compiler and there is no need to compile them separately. We can now try to use
Boost with the program to convert the string into int value as follows:

/* lexical.cpp */
#include <boost/lexical_cast.hpp>
#include <string>
#include <iostream>

int main(void) {
 try 	 {
 std::string str;
 std::cout << "Please input first number: ";
 std::cin >> str;
 int n1 = boost::lexical_cast<int>(str);
 std::cout << "Please input second number: ";
 std::cin >> str;

sourceforge.net/projects/boost/files/boost/1.58.0
sourceforge.net/projects/boost/files/boost/1.58.0

Introducing the Boost C++ Libraries

[56]

 int n2 = boost::lexical_cast<int>(str);
 std::cout << "The sum of the two numbers is ";
 std::cout << n1 + n2 << "\n";
 return 0;
 }
 catch (const boost::bad_lexical_cast &e) {
 std::cerr << e.what() << "\n";
 return 1;
 }
}

Open the Notepad++ application, type the preceding code, and save it as lexical.
cpp in C:\CPP—the directory we had created in Chapter 1, Simplifying Your Network
Programming in C++. Now open the command prompt, point the active directory to
C:\CPP, and then type the following command:

g++ -Wall -ansi lexical.cpp –Ic:\boost_1_58_0 -o lexical

We have a new option here, which is –I (the "include" option). This option is used
along with the full path of the directory to inform the compiler that we have another
header directory that we want to include to our code. Since we store our Boost
libraries in c:\ boost_1_58_0, we can use –Ic:\boost_1_58_0 as an additional
parameter.

In lexical.cpp, we apply boost::lexical_cast to convert string type data
into int type data. The program will ask the user to input two numbers and will
then automatically find the sum of both numbers. If a user inputs an inappropriate
number, it will inform them that an error has occurred.

The Boost.LexicalCast library is provided by Boost for casting one data type
to another (converting numeric types such as int, double, or floats into string
types, and vice versa). Now, let us dissect lexical.cpp to for a more detailed
understanding of what it does:

#include <boost/lexical_cast.hpp>
#include <string>
#include <iostream>

We include boost/lexical_cast.hpp in order to be able to invoke
boost::lexical_cast function since the function is declared in lexical_cast.
hpp. Also we use string header to apply std::string function as well as iostream
header to apply std::cin, std::cout and std::cerr function.

Chapter 3

[57]

Other functions, such as std::cin and std::cout, have been talked about in
Chapter 1, Simplifying Your Network Programming in C++, and we saw what their
functions are so we can skip those lines:

int n1 = boost::lexical_cast<int>(str);
int n2 = boost::lexical_cast<int>(str);

We used the preceding two separate lines to convert the user-provided input string
into the int data type. Then, after converting the data type, we summed up both of
the int values.

We can also see the try-catch block in the preceding code. It is used to catch the
error if user inputs an inappropriate number, except 0 to 9.

catch (const boost::bad_lexical_cast &e)
{
 std::cerr << e.what() << "\n";
 return 1;
}

The preceding code snippet will catch errors and inform the user what exactly
the error message is by using boost::bad_lexical_cast. We call the e.what()
function to obtain the string of the error message.

Now let us run the application by typing lexical at the command prompt. We will
get output like the following:

Introducing the Boost C++ Libraries

[58]

I put 10 for first input and 20 for the second input. The result is 30 because it just
sums up both input. But what will happen if I put in a non-numerical value, for
instance Packt. Here is the output to try that condition:

Once the application found the error, it will ignore the next statement and go directly
to the catch block. By using the e.what() function, the application can get the error
message and show it to the user. In our example, we obtain bad lexical cast:
source type value could not be interpreted as target as the error message
because we try to assign the string data to int type variable.

Building Boost libraries
As we discussed previously, most libraries in Boost are header-only, but not all of
them. There are some libraries that have to be built separately. They are:

•	 Boost.Chrono: This is used to show the variety of clocks, such as current
time, the range between two times, or calculating the time passed in the
process.

•	 Boost.Context: This is used to create higher-level abstractions, such as
coroutines and cooperative threads.

•	 Boost.Filesystem: This is used to deal with files and directories, such as
obtaining the file path or checking whether a file or directory exists.

•	 Boost.GraphParallel: This is an extension to the Boost Graph Library
(BGL) for parallel and distributed computing.

•	 Boost.IOStreams: This is used to write and read data using stream. For
instance, it loads the content of a file to memory or writes compressed data in
GZIP format.

•	 Boost.Locale: This is used to localize the application, in other words,
translate the application interface to user's language.

•	 Boost.MPI: This is used to develop a program that executes tasks
concurrently. MPI itself stands for Message Passing Interface.

Chapter 3

[59]

•	 Boost.ProgramOptions: This is used to parse command-line options.
Instead of using the argv variable in the main parameter, it uses double
minus (--) to separate each command-line option.

•	 Boost.Python: This is used to parse Python language in C++ code.
•	 Boost.Regex: This is used to apply regular expression in our code. But if our

development supports C++11, we do not depend on the Boost.Regex library
anymore since it is available in the regex header file.

•	 Boost.Serialization: This is used to convert objects into a series of bytes
that can be saved and then restored again into the same object.

•	 Boost.Signals: This is used to create signals. The signal will trigger an
event to run a function on it.

•	 Boost.System: This is used to define errors. It contains four classes:
system::error_code, system::error_category, system::error_
condition, and system::system_error. All of these classes are inside
the boost namespace. It is also supported in the C++11 environment, but
because many Boost libraries use Boost.System, it is necessary to keep
including Boost.System.

•	 Boost.Thread: This is used to apply threading programming. It
provides classes to synchronize access on multiple-thread data. In C++11
environments, the Boost.Thread library offers extensions, so we can
interrupt thread in Boost.Thread.

•	 Boost.Timer: This is used to measure the code performance by using clocks.
It measures time passed based on usual clock and CPU time, which states
how much time has been spent to execute the code.

•	 Boost.Wave: This provides a reusable C preprocessor that we can use in
our C++ code.

There are also a few libraries that have optional, separately compiled binaries. They
are as follows:

•	 Boost.DateTime: It is used to process time data; for instance, calendar
dates and time. It has a binary component that is only needed if we use to_
string, from_string, or serialization features. It is also needed if we target
our application in Visual C++ 6.x or Borland.

•	 Boost.Graph: It is used to create two-dimensional graphics. It has a binary
component that is only needed if we intend to parse GraphViz files.

•	 Boost.Math: It is used to deal with mathematical formulas. It has binary
components for cmath functions.

Introducing the Boost C++ Libraries

[60]

•	 Boost.Random: It is used to generate random numbers. It has a binary
component, which is only needed if we want to use random_device.

•	 Boost.Test: It is used to write and organize test programs and their
runtime execution. It can be used in header-only or separately compiled
mode, but separate compilation is recommended for serious use.

•	 Boost.Exception: It is used to add data to an exception after it has been
thrown. It provides non-intrusive implementation of exception_ptr for
32-bit _MSC_VER==1310 and _MSC_VER==1400, which requires a separately
compiled binary. This is enabled by #define BOOST_ENABLE_NON_
INTRUSIVE_EXCEPTION_PTR.

Let us try to recreate the random number generator program we created in Chapter
1, Simplifying Your Network Programming in C++. But now we will use the Boost.
Random library instead of std::rand() from the C++ standard function. Let us take
a look at the following code:

/* rangen_boost.cpp */
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <iostream>

int main(void) {
 int guessNumber;
 std::cout << "Select number among 0 to 10: ";
 std::cin >> guessNumber;
 if(guessNumber < 0 || guessNumber > 10) {
 return 1;
 }
 boost::random::mt19937 rng;
 boost::random::uniform_int_distribution<> ten(0,10);
 int randomNumber = ten(rng);
 if(guessNumber == randomNumber) {
 std::cout << "Congratulation, " << guessNumber << " is your
 lucky number.\n";
 }
 else {
 std::cout << "Sorry, I'm thinking about number " <<
 randomNumber << "\n";
 }
 return 0;
}

Chapter 3

[61]

We can compile the preceding source code by using the following command:

g++ -Wall -ansi -Ic:/boost_1_58_0 rangen_boost.cpp -o rangen_boost

Now, let us run the program. Unfortunately, for the three times that I ran the
program, I always obtained the same random number as follows:

As we can see from this example, we always get number 8. This is because we apply
Mersenne Twister, a Pseudorandom Number Generator (PRNG), which uses the
default seed as a source of randomness so it will generate the same number every
time the program is run. And, of course, it is not the program that we expect.

Now, we will rework the program once again, just in two lines. First, find the
following line:

#include <boost/random/mersenne_twister.hpp>

Change it as follows:

#include <boost/random/random_device.hpp>

Next, find the following line:

boost::random::mt19937 rng;

Change it as follows:

boost::random::random_device rng;

Then, save the file as rangen2_boost.cpp and compile the rangen2_boost.cpp file
by using the command like we compiled rangen_boost.cpp. The command will
look like this:

g++ -Wall -ansi -Ic:/boost_1_58_0 rangen2_boost.cpp -o rangen2_boost

Introducing the Boost C++ Libraries

[62]

Sadly, there will be something wrong and the compiler will show the following error
message:

cc8KWVvX.o:rangen2_boost.cpp:(.text$_ZN5boost6random6detail20generate
_uniform_intINS0_13random_deviceEjEET0_RT_S4_S4_N4mpl_5bool_ILb1EEE[_
ZN5boost6random6detail20generate_uniform_intINS0_13random_deviceEjEET
0_RT_S4_S4_N4mpl_5bool_ILb1EEE]+0x24f): more undefined references to
boost::random::random_device::operator()()' follow

collect2.exe: error: ld returned 1 exit status

This is because, as we saw earlier, the Boost.Random library needs to be compiled
separately if we want to use the random_device attribute.

Boost libraries have a system to compile or build Boost itself, called Boost.Build
library. There are two steps we have to achieve to install the Boost.Build library.
First, run Bootstrap by pointing the active directory at the command prompt to C:\
boost_1_58_0 and typing the following command:

bootstrap.bat mingw

We use our MinGW compiler we had installed in Chapter 1, Simplifying Your Network
Programming in C++, as our toolset in compiling the Boost library. Wait a second and
then we will get the following output if the process is a success:

Building Boost.Build engine

Bootstrapping is done. To build, run:

 .\b2

To adjust configuration, edit 'project-config.jam'.
Further information:

 - Command line help:
 .\b2 --help

 - Getting started guide:
 http://boost.org/more/getting_started/windows.html

 - Boost.Build documentation:
 http://www.boost.org/build/doc/html/index.html

Chapter 3

[63]

In this step, we will find four new files in the Boost library's root directory. They are:

•	 b2.exe: This is an executable file to build Boost libraries
•	 bjam.exe: This is exactly the same as b2.exe but it is a legacy version
•	 bootstrap.log: This contains logs from the bootstrap process
•	 project-config.jam: This contains a setting that will be used in the

building process when we run b2.exe

We also find that this step creates a new directory in C:\boost_1_58_0\tools\
build\src\engine\bin.ntx86 , which contains a bunch of .obj files associated
with Boost libraries that needed to be compiled.

After that, run the second step by typing the following command at the command
prompt:

b2 install toolset=gcc

Grab yourself a cup of coffee after running that command because it will take
about twenty to fifty minutes to finish the process, depending on your system
specifications. The last output we will get will be as follows:

...updated 12562 targets...

This means that the process is complete and we have now built the Boost libraries. If
we check in our explorer, the Boost.Build library adds C:\boost_1_58_0\stage\
lib, which contains a collection of static and dynamic libraries that we can use
directly in our program.

bootstrap.bat and b2.exe use msvc (Microsoft Visual C++
compiler) as the default toolset, and many Windows developers already
have msvc installed on their machines. Since we have installed the GCC
compiler, we set the mingw and gcc toolset options in Boost's build.
If you also have mvsc installed and want to use it in Boost's build, the
toolset options can be omitted.

Now, let us try to compile the rangen2_boost.cpp file again, but now with the
following command:

c:\CPP>g++ -Wall -ansi -Ic:/boost_1_58_0 rangen2_boost.cpp -
Lc:\boost_1_58_0\stage\lib -lboost_random-mgw49-mt-1_58 -
lboost_system-mgw49-mt-1_58 -o rangen2_boost

Introducing the Boost C++ Libraries

[64]

We have two new options here, they are –L and –l. The -L option is used to define
the path that contains the library file if it is not in the active directory. The –l option
is used to define the name of library file but omitting the first lib word in front of
the file name. In this case, the original library file name is libboost_random-mgw49-
mt-1_58.a, and we omit the lib phrase and the file extension for option -l.

The new file called rangen2_boost.exe will be created in C:\CPP. But before we can
run the program, we have to ensure that the directory that the program installed has
contained two library files which the program is dependent on. These are libboost_
random-mgw49-mt-1_58.dll and libboost_system-mgw49-mt-1_58.dll, and we
can get them from the library directory c:\boost_1_58_0_1\stage\lib.

Just to make it easy for us to run that program, run the following copy command to
copy the two library files to C:\CPP:

copy c:\boost_1_58_0_1\stage\lib\libboost_random-mgw49-mt-1_58.dll
c:\cpp

copy c:\boost_1_58_0_1\stage\lib\libboost_system-mgw49-mt-1_58.dll
c:\cpp

And now the program should run smoothly.

In order to create a network application, we are going to use the Boost.Asio library.
We do not find Boost.Asio—the library that we are going to use to create a network
application—in the non-header-only library. It seems that we do not need to build
the Boost library since Boost.Asio is header-only library. This is true, but since
Boost.Asio depends on Boost.System and Boost.System needs to be built before
being used, it is important to build Boost first before we can use it to create our
network application.

For option –I and –L, the compiler does not care if we use backslash
(\) or slash (/) to separate each directory name in the path because the
compiler can handle both Windows and Unix path styles.

Chapter 3

[65]

Summary
We saw that Boost C++ libraries were developed to complement the standard C++
library. We have also been able to set up our MinGW compiler in order to compile
the code that contains Boost libraries and build the binaries of libraries that have
to be compiled separately. In the next chapter, which talks about the Boost.Asio
library (the library we are going to use to develop network applications), we will
delve into Boost libraries specifically. Please remember that although we can use
the Boost.Asio library as a header-only library, it would be better to build all Boost
libraries by using the Boost.Build library. It will be easy for us to use all libraries
without worrying about compiling failure.

[67]

Getting Started with
Boost.Asio

We already know about the Boost C++ library in general. Now it is time to find out
more about Boost.Asio, the library that we use to develop network applications.
Boost.Asio is a collection of libraries that are used to process data asynchronously
because Asio itself stands for Asynchronous I/O (input and output). Asynchronous
means that a particular task in a program will operate without blocking other tasks
and Boost.Asio will notify the program when it has finished carrying out that task.
In other words, the task is executed concurrently.

In this chapter, we are going to discuss the following topics:

•	 Distinguishing between concurrent and nonconcurrent programming
•	 Understanding the I/O service, the brain and the heart of Boost.Asio
•	 Binding a function dynamically to a function pointer
•	 Synchronizing access to any global data or shared data

Getting closer to the Boost.Asio library
Imagine we are developing an audio downloader application and we want the
user to be able to navigate to all the menus in the application, even when the
downloading process is in progress. If we do not use asynchronous programming,
the application will be blocked by the downloading process and the user will have
to wait until the downloading of the file is complete. But thanks to asynchronous
programming, the user does not need to wait until the download process is complete
to continue using the application.

Getting Started with Boost.Asio

[68]

In other words, a synchronous process is like queuing in a theater ticketing line. We
will be served only if we reach the ticket counter and before that, we have to wait
for all the processes of the previous costumers who are in front of us in the line to be
completed. In contrast, we can imagine that the asynchronous process is like dinning
in a restaurant where the waiter does not have to wait for the order of a customer to
be prepared by the cook. Instead of blocking the time and waiting for the cook, the
waiter can go and take orders from other customers.

The Boost libraries also have the Boost.Thread library that is used to execute tasks
concurrently, but the Boost.Thread library is used to access internal resources, such
as the CPU core resource, while the Boost.Asio library is used to access external
resources, such as network connections, because the data is sent and received by
a network card.

Let's distinguish between concurrent and nonconcurrent programming. Take a look
at the following code for this:

/* nonconcurrent.cpp */
#include <iostream>

void Print1(void) {
 for(int i=0; i<5; i++) {
 std::cout << "[Print1] Line: " << i << "\n";
 }
}

void Print2(void) {
 for(int i=0; i<5; i++) {
 std::cout << "[Print2] Line: " << i << "\n";
 }
}

int main(void) {
 Print1();
 Print2();
 return 0;
}

The preceding code is a nonconcurrent program. Save the code as nonconcurrent.cpp
and then compile it using the following command:

g++ -Wall -ansi nonconcurrent.cpp -o nonconcurrent

Chapter 4

[69]

After running nonconcurrent.cpp, an output like this will be displayed in front
of you:

We want to run two functions: Print1() and Print2(). In nonconcurrent
programming, the application runs the Print1() function first and afterwards,
completes all the instructions in the function. The program continues to invoke the
Print2() function until the instruction is run completely.

Now, let's compare nonconcurrent programming with concurrent programming.
For this, take a look at the following code:

/* concurrent.cpp */
#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void Print1() {
 for (int i=0; i<5; i++) {
 boost::this_thread::sleep_for(boost::chrono::
 milliseconds{500});
 std::cout << "[Print1] Line: " << i << '\n';
 }
}

void Print2() {
 for (int i=0; i<5; i++) {
 boost::this_thread::sleep_for(boost::chrono::
 milliseconds{500});
 std::cout << "[Print2] Line: " << i << '\n';
 }
}

Getting Started with Boost.Asio

[70]

int main(void) {
 boost::thread_group threads;
 threads.create_thread(Print1);
 threads.create_thread(Print2);
 threads.join_all();
}

Save the preceding code as concurrent.cpp and compile it using the following
command:

g++ -ansi -std=c++11 -I ../boost_1_58_0 concurrent.cpp -o concurrent
-L ../boost_1_58_0/stage/lib -lboost_system-mgw49-mt-1_58 -lws2_32 -l
boost_thread-mgw49-mt-1_58 -l boost_chrono-mgw49-mt-1_58

Run the program to get the following output:

We can see from the preceding output that the Print1() and Print2() functions
are run concurrently. The Print2() function does not need to wait for the Print1()
function to finish executing all the instructions that are to be invoked. This is why we
call this concurrent programming.

Do not forget to copy the associated dynamic library file if you include
a library in your code. For instance, if you include boost_system-
mgw49-mt-1_58 using the –l option, you have to copy the libboost_
system-mgw49-mt-1_58.dll file and paste it into the same directory
as the output-executable file.

Chapter 4

[71]

Examining the I/O service in the Boost.
Asio library
The core object of the Boost::Asio namespace is io_service. The I/O service
is a channel that is used to access operating system resources and establish
communication between our program and the operating system that performs I/O
requests. There is also an I/O object that has the role of submitting I/O requests. For
instance, the tcp::socket object will provide a socket programming request from
our program to the operating system.

Using and blocking the run() function
One of the most frequently used functions in the I/O service object is the run()
function. It is used to run the io_service object's event processing loop. It will block
the next statement program until all the work in the io_service object is completed
and there are no more handlers to be dispatched. If we stop the io_service object, it
will no longer block the program.

In programming, event is an action or occurrence detected by a
program, which will be handled by the program using the event
handler object. The io_service object has one or more instances
where events are handled, which is event processing loop.

Now, let's take a look at the following code snippet:

/* unblocked.cpp */
#include <boost/asio.hpp>
#include <iostream>

int main(void) {
 boost::asio::io_service io_svc;

 io_svc.run();

 std::cout << "We will see this line in console window." <<
 std::endl;

 return 0;
}

Getting Started with Boost.Asio

[72]

We save the preceding code as unblocked.cpp and then run the following command
to compile it:

g++ -Wall -ansi -I ../boost_1_58_0 unblocked.cpp -o unblocked -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32

When we run the program, the following output gets displayed:

We will see this line in console window.

However, why do we still obtain the line of text in the console even though
previously we knew that the run() function blocks the next function after it is
invoked? This is because we have not given any work to the io_service object.
Since there is no work for io_service to do, the io_service object should not block
the program.

Now, let's give the io_service object some work to do. The program for this will
look like as shown in the following code:

/* blocked.cpp */
#include <boost/asio.hpp>
#include <iostream>

int main(void) {
 boost::asio::io_service io_svc;
 boost::asio::io_service::work worker(io_svc);

 io_svc.run();

 std::cout << "We will not see this line in console window :(" <<
 std::endl;

 return 0;
}

Give the preceding code the name blocked.cpp and then compile it by typing the
following command in our console window:

g++ -Wall -ansi -I ../boost_1_58_0 blocked.cpp -o blocked -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32

If we run the program by typing blocked in our console, we will not see the line of
text anymore since we have added the following code line:

boost::asio::io_service::work work(io_svc);

Chapter 4

[73]

The work class is responsible for telling the io_service object when the work
starts and when it has finished. It will make sure that the run() function in the io_
service object will not exit during the time the work is underway. Also, it will make
sure that the run() function does exit when there is no unfinished work remaining.
In our preceding code, the work class informs the io_service object that it has work
to do, but we do not define what the work is. Therefore, the program will be blocked
infinitely and it will not show the output. The reason it has been blocked is because
the run() function is invoked even though we can still terminate the program by
pressing Ctrl + C.

Using the non-blocking poll() function
Now, we will leave the run() function for a while and try to use the poll()
function. The poll() function is used to run ready handlers until there are no
more ready handlers remaining or until the io_service object has been stopped.
However, in contrast with the run() function, the poll() function will not block the
program.

Let's type the following code that uses the poll() function and save it as poll.cpp:

/* poll.cpp */
#include <boost/asio.hpp>
#include <iostream>

int main(void) {
 boost::asio::io_service io_svc;

 for(int i=0; i<5; i++) {
 io_svc.poll();
 std::cout << "Line: " << i << std::endl;
 }

 return 0;
}

Then, compile poll.cpp by using the following command:

g++ -Wall -ansi -I ../boost_1_58_0 poll.cpp -o poll -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32

Getting Started with Boost.Asio

[74]

Because there is no work that the io_service object has to do, the program should
display the five lines of text as follows:

However, what if we give work to the io_service object when we use the
poll() function? To find out the answer, let's type the following code and save
it as pollwork.cpp:

/* pollwork.cpp */
#include <boost/asio.hpp>
#include <iostream>

int main(void) {
 boost::asio::io_service io_svc;
 boost::asio::io_service::work work(io_svc);

 for(int i=0; i<5; i++) {
 io_svc.poll();
 std::cout << "Line: " << i << std::endl;
 }

 return 0;
}

To compile pollwork.cpp, use the following command:

g++ -Wall -ansi -I ../boost_1_58_0 pollwork.cpp -o pollwork -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32

The difference between the poll.cpp file and the pollwork.cpp file is only the
following line:

boost::asio::io_service::work work(io_svc);

Chapter 4

[75]

However, if we run pollwork.exe, we will obtain the same output as that of poll.exe.
This is because, as we know from before, the poll() function will not block the program
while there is more work to do. It will execute the current work and then return the value.

Removing the work object
We can also unblock the program by removing the work object from the io_service
object, but we have to use a pointer to the work object in order to remove the work
object itself. We are going to use the shared_ptr pointer, a smart pointer provided
by the Boost libraries.

Let's use the modified code of blocked.cpp. The code for this will be as follows:

/* removework.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

int main(void) {
 boost::asio::io_service io_svc;
 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(io_svc)
);

 worker.reset();

 io_svc.run();

 std::cout << "We will not see this line in console window :(" <<
 std::endl;

 return 0;
}

Save the preceding code as removework.cpp and compile it using the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 removework.cpp -o removework -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32

Getting Started with Boost.Asio

[76]

When we run removework.cpp, compared to blocked.cpp, which will block the
program infinitely, the following line of text will be displayed to us:

Now, let's dissect the code. As we can see in the preceding code, we used the
shared_ptr pointer to instantiate the work object. With this smart pointer provided
by Boost, we no longer need to manually delete memory allocation in order to store
the pointer since it guarantees that the object pointed to will be deleted when the last
pointer is destroyed or reset. Do not forget to include shared_ptr.hpp inside the
boost directory as the shared_ptr pointer is defined in the header file.

We also add the reset() function to reset the io_service object when it prepares
for a subsequent run() function invocation. The reset() function has to be invoked
before any invocation of the run() or poll() functions. It will also tell the shared_
ptr pointer to automatically destroy the pointer we created. More information about
the share_ptr pointer can be found at www.boost.org/doc/libs/1_58_0/libs/
smart_ptr/shared_ptr.htm.

The preceding program explains that we have successfully removed the work object
from the io_service object. We can use this functionality if we intend to finish all
the pending work even though it hasn't actually been finished yet.

Dealing with many threads
We have only dealt with one thread for one io_service object so far. If we want
to deal with more threads in a single io_service object, the following code will
explain how to do this:

/* multithreads.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <iostream>

www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm
www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm

Chapter 4

[77]

boost::asio::io_service io_svc;
int a = 0;

void WorkerThread() {
 std::cout << ++a << ".\n";
 io_svc.run();
 std::cout << "End.\n";
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(io_svc)
);

 std::cout << "Press ENTER key to exit!" << std::endl;

 boost::thread_group threads;
 for(int i=0; i<5; i++)
 threads.create_thread(WorkerThread);

 std::cin.get();

 io_svc.stop();

 threads.join_all();

 return 0;
}

Give the preceding code the name mutithreads.cpp and then compile it using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 multithreads.cpp -o multithreads -
L ../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -
l boost_thread-mgw49-mt-1_58

We include the thread.hpp header file so that we can use the thread object defined
inside the header file. The thread itself is a piece sequence of instructions that can be
run independently, so we can run multiple threads at once.

Getting Started with Boost.Asio

[78]

Now, run mutithreads.exe in our console. I obtained the following output by
running it:

You might obtain a different output because all the threads that are set up as a pool
of threads are equivalent to each other. The io_service object may choose any one
of them randomly and invoke its handler, so we cannot guarantee whether or not the
io_service object will choose a thread sequentially:

for(int i=0; i<5; i++)
 threads.create_thread(WorkerThread);

Using the preceding code snippet, we can create five threads to display lines of text
as you can see in the previous screenshot. The five lines of text will be enough for
this example to view the order of nonconcurrent flow:

std::cout << ++a << ".\n";
io_svc.run();

In every thread that is created, the program will invoke the run() function to run
the work of the io_service object. Calling the run() function once is insufficient
because all nonworkers will be invoked after the run() object finishes all its work.

After creating five threads, the program runs the work of the io_service object:

std::cin.get();

After all the work is run, the program waits for you to press the Enter key from the
keyboard using the preceding code snippet:

io_svc.stop();

Chapter 4

[79]

Once the user presses the Enter key, the program will hit the preceding code snippet.
The stop() function will notify the io_service object that all the work should be
stopped. This means that the program will stop the five threads that we have:

threads.join_all();

The join_all() function will then continue with all the unfinished threads,
and the program will wait until all the processes in all the threads are complete.
The preceding code snippet will continue the following statement inside the
WorkerThread() block:

std::cout << "End.\n";

So after we press the Enter key, the program will finish its remaining code and we
will obtain the rest of the output as follows:

Understanding the Boost.Bind library
We have been able to use the io_service object and initialize the work object. What
we should know after this is how to give some work to the io_service object. But
before we progress to giving work to the io_service service, we need to understand
the boost::bind library.

The Boost.Bind library is used to ease the invocation of a function pointer.
It converts the syntax from something that is abstruse and confusing to something
that is easy to understand.

Getting Started with Boost.Asio

[80]

Wrapping a function invocation
Let's look at the following code in order to understand how to wrap a function
invocation:

/* uncalledbind.cpp */
#include <boost/bind.hpp>
#include <iostream>

void func() {
 std::cout << "Binding Function" << std::endl;
}

int main(void) {
 boost::bind(&func);
 return 0;
}

Save the preceding code as uncalledbind.cpp and then compile it using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 uncalledbind.cpp -o uncalledbind

We will not get any line of text as output since we just created a function invocation
but haven't actually called it. We have to add it to the () operator to call the function
as follows:

/* calledbind.cpp */
#include <boost/bind.hpp>
#include <iostream>

void func() {
 std::cout << "Binding Function" << std::endl;
}

int main(void) {
 boost::bind(&func)();
 return 0;
}

Name the preceding code calledbind.cpp and run the following command to
compile it:

g++ -Wall -ansi -I ../boost_1_58_0 calledbind.cpp -o calledbind

Chapter 4

[81]

Now, we will get the line of text as the output if we run the program, and of course,
we will see the bind() function as an output:

boost::bind(&func)();

As we can see in the entire code, the change is only in one line, as shown in the
preceding code snippet.

Now, let's use the function that has arguments to pass. We will use boost::bind for
this purpose in the following code:

/* argumentbind.cpp */
#include <boost/bind.hpp>
#include <iostream>

void cubevolume(float f) {
 std::cout << "Volume of the cube is " << f * f * f << std::endl;
}

int main(void) {
 boost::bind(&cubevolume, 4.23f)();
 return 0;
}

Run the following command to compile the preceding argumentbind.cpp file:

g++ -Wall -ansi -I ../boost_1_58_0 argumentbind.cpp -o argumentbind

We successfully call the function with the argument using boost::bind because of
which we obtain the following output:

Volume of the cube is 75.687

You need to remember that if the function has more than one argument, we have
to match the function signature exactly. The following code will explain this in
more detail:

/* signaturebind.cpp */
#include <boost/bind.hpp>
#include <iostream>
#include <string>

void identity(std::string name, int age, float height) {
 std::cout << "Name : " << name << std::endl;
 std::cout << "Age : " << age << " years old" << std::endl;

Getting Started with Boost.Asio

[82]

 std::cout << "Height : " << height << " inch" << std::endl;
}

int main(int argc, char * argv[]) {
 boost::bind(&identity, "John", 25, 68.89f)();
 return 0;
}

Compile the signaturebind.cpp code by using the following command:

g++ -Wall -ansi -I ../boost_1_58_0 signaturebind.cpp -o signaturebind

The signature of an identity function are std::string, int, and float. So, we have
to fill the bind parameter with std::string, int, and float, respectively.

Because we have matched the function signature exactly, we will obtain an output as
follows:

We have already been able to call the global() function in boost::bind. Now, let's
continue to call the function inside a class in boost::bind. The code for this looks as
follows:

/* classbind.cpp */
#include <boost/bind.hpp>
#include <iostream>
#include <string>

class TheClass {
public:
 void identity(std::string name, int age, float height) {
 std::cout << "Name : " << name << std::endl;
 std::cout << "Age : " << age << " years old" <<
 std::endl;
 std::cout << "Height : " << height << " inch" << std::endl;
 }
};

Chapter 4

[83]

int main(void) {
 TheClass cls;
 boost::bind(&TheClass::identity, &cls, "John", 25, 68.89f)();
 return 0;
}

Compile the preceding classbind.cpp code by using following command:

g++ -Wall -ansi -I ../boost_1_58_0 classbind.cpp -o classbind

The output for this will be exactly the same as the signaturebind.cpp code since
the content of the function is exactly the same as well:

boost::bind(&TheClass::identity, &cls, "John", 25, 68.89f)();

As we can see in the preceding code snippet, we have to pass the boost:bind
arguments with the class and function name, object of the class, and parameter based
on the function signature.

Working with the Boost.Bind library
So far, we have been able to use boost::bind for the global and class functions.
However, when we use the io_service object with boost::bind, we will get a non-
copyable error because the io_service object cannot be copied.

Now, let's take a look at multithreads.cpp again. We will modify the code to
explain the use of boost::bind for the io_service object and we will still need the
help of the shared_ptr pointer. Let's take a look at the following code snippet:

/* ioservicebind.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <iostream>

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 std::cout << counter << ".\n";
 iosvc->run();
 std::cout << "End.\n";
}

Getting Started with Boost.Asio

[84]

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 std::cout << "Press ENTER key to exit!" << std::endl;

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 std::cin.get();

 io_svc->stop();

 threads.join_all();

 return 0;
}

We name the preceding code ioservicebind.cpp and compile it using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 ioservicebind.cpp -o ioservicebind
–L ../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32
-l boost_thread-mgw49-mt-1_58

When we run ioservicebind.exe, we obtain the same output as multithreads.exe,
but of course, the program will randomize the order of all threads:

boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

We instantiate the io_service object in the shared_ptr pointer to make it copyable
so that we can bind it to the worker thread() function that we use as a thread
handler:

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter)

Chapter 4

[85]

The preceding code snippet shows us that the io_service object can be passed
to the function. We do not need to define an int global variable as we did in the
multithreads.cpp code snippet, since we can also pass the int argument to the
WorkerThread() function:

std::cout << counter << ".\n";

Now, instead of incrementing the int variable to be shown to the user. We can use
the preceding code snippet because we passed the counter from the for loop in the
main block.

If we look at the create_thread() function, we see the different arguments that it
gets in the ioservicebind.cpp and multithreads.cpp files. We can pass a pointer
to the void() function that takes no arguments as the argument to the create_
thread() function, as we can see in the multithreads.cpp file. We can also pass a
binding function as an argument to the create_thread() function, as we can see in
the ioservicebind.cpp file.

Synchronizing data access with the Boost.
Mutex library
Have you ever got the following output when you ran the multithreads.exe or
ioservicebind.exe executable files?

We can see in the preceding screenshot that there is a formatting issue here. Because
the std::cout object is a global object, writing to it from different threads at once
can cause output formatting issues. To solve this issue, we can use a mutex object
that can be found in the boost::mutex object provided by the thread library. Mutex
is used to synchronize access to any global data or shared data. To understand more
about Mutex, take a look at the following code:

Getting Started with Boost.Asio

[86]

/* mutexbind.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << counter << ".\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "End.\n";
 global_stream_lock.unlock();
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 std::cout << "Press ENTER key to exit!" << std::endl;

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 std::cin.get();

 io_svc->stop();

 threads.join_all();

 return 0;
}

Chapter 4

[87]

Save the preceding code as mutexbind.cpp and then compile it using the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 mutexbind.cpp -o mutexbind -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
boost_thread-mgw49-mt-1_58

Now, run the mutexbind.cpp file and we will not face the formatting issue anymore:

boost::mutex global_stream_lock;

We instantiate the new mutex object, global_stream_lock. With this object, we
can call the lock() and unlock() functions. The lock() function will block other
threads that access the same function to wait for the current thread to be finished.
The other threads can access the same function if only the current thread has called
the unlock() function. One thing to remember is that we should not call the lock()
function recursively because if the lock() function is not unlocked by the unlock()
function, then thread deadlock will occur and it will freeze the application. So, we
have to be careful when using the lock() and unlock() functions.

Giving some work to the I/O service
Now, it is time for us to give some work to the io_service object. Knowing more
about boost::bind and boost::mutex will help us to give the io_service object
work to do. There are two member functions in the io_service object: the post()
and dispatch() functions, which we will frequently use to do this. The post()
function is used to request the io_service object to run the io_service object's
work after we queue up all the work, so it does not allow us to run the work
immediately. While the dispatch() function is also used to make a request to the
io_service object to run the io_service object's work, but it will execute the work
right away without queuing it up.

Using the post() function
Let's examine the post() function by creating the following code. We will use the
mutexbind.cpp file as our base code, since we will just modify the source code:

/* post.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>

Getting Started with Boost.Asio

[88]

#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << counter << ".\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "End.\n";
 global_stream_lock.unlock();
}

size_t fac(size_t n) {
 if (n <= 1) {
 return n;
 }
 boost::this_thread::sleep(
 boost::posix_time::milliseconds(1000)
);
 return n * fac(n - 1);
}

void CalculateFactorial(size_t n) {
 global_stream_lock.lock();
 std::cout << "Calculating " << n << "! factorial" << std::endl;
 global_stream_lock.unlock();

 size_t f = fac(n);

 global_stream_lock.lock();
 std::cout << n << "! = " << f << std::endl;
 global_stream_lock.unlock();
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

Chapter 4

[89]

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has finished."
 << std::endl;
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 io_svc->post(boost::bind(CalculateFactorial, 5));
 io_svc->post(boost::bind(CalculateFactorial, 6));
 io_svc->post(boost::bind(CalculateFactorial, 7));

 worker.reset();

 threads.join_all();

 return 0;
}

Name the preceding code as post.cpp and compile it using the following command:

g++ -Wall -ansi -I ../boost_1_58_0 post.cpp -o post -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
boost_thread-mgw49-mt-1_58

Before we run the program, let's examine the code to understand its behavior:

size_t fac(size_t n) {
 if (n <= 1) {
 return n;
 }
 boost::this_thread::sleep(
 boost::posix_time::milliseconds(1000)
);
 return n * fac(n - 1);
}

Getting Started with Boost.Asio

[90]

We add the fac() function to calculate the n factorial recursively. There is a time
delay to slow down the process in order to see the work of our worker threads:

io_svc->post(boost::bind(CalculateFactorial, 5));
io_svc->post(boost::bind(CalculateFactorial, 6));
io_svc->post(boost::bind(CalculateFactorial, 7));

In the main block, we post three function objects on the io_service object, using the
post() function. We do this just after we initialize the five worker threads. However,
because we call the run() function of the io_service object inside each thread, the
work of the io_service object will run. This means that the post() function will do
its job.

Now, let's run post.cpp and take a look at what has happened here:

As we can see in the output of the preceding screenshot, the program runs the thread
from the pool of threads, and after it finishes one thread, it calls the post() function
from the io_service object until all three post() functions and all five threads have
been called. Then, it calculates the factorial for each three n number. After it gets the
worker.reset() function, it is notified that the work has been finished, and then it
joins all the threads via the threads.join_all() function.

Chapter 4

[91]

Using the dispatch() function
Now, let's examine the dispatch() function to give the io_service function some
work. We will still use the mutexbind.cpp file as our base code and we will modify
it a little so that it becomes like this:

/* dispatch.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc) {
 global_stream_lock.lock();
 std::cout << "Thread Start.\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread Finish.\n";
 global_stream_lock.unlock();
}

void Dispatch(int i) {
 global_stream_lock.lock();
 std::cout << "dispath() Function for i = " << i << std::endl;
 global_stream_lock.unlock();
}

void Post(int i) {
 global_stream_lock.lock();
 std::cout << "post() Function for i = " << i << std::endl;
 global_stream_lock.unlock();
}

Getting Started with Boost.Asio

[92]

void Running(boost::shared_ptr<boost::asio::io_service> iosvc) {
 for(int x = 0; x < 5; ++x) {
 iosvc->dispatch(boost::bind(&Dispatch, x));
 iosvc->post(boost::bind(&Post, x));
 boost::this_thread::sleep(boost::posix_time::
 milliseconds(1000));
 }
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit automatically once all work
 has finished." << std::endl;
 global_stream_lock.unlock();

 boost::thread_group threads;

 threads.create_thread(boost::bind(&WorkerThread, io_svc));

 io_svc->post(boost::bind(&Running, io_svc));

 worker.reset();

 threads.join_all();

 return 0;
}

Give the preceding code the name dispatch.cpp and compile it using the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 dispatch.cpp -o dispatch -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
boost_thread-mgw49-mt-1_58

Chapter 4

[93]

Now, let's run the program to get the following output:

Different than the post.cpp file, in the dispatch.cpp file, we just create one worker
thread. Also, we add two functions, dispatch(), and post() to understand the
difference between both functions:

iosvc->dispatch(boost::bind(&Dispatch, x));
iosvc->post(boost::bind(&Post, x));

If we look at the preceding code snippet inside the Running() function, we expect
to get the ordered output between the dispatch() and post() functions. However,
when we see the output, we find that the result is different because the dispatch()
function is called first and the post() function is called after it. This happens because
the dispatch() function can be invoked from the current worker thread, while the
post() function has to wait until the handler of the worker is complete before it can
be invoked. In other words, the dispatch() function's events can be executed from
the current worker thread even if there are other pending events queued up, while
the post() function's events have to wait until the handler completes the execution
before being allowed to be executed.

Getting Started with Boost.Asio

[94]

Summary
There are two functions that we can use to get the io_service object working for us:
the run() and poll() member functions. The run() function blocks the program
because it has to wait for the work that we assign to it, while the poll() function
does not block the program. When we need to give some work to the io_service
object, we simply use the poll() or run() functions, depending on what we need,
and then we call the post()or dispatch() functions as needed. The post() function
is used to command the io_service object in order to run the given handler, but
without permitting the handler is called by the io_service object from inside this
function. While the dispatch() function is used to call the handler in the thread in
which the run()or poll() functions are currently being invoked. The fundamental
difference between the dispatch() and the post() functions is that the dispatch()
function completes the work right away whenever it can, while the post() function
always queues the work.

We found out about the io_service object, how to run it, and how to give it some
work. Now, let's move to the next chapter to find out more about the Boost.Asio
library, and we will be one step closer to creating our network programming.

[95]

Delving into the
Boost.Asio Library

Now that we are able to run the io_service object and give it some work to do, it is
time for us to find out more about other objects in the Boost.Asio library in order to
develop the network application. All works of the io_service object we used before
are run asynchronously but not in a serialized order, which means we are not able to
determine the order of the io_service object's work that will be run. Also, we have
to consider what we will do if our application encounters any errors at runtime and
think about time interval in running any io_service object work. Therefore, in this
chapter, we will discuss the following topics:

•	 Serially executing the work of the io_service object
•	 Catching the exception(s) and handling them properly
•	 Executing the work in the desired amount of time

Serializing the I/O service work
Suppose we want to queue up the work to be done but the order is important. If we
just apply the asynchronous method, we won't know the order of work we will get.
We need to make sure that the order of work is the one we want and have designed
it to be. For instance, if we post Work A, Work B, and Work C, in that order, we want
to keep that order at runtime.

Delving into the Boost.Asio Library

[96]

Using the strand function
Strand is a class in the io_service object that provides handler execution
serialization. It can be used to ensure the work we have will be executed serially.
Let us examine the following code to understand serializing by using the strand
function. But first, we will start without using the strand() and lock() functions:

/* nonstrand.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
global_stream_lock.unlock();
}

void Print(int number) {
 std::cout << "Number: " << number << std::endl;
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

Chapter 5

[97]

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::this_thread::sleep(boost::posix_time::milliseconds(500));

 io_svc->post(boost::bind(&Print, 1));
 io_svc->post(boost::bind(&Print, 2));
 io_svc->post(boost::bind(&Print, 3));
 io_svc->post(boost::bind(&Print, 4));
 io_svc->post(boost::bind(&Print, 5));

 worker.reset();

 threads.join_all();

 return 0;
}

Save the preceding code as nonstrand.cpp and compile it with the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 nonstrand.cpp -o nonstrand -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Delving into the Boost.Asio Library

[98]

Then, run it by typing nonstrand in the console window. We will get an output
similar to the following:

You may get a different output, and running the program several times does, in fact,
yield different orders of the results. This is because, as we discussed in the previous
chapter, without the lock object, the output will be unsynchronized, shown as
follows. We can notice that the result looks disordered:

Number: Number: 1

Number: 5

Number: 3

2

Number: 4

As we can see in the following snippet, we do not use the lock object to synchronize
the output. This is why we get the output as shown in the preceding screenshot.

void Print(int number) {
 std::cout << "Number: " << number << std::endl;

}

Chapter 5

[99]

Now, let us apply the strand function to synchronize the flow of the program. Type
the following code and save it as strand.cpp:

/* strand.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void Print(int number) {
 std::cout << "Number: " << number << std::endl;
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 boost::asio::io_service::strand strand(*io_svc);

Delving into the Boost.Asio Library

[100]

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::this_thread::sleep(boost::posix_time::milliseconds(500));

 strand.post(boost::bind(&Print, 1));
 strand.post(boost::bind(&Print, 2));
 strand.post(boost::bind(&Print, 3));
 strand.post(boost::bind(&Print, 4));
 strand.post(boost::bind(&Print, 5));

 worker.reset();

 threads.join_all();

 return 0;
}

Compile the preceding code by using the following command:

g++ -Wall -ansi -I ../boost_1_58_0 strand.cpp -o strand -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

We make just a little modification from nonstrand.cpp to strand.cpp, but the
impact is big. Before we run the program, let us distinguish the code between
nonstrand.cpp and strand.cpp:

io_svc->post(boost::bind(&Print, 1));
io_svc->post(boost::bind(&Print, 2));
io_svc->post(boost::bind(&Print, 3));
io_svc->post(boost::bind(&Print, 4));
io_svc->post(boost::bind(&Print, 5));

Chapter 5

[101]

We use the post() function in the io_service object to give it work. But by using
this method, the flow of the program is unpredictable because it is not synchronized:

strand.post(boost::bind(&Print, 1));
strand.post(boost::bind(&Print, 2));
strand.post(boost::bind(&Print, 3));
strand.post(boost::bind(&Print, 4));
strand.post(boost::bind(&Print, 5));

Then, we use the strand object to give the work to the io_service object. By using
this method, we will ensure that the order of the work is exactly the same as what we
have stated in the code. To prove it, let's take a look at the following output:

The order of the work is the same as the sequence of the work in our code. We are
shown the output of the work in numerical order, which is:

Number: 1

Number: 2

Number: 3

Number: 4

Number: 5

And, if you remember, we continue to omit the lock() function from the Print()
function and it still runs properly due to the strand object's usage. Now, no matter
how many times we re-run the program, the results are always in ascending order.

Delving into the Boost.Asio Library

[102]

Wrapping a handler through the strand object
There is a function in boost::asio::strand called the wrap() method. Based on
the official Boost documentation, it creates a new handler function object that will
automatically pass the wrapped handler to the strand object's dispatch function
when it is called. Let us look at the following code to explain it:

/* strandwrap.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void Print(int number) {
 std::cout << "Number: " << number << std::endl;
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

Chapter 5

[103]

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 boost::asio::io_service::strand strand(*io_svc);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has finished."
 << std::endl;
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::this_thread::sleep(boost::posix_time::milliseconds(100));
 io_svc->post(strand.wrap(boost::bind(&Print, 1)));
 io_svc->post(strand.wrap(boost::bind(&Print, 2)));

 boost::this_thread::sleep(boost::posix_time::milliseconds(100));
 io_svc->post(strand.wrap(boost::bind(&Print, 3)));
 io_svc->post(strand.wrap(boost::bind(&Print, 4)));

 boost::this_thread::sleep(boost::posix_time::milliseconds(100));
 io_svc->post(strand.wrap(boost::bind(&Print, 5)));
 io_svc->post(strand.wrap(boost::bind(&Print, 6)));

 worker.reset();

 threads.join_all();

 return 0;
}

Give the preceding code the name strandwrap.cpp, then compile it by using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 strandwrap.cpp -o strandwrap -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Delving into the Boost.Asio Library

[104]

Now, run the program and we will get the following output:

However, if we run the program many times, it might produce a random output like
the following:

Number: 2

Number: 1

Number: 3

Number: 4

Number: 6

Number: 5

Although the work is guaranteed to be executed serially, it is not guaranteed which
work's order actually takes place as a result of the built-in handler wrapper. And if
the order is really important, we have to look at the built-in handler wrapper itself
when using the strand object.

Handling exceptions and errors
Sometimes, our code will throw an exception or error at runtime. As you may
remember in our discussion of the lexical.cpp in Chapter 3, Introducing the Boost
C++ Libraries, we must sometimes use exception handling in our code, and we will
now dig it up to delve into exception and error handling.

Chapter 5

[105]

Handling an exception
An exception is a way of reacting to a situation in which the code has exceptional
circumstances by transferring control to the handler. To handle the exception, we
need to use the try-catch block in our code; then, if an exceptional circumstance
arises, an exception will be thrown to the exception handler.

Now, take a look at the following code to see how exception handling is used:

/* exception.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 try {
 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
 }
 catch(std::exception & ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
}

void ThrowAnException(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Throw Exception " << counter << "\n" ;
 global_stream_lock.unlock();

Delving into the Boost.Asio Library

[106]

 throw(std::runtime_error("The Exception !!!"));
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=2; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 io_svc->post(boost::bind(&ThrowAnException, io_svc, 1));
 io_svc->post(boost::bind(&ThrowAnException, io_svc, 2));
 io_svc->post(boost::bind(&ThrowAnException, io_svc, 3));
 io_svc->post(boost::bind(&ThrowAnException, io_svc, 4));
 io_svc->post(boost::bind(&ThrowAnException, io_svc, 5));

 threads.join_all();

 return 0;
}

Save the preceding code as exception.cpp and run the following command to
compile it:

g++ -Wall -ansi -I ../boost_1_58_0 exception.cpp -o exception -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Chapter 5

[107]

Then, run the program and you should get the following output:

As we can see, we are not shown the line from std::cout << "Thread " <<
counter << " End.\n"; because of the exception. When the work of the
io_service object is run, it always throws an exception by using the throw
keyword so that the exception will be caught by the catch block within the
WorkerThread function, since the iosvc->run() function is inside the try block.

We can also see that although we post work for the io_service object five times, the
exception handling only handle two exceptions because once the thread has finished,
the join_all() function in the thread will finish the thread and exit the program. In
other words, we can say that once the exception is handled, the thread exits to join
the call. Additional code that might have thrown an exception will never be called.

How about if we put in the io_service object's work invocation recursively? Will
it lead to an infinitely running program? Let us try to throw the exception infinitely.
The code will look like the following:

/* exception2.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

Delving into the Boost.Asio Library

[108]

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 try {
 iosvc->run();

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
}

void ThrowAnException(boost::shared_ptr<boost::asio::io_service>
iosvc) {
 global_stream_lock.lock();
 std::cout << "Throw Exception\n" ;
 global_stream_lock.unlock();

 iosvc->post(boost::bind(&ThrowAnException, iosvc));

 throw(std::runtime_error("The Exception !!!"));
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

Chapter 5

[109]

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 io_svc->post(boost::bind(&ThrowAnException, io_svc));

 threads.join_all();

 return 0;
}

Save the preceding code as exception2.cpp and compile it by using the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 exception2.cpp -o exception2 -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Now, let us examine the code:

iosvc->post(boost::bind(&ThrowAnException, iosvc));

We add the preceding code snippet inside the ThrowAnException function. Every
time the ThrowAnException function is called, it will call itself. Then, it should be an
infinite program since there is a recursive function. Let us run the program to prove
this by typing the exception2 command in the console window. The output will be
like the following:

Delving into the Boost.Asio Library

[110]

Fortunately, the program was able to finish successfully. This happened because the
exception propagated through the run() function and the worker threads exited.
After that, all the threads finished and the join_all() function was called. That is
why the program exits even though there is still work left in the io_service object.

Handling an error
In our previous example, we used the run() function without any parameters,
but in fact, the function has two overload methods, std::size_t run() and
std::size_t run(boost::system::error_code & ec). The latter method
has an error code parameter that will be set if an error occurs.

Now, let us try to use an error code as an input parameter in the run() function.
Take a look at the following code:

/* errorcode.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 boost::system::error_code ec;
 iosvc->run(ec);

 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }

Chapter 5

[111]

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void ThrowAnException(boost::shared_ptr<boost::asio::io_service>
iosvc) {
 global_stream_lock.lock();
 std::cout << "Throw Exception\n" ;
 global_stream_lock.unlock();

 iosvc->post(boost::bind(&ThrowAnException, iosvc));

 throw(std::runtime_error("The Exception !!!"));
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 io_svc->post(boost::bind(&ThrowAnException, io_svc));

 threads.join_all();

 return 0;
}

Delving into the Boost.Asio Library

[112]

Save the preceding code as errorcode.cpp and use the following command to
compile the code:

g++ -Wall -ansi -I ../boost_1_58_0 errorcode.cpp -o errorcode -L ../
boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Now, run the program by typing the errorcode command in the console. As a result
of doing so, the program will crash. The following screenshot shows the output:

We intend to retrieve the error code by using the following code:

iosvc->run(ec);

And we can catch the error by using the if block, as follows:

if(ec)

However, in error variable approach, user exceptions translate to boost::asio
exceptions; thus, the error variable ec does not interpret the user exception as an
error so the exception is not caught by the handler. If the Boost.Asio library needs
to throw an error, it will become an exception if there is no error variable, or it will be
converted into an error variable. It is better if we keep using the try-catch block to
catch any exceptions or errors.

Chapter 5

[113]

Also, we have to examine the type of exception, which is either system failure or
context failure. If it is system failure, then we have to invoke the stop() function in
the io_service class to ensure the work object has been destroyed in order for the
program to be able to exit. In contrast, if the exception is context failure, we need the
worker thread to call the run() function once more in order to prevent the thread
from dying. Now, take a look at the following code to understand the concept:

/* errorcode2.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Error Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Exception Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

Delving into the Boost.Asio Library

[114]

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void ThrowAnException(boost::shared_ptr<boost::asio::io_service>
iosvc) {
 global_stream_lock.lock();
 std::cout << "Throw Exception\n" ;
 global_stream_lock.unlock();

 iosvc->post(boost::bind(&ThrowAnException, iosvc));

 throw(std::runtime_error("The Exception !!!"));
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "The program will exit once all work has
 finished.\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 io_svc->post(boost::bind(&ThrowAnException, io_svc));

 threads.join_all();

 return 0;
}

Chapter 5

[115]

Save the preceding code as errorcode2.cpp and then compile it by executing the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 errorcode2.cpp -o errorcode2 -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

If we run the program, we will see that it will not exit, and we have to press Ctrl + C
to stop the program:

If we see the following code snippet:

while(true) {
 try {
 . . .
 iosvc->run(ec);
 if(ec)
 . . .
 }
 catch(std::exception &ex) {
 . . .
 }
}

The worker thread is looping. This is also the case when an exception occurs in the
output result (indicated by the Throw Exception and the Exception Message: The
Exception!!! output). Call the run() function again so it will post a new event to
the queue. Of course, we don't want this situation to occur in our application.

Delving into the Boost.Asio Library

[116]

Timing the work execution using the
timer class
There is a class in the Boost C++ library that provides the ability to conduct a
blocking or asynchronous wait for a timer until it expires, known as the deadline
timer. A deadline timer indicates one of two states: expired or not expired.

An expiring timer
Here, we are going to create a timer that will expire in 10 seconds. Let us take a look
at the following code:

/* timer.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service> iosvc,
int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();

Chapter 5

[117]

 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void TimerHandler(const boost::system::error_code & ec) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Error Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {
 global_stream_lock.lock();
 std::cout << "You see this line because you have waited for 10
 seconds.\n";
 std::cout << "Now press ENTER to exit.\n";
 global_stream_lock.unlock();
 }
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Wait for ten seconds to see what happen, ";
 std::cout << "otherwise press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

Delving into the Boost.Asio Library

[118]

 boost::asio::deadline_timer timer(*io_svc);
 timer.expires_from_now(boost::posix_time::seconds(10));
 timer.async_wait(TimerHandler);

 std::cin.get();

 io_svc->stop();

 threads.join_all();

 return 0;
}

Save the preceding code as timer.cpp and run the following command to compile it:

g++ -Wall -ansi -I ../boost_1_58_0 timer.cpp -o timer -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Now, let us distinguish the code before we run it:

boost::asio::deadline_timer timer(*io_svc);
timer.expires_from_now(boost::posix_time::seconds(10));
timer.async_wait(TimerHandler);

Before the program calls the TimerHandler function, it has to wait for 10 seconds
because we use the expires_from_now function from the timer object. The
async_wait() function will wait until the timer has expired:

void TimerHandler(const boost::system::error_code & ec) {
 if(ec)
 . . .
}
else {
 global_stream_lock.lock();
 std::cout << "You see this line because you have waited for 10
 seconds.\n";
 std::cout << "Now press ENTER to exit.\n";
 global_stream_lock.unlock();
}

After the timer has expired, the TimerHandler function will be invoked and since
there is no error, the program will execute the code inside the else block. Let us run
the program to see the complete output:

Chapter 5

[119]

And, since we used the async_wait() function, we can hit the Enter key to exit the
program before we see the line, Now press ENTER to exit.

Using the timer along with the boost::bind
function
Let us try to create a recurring timer. We have to initialize the global timer object in
order for the object to become a shared object. To achieve this, we need help from the
shared_ptr pointer and the boost::bind method to make and keep the thread safe
since we will use a shared object:

/* timer2.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

Delving into the Boost.Asio Library

[120]

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void TimerHandler(
 const boost::system::error_code &ec,
 boost::shared_ptr<boost::asio::deadline_timer> tmr
)
{
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Error Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {
 global_stream_lock.lock();
 std::cout << "You see this every three seconds.\n";
 global_stream_lock.unlock();

 tmr->expires_from_now(boost::posix_time::seconds(3));
 tmr->async_wait(boost::bind(&TimerHandler, _1, tmr));
 }
}

Chapter 5

[121]

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::shared_ptr<boost::asio::deadline_timer> timer(
 new boost::asio::deadline_timer(*io_svc)
);
 timer->expires_from_now(boost::posix_time::seconds(3));
 timer->async_wait(boost::bind(&TimerHandler, _1, timer));

 std::cin.get();

 io_svc->stop();

 threads.join_all();

 return 0;
}

Save the preceding code as timer2.cpp and run the following command to
compile it:

g++ -Wall -ansi -I ../boost_1_58_0 timer2.cpp -o timer2 -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Delving into the Boost.Asio Library

[122]

Now, run the program. We will get a recurring output, which we can stop by hitting
the Enter key, as follows:

We see from the output that the timer is ticked every three seconds and the work will
be stopped after the user presses the Enter key. Now, let us see the following code
snippet:

timer->async_wait(boost::bind(&TimerHandler, _1, timer));

The boost::bind function helps us to use the global timer object. And if we look
deeper, we can use the _1 parameter for our boost::bind function. If we read the
documentation of the boost::bind function, we will find that the _1 parameter is a
placeholder argument that will be substituted by the first input argument.

For more information about binding with a placeholder, check out the
official Boost documentation at www.boost.org/doc/libs/1_58_0/
libs/bind/doc/html/bind.html.
And for more information on placeholder arguments, see
en.cppreference.com/w/cpp/utility/functional/
placeholders.

www.boost.org/doc/libs/1_58_0/libs/bind/doc/html/bind.html
www.boost.org/doc/libs/1_58_0/libs/bind/doc/html/bind.html
en.cppreference.com/w/cpp/utility/functional/placeholders
en.cppreference.com/w/cpp/utility/functional/placeholders

Chapter 5

[123]

Using the timer along with the boost::strand
function
Since the timer is asynchronously executed, it is possible that the timer execution is
not in a serialized process. The timer might be executed in one thread while another
event is executed at the same time. As we have discussed previously, we can utilize
the strand function to serialize the order of execution. Let us take a look at the
following code snippet:

/* timer3.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();

Delving into the Boost.Asio Library

[124]

 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void TimerHandler(
 const boost::system::error_code &ec,
 boost::shared_ptr<boost::asio::deadline_timer> tmr,
 boost::shared_ptr<boost::asio::io_service::strand> strand
)
{
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Error Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {
 global_stream_lock.lock();
 std::cout << "You see this every three seconds.\n";
 global_stream_lock.unlock();

 tmr->expires_from_now(boost::posix_time::seconds(1));
 tmr->async_wait(
 strand->wrap(boost::bind(&TimerHandler, _1, tmr, strand))
);
 }
}

void Print(int number) {
 std::cout << "Number: " << number << std::endl;
 boost::this_thread::sleep(
 boost::posix_time::milliseconds(500));
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

Chapter 5

[125]

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);
 boost::shared_ptr<boost::asio::io_service::strand> strand(
 new boost::asio::io_service::strand(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=5; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::this_thread::sleep(boost::posix_time::seconds(1));

 strand->post(boost::bind(&Print, 1));
 strand->post(boost::bind(&Print, 2));
 strand->post(boost::bind(&Print, 3));
 strand->post(boost::bind(&Print, 4));
 strand->post(boost::bind(&Print, 5));

 boost::shared_ptr<boost::asio::deadline_timer> timer(
 new boost::asio::deadline_timer(*io_svc)
);

 timer->expires_from_now(boost::posix_time::seconds(1));
 timer->async_wait(
 strand->wrap(boost::bind(&TimerHandler, _1, timer, strand))
);

 std::cin.get();

 io_svc->stop();

 threads.join_all();

 return 0;
}

Delving into the Boost.Asio Library

[126]

Save the preceding code as timer3.cpp and compile it by running the following
command:

g++ -Wall -ansi -I ../boost_1_58_0 timer3.cpp -o timer3 -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Now, run the program by typing the timer3 command in the console and we will
get the following output:

From the output, we can see that the first five work objects are executed first because
they have to be serially executed and afterwards, the TimerHandler() functions
are executed. The work objects have to be completed first before the timer thread
is executed. If we remove the strand wrap, the flow of the program will be messy
because we do not lock the std::cout function inside the Print() function.

Summary
We have successfully serialized the io_service object's work by using the strand
object, so we can ensure the order of work we have designed. We can also ensure
our program will run smoothly without any crashes by using error and exception
handling. Lastly, in this chapter, we discussed the waiting time, since this is
important when creating a network application.

Now, let us move on to the next chapter to talk about creating a server-client
application that will make communication possible between two parties,
the server and the client.

[127]

Creating a Client-server
Application

In the previous chapter, we delved into the Boost.Asio libraries, which are
important in order to develop a network application. And now, we will move to a
deeper discussion about a client-server application that can communicate with each
other over a computer network between two or more computers. One of them is
called client and the other one is the server.

We are going to discuss the development of the server, which is able to send and
receive data traffic from the client and also create a client-side program to receive
data traffic. In this chapter, we will discuss the following topics:

•	 Establishing a connection between the client and server
•	 Sending and receiving data between the client and server
•	 Wrapping the most frequently used code to simplify the programming

process by avoiding code reuse

Establishing a connection
We talked about two types of Internet Protocol (IP) in Chapter 2, Understanding
the Networking Concepts. These are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). TCP is connection-oriented, which means data can be
sent just after the connection has been established. In contrast, UDP is connectionless
Internet protocol, which means the protocol just sends the data directly to the
destination device. In this chapter, we will only talk about TCP; therefore, we have to
establish the connection first. Connection can only be established if the two parties,
in this case, the client and server, accept the connection. Here, we will try to establish
a connection synchronously and asynchronously.

Creating a Client-server Application

[128]

A synchronous client
We start with establishing the synchronous connection to a remote host. It is acting
as a client, which will open a connection to the Packt Publishing website (www.
packtpub.com). We will use TCP protocol, as we discussed earlier in Chapter 2,
Understanding the Networking Concepts. Here is the code:

/* connectsync.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";

www.packtpub.com
www.packtpub.com

Chapter 6

[129]

 global_stream_lock.unlock();
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);
 boost::shared_ptr<boost::asio::io_service::strand> strand(
 new boost::asio::io_service::strand(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=2; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::asio::ip::tcp::socket sckt(*io_svc);

 try {
 boost::asio::ip::tcp::resolver resolver(*io_svc);
 boost::asio::ip::tcp::resolver::query
 query("www.packtpub.com",
 boost::lexical_cast<std::string>(80)
);
 boost::asio::ip::tcp::resolver::iterator iterator =
 resolver.resolve(query);
 boost::asio::ip::tcp::endpoint endpoint = *iterator;

 global_stream_lock.lock();
 std::cout << "Connecting to: " << endpoint << std::endl;
 global_stream_lock.unlock();

 sckt.connect(endpoint);
 std::cout << "Connected!\n";
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();

Creating a Client-server Application

[130]

 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }

 std::cin.get();

 boost::system::error_code ec;
 sckt.shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec);
 sckt.close(ec);

 io_svc->stop();

 threads.join_all();

 return 0;
}

Save the preceding code as connectsync.cpp and run the following command to
compile the code:

g++ -Wall -ansi -I ../boost_1_58_0 connectsync.cpp -o connectsync -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58

Run the program by typing connectsync in the console, and we should get the
following output:

The program will exit as soon as we press the Enter key.

Now, let us analyze the code. As we can see in the preceding code, we use our
previous sample code and insert a line of code in order to make it able to establish a
connection. Let's draw our attention to the line we have inserted:

boost::asio::ip::tcp::socket sckt(*io_svc);

Chapter 6

[131]

We now have a global variable, which is socket. This variable will be used to
provide socket functionality. It comes from the namespace boost::asio::ip::tcp
because we use TCP as our protocol:

boost::asio::ip::tcp::resolver resolver(*io_svc);
boost::asio::ip::tcp::resolver::query query("www.packtpub.com",
 boost::lexical_cast<std::string>(80)
);
boost::asio::ip::tcp::resolver::iterator iterator =
resolver.resolve(query);

We also use the namespace boost::asio::ip::tcp::resolver. It is used to get
the address of the remote host we that want to connect with. With the query() class,
we pass the Internet address and port as a parameter. But because we use an integer
type for a port number, we have to convert it to a string by using lexical_cast.
The query class is used to describe the query that can be passed to a resolver. Then,
by using the iterator class, we will define iterators from the results returned by a
resolver:

boost::asio::ip::tcp::endpoint endpoint = *iterator;

After the iterator is successfully created, we give it to the endpoint type variable.
The endpoint will store the list of ip addresses that are generated by the resolver:

sckt.connect(endpoint);

Then, the connect() member function will connect the socket to the endpoint, which
we specified before. If everything runs properly and no error or exception is thrown,
the connection is now established:

boost::system::error_code ec;
sckt.shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec);
sckt.close(ec);

To release the connection, we have to disable the sending and receiving data process
on the socket first by using the shutdown() member function; then, we invoke the
close() member function to close the socket.

When we run the program and get output like the preceding image, it will inform
us that the connection has been established. We can change the port number, for
example, to 110, which is Remote TELNET Service protocol, in the query() class like
the following:

boost::asio::ip::tcp::resolver::query query("www.packtpub.com",
 boost::lexical_cast<std::string>(110)
);

Creating a Client-server Application

[132]

Then, the program will throw an exception, and the output will be as follows:

From the output, we can conclude that the connection has been refused by the target
machine because the port we plan to connect to is closed. This means that by using
port 80, which is Hypertext Transfer Protocol (HTTP), we can make a connection
with the Packt Publishing website.

An asynchronous client
We have already been able to establish a connection synchronously. But how about if
we need to connect asynchronously to the target so that the program will not freeze
while trying to make a connection? Let us take a look at the following code to find
the answer:

/* connectasync.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <string>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;

Chapter 6

[133]

 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void OnConnect(const boost::system::error_code &ec) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "OnConnect Error: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {
 global_stream_lock.lock();
 std::cout << "Connected!.\n";
 global_stream_lock.unlock();
 }
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 boost::shared_ptr<boost::asio::io_service::strand> strand(
 new boost::asio::io_service::strand(*io_svc)

Creating a Client-server Application

[134]

);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=2; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::shared_ptr<boost::asio::ip::tcp::socket> sckt(
 new boost::asio::ip::tcp::socket(*io_svc)
);

 try {
 boost::asio::ip::tcp::resolver resolver(*io_svc);
 boost::asio::ip::tcp::resolver::query
 query("www.packtpub.com",
 boost::lexical_cast<std::string>(80)
);
 boost::asio::ip::tcp::resolver::iterator iterator =
 resolver.resolve(query);
 boost::asio::ip::tcp::endpoint endpoint = *iterator;

 global_stream_lock.lock();
 std::cout << "Connecting to: " << endpoint << std::endl;
 global_stream_lock.unlock();

 sckt->async_connect(endpoint, boost::bind(OnConnect, _1));
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }

 std::cin.get();

 boost::system::error_code ec;
 sckt->shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec);
 sckt->close(ec);

 io_svc->stop();

Chapter 6

[135]

 threads.join_all();

 return 0;
}

Then, save the preceding code as connectasync.cpp and run the following
command to compile the code:

g++ -Wall -ansi -I ../boost_1_58_0 connectasync.cpp -o connectasync -
L ../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -
l libboost_thread-mgw49-mt-1_58

Try to run the program, and you should get the following output:

As we can see in the preceding code, we add the OnConnect() function. Because the
socket object is noncopyable, and we need to ensure that it is still valid while the
handler is waiting to be called, we have to use the boost::shared_ptr namespace.
We also use the boost::bind namespace to invoke the handler, that is, the
OnConnect() function.

An asynchronous server
We already know how to connect to a remote host synchronously and
asynchronously. Now, we are going to create the server program to talk with
the client-side program that we created before. Because we will deal with the
asynchronous program in the boost::asio namespace, we will discuss the client-
side program in an asynchronous server only. Let us take a look at the following
code:

/* serverasync.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>

Creating a Client-server Application

[136]

#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <string>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

void OnAccept(const boost::system::error_code &ec) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "OnAccept Error: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {

Chapter 6

[137]

 global_stream_lock.lock();
 std::cout << "Accepted!" << ".\n";
 global_stream_lock.unlock();
 }
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)
);

 boost::shared_ptr<boost::asio::io_service::strand> strand(
 new boost::asio::io_service::strand(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 boost::thread_group threads;
 for(int i=1; i<=2; i++)
 threads.create_thread(boost::bind(&WorkerThread, io_svc, i));

 boost::shared_ptr< boost::asio::ip::tcp::acceptor > acceptor(
 new boost::asio::ip::tcp::acceptor(*io_svc)
);

 boost::shared_ptr<boost::asio::ip::tcp::socket> sckt(
 new boost::asio::ip::tcp::socket(*io_svc)
);

 try {
 boost::asio::ip::tcp::resolver resolver(*io_svc);
 boost::asio::ip::tcp::resolver::query query(
 "127.0.0.1",
 boost::lexical_cast<std::string>(4444)
);
 boost::asio::ip::tcp::endpoint endpoint =
 *resolver.resolve(query);
 acceptor->open(endpoint.protocol());

Creating a Client-server Application

[138]

 acceptor->set_option(
 boost::asio::ip::tcp::acceptor::reuse_address(false));
 acceptor->bind(endpoint);
 acceptor->listen(boost::asio::socket_base::max_connections);
 acceptor->async_accept(*sckt, boost::bind(OnAccept, _1));

 global_stream_lock.lock();
 std::cout << "Listening on: " << endpoint << std::endl;
 global_stream_lock.unlock();
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }

 std::cin.get();

 boost::system::error_code ec;
 acceptor->close(ec);

 sckt->shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec);
 sckt->close(ec);

 io_svc->stop();

 threads.join_all();

 return 0;
}

Save the preceding code as serverasync.cpp and run the following command to
compile the code:

g++ -Wall -ansi -I ../boost_1_58_0 serverasync.cpp -o serverasync -L
../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58 -l ws2_32 -l
libboost_thread-mgw49-mt-1_58 –l mswsock

Before we run the program, let us distinguish the code. We now have a new object,
which is tcp::acceptor. This object is used for accepting new socket connections.
Due to the use of the accept() function, we need to add the mswsock library to our
compilation process:

acptor->open(endpoint.protocol());
acptor->set_option

Chapter 6

[139]

(boost::asio::ip::tcp::acceptor::reuse_address(false));
acptor->bind(endpoint);
acptor->listen(boost::asio::socket_base::max_connections);
acptor->async_accept(*sckt, boost::bind(OnAccept, _1));

From the preceding code snippet, we can see that the program calls the open()
function to open the acceptor by using the protocol that is retrieved from the
endpoint variable. Then, by using the set_option function, we set an option on the
acceptor to not reuse the address. The acceptor is also bound to the endpoint using
the bind() function. After that, we invoke the listen() function to put the acceptor
into the state where it will listen for new connections. Finally, the acceptor will
accept new connections by using the async_accept() function, which will start an
asynchronous accept.

Now, it is time to run the program. We need to open two command consoles here.
The first console is for the program itself and the second is for calling telnet
command to make a connection to the server. We only need to run the command
telnet 127.0.0.1 4444 just after we run the serverasync program (we can refer
to Chapter 2, Understanding the Networking Concepts, to call the telnet command in
the command prompt). The output should be like the following:

From the preceding image, we can see that the program is listening to port 4444
when it starts, and after we call the telnet command to start a connection to port
4444, the program accepts the connection. However, because we only have one
socket object and invoke the async_accept() function just once, the program will
accept one connection only.

Creating a Client-server Application

[140]

Reading and writing to the socket
We are officially able to make a client-server connection. Now, we are going to
write and read the socket to make the connection more useful. We will modify our
previous code, serverasync.cpp, and add the basic_stream_socket object, which
provides stream-oriented socket functionality.

To get more detailed information about the basic_stream_socket
object, you can visit www.boost.org/doc/libs/1_58_0/doc/
html/boost_asio/reference/basic_stream_socket.html.

Now, take a look at the following code containing the read and write socket process:

/* readwritesocket.cpp */
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/cstdint.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <iostream>
#include <string>

boost::mutex global_stream_lock;

void WorkerThread(boost::shared_ptr<boost::asio::io_service>
iosvc, int counter) {
 global_stream_lock.lock();
 std::cout << "Thread " << counter << " Start.\n";
 global_stream_lock.unlock();

 while(true) {
 try {
 boost::system::error_code ec;
 iosvc->run(ec);
 if(ec) {
 global_stream_lock.lock();
 std::cout << "Message: " << ec << ".\n";
 global_stream_lock.unlock();
 }

www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/basic_stream_socket.html
www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/basic_stream_socket.html

Chapter 6

[141]

 break;
 }
 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }
 }

 global_stream_lock.lock();
 std::cout << "Thread " << counter << " End.\n";
 global_stream_lock.unlock();
}

struct ClientContext : public
boost::enable_shared_from_this<ClientContext> {
 boost::asio::ip::tcp::socket m_socket;

 std::vector<boost::uint8_t> m_recv_buffer;
 size_t m_recv_buffer_index;

 std::list<std::vector<boost::uint8_t> > m_send_buffer;

 ClientContext(boost::asio::io_service & io_service)
 : m_socket(io_service), m_recv_buffer_index(0) {
 m_recv_buffer.resize(4096);
 }

 ~ClientContext() {
 }

 void Close() {
 boost::system::error_code ec;
 m_socket.shutdown(boost::asio::ip::tcp::socket::shutdown_both,
 ec);
 m_socket.close(ec);
 }

 void OnSend(const boost::system::error_code &ec,
 std::list<std::vector<boost::uint8_t> >::iterator itr) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "OnSend Error: " << ec << ".\n";

Creating a Client-server Application

[142]

 global_stream_lock.unlock();

 Close();
 }
 else {
 global_stream_lock.lock();
 std::cout << "Sent " << (*itr).size() << " bytes." <<
 std::endl;
 global_stream_lock.unlock();
 }
 m_send_buffer.erase(itr);

 // Start the next pending send
 if(!m_send_buffer.empty()) {
 boost::asio::async_write(
 m_socket,
 boost::asio::buffer(m_send_buffer.front()),
 boost::bind(
 &ClientContext::OnSend,
 shared_from_this(),
 boost::asio::placeholders::error,
 m_send_buffer.begin()
)
);
 }
 }

 void Send(const void * buffer, size_t length) {
 bool can_send_now = false;

 std::vector<boost::uint8_t> output;
 std::copy((const boost::uint8_t *)buffer, (const
 boost::uint8_t *)buffer + length, std::back_inserter(output));

 // Store if this is the only current send or not
 can_send_now = m_send_buffer.empty();

 // Save the buffer to be sent
 m_send_buffer.push_back(output);

 // Only send if there are no more pending buffers waiting!
 if(can_send_now) {
 // Start the next pending send
 boost::asio::async_write(

Chapter 6

[143]

 m_socket,
 boost::asio::buffer(m_send_buffer.front()),
 boost::bind(
 &ClientContext::OnSend,
 shared_from_this(),
 boost::asio::placeholders::error,
 m_send_buffer.begin()
)
);
 }
 }

 void OnRecv(const boost::system::error_code &ec, size_t
 bytes_transferred) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "OnRecv Error: " << ec << ".\n";
 global_stream_lock.unlock();

 Close();
 }
 else 	{
 // Increase how many bytes we have saved up
 m_recv_buffer_index += bytes_transferred;

 // Debug information
 global_stream_lock.lock();
 std::cout << "Recv " << bytes_transferred << " bytes." <<
 std::endl;
 global_stream_lock.unlock();

 // Dump all the data
 global_stream_lock.lock();
 for(size_t x = 0; x < m_recv_buffer_index; ++x) {

 std::cout << (char)m_recv_buffer[x] << " ";
 if((x + 1) % 16 == 0) {
 std::cout << std::endl;
 }
 }
 std::cout << std::endl << std::dec;
 global_stream_lock.unlock();

Creating a Client-server Application

[144]

 // Clear all the data
 m_recv_buffer_index = 0;

 // Start the next receive cycle
 Recv();
 }
 }

 void Recv() {
 m_socket.async_read_some(
 boost::asio::buffer(
 &m_recv_buffer[m_recv_buffer_index],
 m_recv_buffer.size() - m_recv_buffer_index),
 boost::bind(&ClientContext::OnRecv, shared_from_this(), _1,
 _2)
);
 }
};

void OnAccept(const boost::system::error_code &ec,
boost::shared_ptr<ClientContext> clnt) {
 if(ec) {
 global_stream_lock.lock();
 std::cout << "OnAccept Error: " << ec << ".\n";
 global_stream_lock.unlock();
 }
 else {
 global_stream_lock.lock();
 std::cout << "Accepted!" << ".\n";
 global_stream_lock.unlock();

 // 2 bytes message size, followed by the message
 clnt->Send("Hi there!", 9);
 clnt->Recv();
 }
}

int main(void) {
 boost::shared_ptr<boost::asio::io_service> io_svc(
 new boost::asio::io_service
);

 boost::shared_ptr<boost::asio::io_service::work> worker(
 new boost::asio::io_service::work(*io_svc)

Chapter 6

[145]

);

 boost::shared_ptr<boost::asio::io_service::strand> strand(
 new boost::asio::io_service::strand(*io_svc)
);

 global_stream_lock.lock();
 std::cout << "Press ENTER to exit!\n";
 global_stream_lock.unlock();

 // We just use one worker thread
 // in order that no thread safety issues
 boost::thread_group threads;
 threads.create_thread(boost::bind(&WorkerThread, io_svc, 1));

 boost::shared_ptr< boost::asio::ip::tcp::acceptor > acceptor(
 new boost::asio::ip::tcp::acceptor(*io_svc)
);

 boost::shared_ptr<ClientContext> client(
 new ClientContext(*io_svc)
);

 try {
 boost::asio::ip::tcp::resolver resolver(*io_svc);
 boost::asio::ip::tcp::resolver::query query(
 "127.0.0.1",
 boost::lexical_cast<std::string>(4444)
);
 boost::asio::ip::tcp::endpoint endpoint =
 *resolver.resolve(query);
 acceptor->open(endpoint.protocol());
 acceptor->set_option(boost::asio::ip::tcp::acceptor::
 reuse_address(false));
 acceptor->bind(endpoint);
 acceptor->listen(boost::asio::socket_base::max_connections);
 acceptor->async_accept(client->m_socket, boost::bind(OnAccept,
 _1, client));

 global_stream_lock.lock();
 std::cout << "Listening on: " << endpoint << std::endl;
 global_stream_lock.unlock();
 }

Creating a Client-server Application

[146]

 catch(std::exception &ex) {
 global_stream_lock.lock();
 std::cout << "Message: " << ex.what() << ".\n";
 global_stream_lock.unlock();
 }

 std::cin.get();

 boost::system::error_code ec;
 acceptor->close(ec);

 io_svc->stop();

 threads.join_all();

 return 0;
}

Save the preceding code as readwritesocket.cpp and compile the code using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 readwritesocket.cpp -o
readwritesocket -L ../boost_1_58_0/stage/lib -l boost_system-mgw49-
mt-1_58 -l ws2_32 -l libboost_thread-mgw49-mt-1_58 -l mswsock

If we compare the code of the readwritesocket.cpp file with the serverasync.
cpp file, we will find that we add a new class called ClientContext. It contains five
member functions: Send(), OnSend(), Recv(), OnRecv(), and Close().

The Send() and OnSend() functions
In the Send() function, we input an array of characters and their length. Before the
function sends the array of characters, it has to check whether or not the m_send_
buffer parameter is empty. The sending process can only occur if the buffer is not
empty.

The boost::asio::async_write namespace writes the socket and invokes the
OnSend() function handler. Then, it erases the buffer and sends the next pending
data if there is any. Now, every time we press any key in the telnet window, it will
display what we have typed because the readwritesocket project sends back what
we type to the telnet window.

Chapter 6

[147]

The Recv() and OnRecv() functions
In contrast to the Send() function, the Recv() function will call the async_read_
some() function to receive the set of data, and the OnRecv() function handler will
format the received data to hexadecimal formatting.

Wrapping the network code
For our convenience, let us create a wrapper for a networking application. In using
this wrapper, we do not need to reuse our code over and over again; thus, making
our programming process simpler and more efficient. For now, just create two files
called wrapper.h and wrapper.cpp, and we will include them in the compilation
process in our next code. Because the source codes are quite long in length and will
not be convenient to print in this book, I have made them into downloadable files
that you can access in this book's repository at www.packtpub.com/networking-
and-servers/boostasio-c-network-programming-second-edition. Go to the
Code Files section.

Developing a client and server program
We have already had the network wrapper code simplify our programming process
in developing a network application by using the Boost.Asio library. Now, let us
create a client and server program by using our wrapper code.

Creating a simple echo server
We are going to create a server program that will echo out all traffic it retrieves from
the client. In this case, we will use the telnet as the client, as we've done previously.
The file has to be saved as echoserver.cpp, and the content will look like the
following:

/* echoserver.cpp */
#include "wrapper.h"
#include <conio.h>
#include <boost/thread/mutex.hpp>

boost::mutex global_stream_lock;

class MyConnection : public Connection {
private:
 void OnAccept(const std::string &host, uint16_t port) {
 global_stream_lock.lock();

www.packtpub.com/networking-and-servers/boostasio-c-network-programming-second-edition.
www.packtpub.com/networking-and-servers/boostasio-c-network-programming-second-edition.

Creating a Client-server Application

[148]

 std::cout << "[OnAccept] " << host << ":" << port << "\n";
 global_stream_lock.unlock();

 Recv();
 }

 void OnConnect(const std::string & host, uint16_t port) {
 global_stream_lock.lock();
 std::cout << "[OnConnect] " << host << ":" << port << "\n";
 global_stream_lock.unlock();

 Recv();
 }

 void OnSend(const std::vector<uint8_t> & buffer) {
 global_stream_lock.lock();
 std::cout << "[OnSend] " << buffer.size() << " bytes\n";
 for(size_t x=0; x<buffer.size(); x++) {

 std::cout << (char)buffer[x];
 if((x + 1) % 16 == 0)
 std::cout << std::endl;
 }
 std::cout << std::endl;
 global_stream_lock.unlock();
 }

 void OnRecv(std::vector<uint8_t> &buffer) {
 global_stream_lock.lock();
 std::cout << "[OnRecv] " << buffer.size() << " bytes\n";
 for(size_t x=0; x<buffer.size(); x++) {

 std::cout << (char)buffer[x];
 if((x + 1) % 16 == 0)
 std::cout << std::endl;
 }
 std::cout << std::endl;
 global_stream_lock.unlock();

 // Start the next receive
 Recv();

 // Echo the data back
 Send(buffer);

Chapter 6

[149]

 }

 void OnTimer(const boost::posix_time::time_duration &delta) {
 global_stream_lock.lock();
 std::cout << "[OnTimer] " << delta << "\n";
 global_stream_lock.unlock();
 }

 void OnError(const boost::system::error_code &error) {
 global_stream_lock.lock();
 std::cout << "[OnError] " << error << "\n";
 global_stream_lock.unlock();
 }

public:
 MyConnection(boost::shared_ptr<Hive> hive)
 : Connection(hive) {
 }

 ~MyConnection() {
 }
};

class MyAcceptor : public Acceptor {
private:
 bool OnAccept(boost::shared_ptr<Connection> connection, const
 std::string &host, uint16_t port) {
 global_stream_lock.lock();
 std::cout << "[OnAccept] " << host << ":" << port << "\n";
 global_stream_lock.unlock();

 return true;
 }

 void OnTimer(const boost::posix_time::time_duration &delta) {
 global_stream_lock.lock();
 std::cout << "[OnTimer] " << delta << "\n";
 global_stream_lock.unlock();
 }

 void OnError(const boost::system::error_code &error) {
 global_stream_lock.lock();
 std::cout << "[OnError] " << error << "\n";
 global_stream_lock.unlock();

Creating a Client-server Application

[150]

 }

public:
 MyAcceptor(boost::shared_ptr<Hive> hive)
 : Acceptor(hive) {
 }

 ~MyAcceptor() {
 }
};

int main(void) {
 boost::shared_ptr<Hive> hive(new Hive());

 boost::shared_ptr<MyAcceptor> acceptor(new MyAcceptor(hive));
 acceptor->Listen("127.0.0.1", 4444);

 boost::shared_ptr<MyConnection> connection(new
 MyConnection(hive));
 acceptor->Accept(connection);

 while(!_kbhit()) {
 hive->Poll();
 Sleep(1);
 }

 hive->Stop();

 return 0;
}

Then, compile the preceding code using the following command. Here, we can see
that we include wrapper.cpp in the compilation process to take advantage of our
wrapper code:

g++ -Wall -ansi -I ../boost_1_58_0 wrapper.cpp echoserver.cpp -o
echoserver -L ../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-1_58
-l ws2_32 -l libboost_thread-mgw49-mt-1_58 -l mswsock

Chapter 6

[151]

We can try the preceding program by typing echoserver in the console window;
after which, we should get output like the following:

The first time we run the program, it will listen to port 4444 in localhost. We can
see in the main block that the program calls the poll() function in the Hive class if
there is no keyboard hit. This means that the program will close if any key is pressed
because it will invoke the Stop() function in the Hive class, which will stop the io_
service object. Every 1000 milliseconds, the timer will tick because the constructor
of the Acceptor class initiates the interval of the timer for 1000 milliseconds.

Now, open another console window and type the command telnet 127.0.0.1
4444 to make telnet our client. After the echoserver accepts the connection,
every time we press the alphanumeric option on the keyboard, the echoserver will
send the character back to telnet. The following image describes the acceptance
connection between the echoserver and the telnet server:

Creating a Client-server Application

[152]

When the server accepts the connection from the client, the OnAccept() function
handler will be invoked immediately. I pressed the A, B, and C keys respectively in
the telnet window, and then echoserver received the characters and sent them
back to the client. The telnet window also displays A, B, and C.

Creating a simple client program
We have successfully created a server-side program. Now, we will move on to
develop the client-side program. It will receive the content of the Packt Publishing
website through the HTTP GET command, and the code will be like the following:

/* clienthttpget.cpp */
#include "wrapper.h"
#include <conio.h>
#include <boost/thread/mutex.hpp>

boost::mutex global_stream_lock;

class MyConnection : public Connection {
private:
 void OnAccept(const std::string &host, uint16_t port) {
 global_stream_lock.lock();
 std::cout << "[OnAccept] " << host << ":" << port << "\n";
 global_stream_lock.unlock();

 // Start the next receive
 Recv();
 }

 void OnConnect(const std::string &host, uint16_t port) {
 global_stream_lock.lock();
 std::cout << "[OnConnect] " << host << ":" << port << "\n";
 global_stream_lock.unlock();

 // Start the next receive
 Recv();

 std::string str = "GET / HTTP/1.0\r\n\r\n";

 std::vector<uint8_t> request;
 std::copy(str.begin(), str.end(),
 std::back_inserter(request));

Chapter 6

[153]

 Send(request);
 }

 void OnSend(const std::vector<uint8_t> &buffer) {
 global_stream_lock.lock();
 std::cout << "[OnSend] " << buffer.size() << " bytes\n";
 for(size_t x=0; x<buffer.size(); x++) {

 std::cout << (char)buffer[x];
 if((x + 1) % 16 == 0)
 std::cout << "\n";
 }
 std::cout << "\n";
 global_stream_lock.unlock();
 }

 void OnRecv(std::vector<uint8_t> &buffer) {
 global_stream_lock.lock();
 std::cout << "[OnRecv] " << buffer.size() << " bytes\n";
 for(size_t x=0; x<buffer.size(); x++) {

 std::cout << (char)buffer[x];
 if((x + 1) % 16 == 0)
 std::cout << "\n";
 }
 std::cout << "\n";
 global_stream_lock.unlock();

 // Start the next receive
 Recv();
 }

 void OnTimer(const boost::posix_time::time_duration &delta) {
 global_stream_lock.lock();
 std::cout << "[OnTimer] " << delta << std::endl;
 global_stream_lock.unlock();
 }

 void OnError(const boost::system::error_code &error) {
 global_stream_lock.lock();
 std::cout << "[OnError] " << error << "\n";
 global_stream_lock.unlock();
 }

Creating a Client-server Application

[154]

public:
 MyConnection(boost::shared_ptr<Hive> hive)
 : Connection(hive) {
 }

 ~MyConnection() {
 }
};

int main(void) {
 boost::shared_ptr<Hive> hive(new Hive());

 boost::shared_ptr<MyConnection> connection(new
 MyConnection(hive));
 connection->Connect("www.packtpub.com", 80);

 while(!_kbhit()) {
 hive->Poll();
 Sleep(1);
 }

 hive->Stop();

 return 0;
}

Save the preceding code as clienthttpget.cpp, and compile the code using the
following command:

g++ -Wall -ansi -I ../boost_1_58_0 wrapper.cpp clienthttpget.cpp -o
clienthttpget -L ../boost_1_58_0/stage/lib -l boost_system-mgw49-mt-
1_58 -l ws2_32 –l libboost_thread-mgw49-mt-1_58 -l mswsock

When we run the program, the following output will be displayed:

Chapter 6

[155]

Just after the connection is established, the program sends an HTTP GET command to
port 80 of www.packtpub.com using the following code snippet:

std::string str = "GET / HTTP/1.0\r\n\r\n";
std::vector<uint8_t> request;
std::copy(str.begin(), str.end(), std::back_inserter(request));
Send(request)

It then sends the request to the socket using the Send() function in the Connection
class inside the code of the wrapper.cpp file. The code snippet of the Send()
function is as follows:

m_io_strand.post(boost::bind(&Connection::DispatchSend,
shared_from_this(), buffer));

As we can see, we use the strand object in order to allow all events to be serially
run. In addition, because of the strand object, we do not have to use the lock object
every time the event occurs.

www.packtpub.com

Creating a Client-server Application

[156]

After the request is sent, the program will pool the incoming data using the
following code snippet:

m_io_service.poll();

Then, once the data is coming, it will be displayed in the console by the OnRecv()
function handler, as we can see in the preceding image.

Summary
There are three basic steps when it comes to developing a network application. The
first step includes establishing a connection between the source and target, which
means the client and server. We can configure the socket object along with the
acceptor object to establish the connection.

Secondly, we exchange data by reading and writing to the socket. For this purpose,
we can use the basic_stream_socket functions collection. In our previous example,
we used the boost::asio::async_write() method to send the data and the
boost::asio::async_read() method to receive the data. Finally, the last step is
releasing the connection. By using the shutdown() method in the ip::tcp::socket
object, we can disable the sending and receiving of data on the socket. Then,
invoking the close() method after the shutdown() function will close the socket
and free up the handler. We also have already created a wrapper for all functions,
which is most frequently used in network application programming by accessing
the Boost.Asio library. This means we can develop a network application simply
and efficiently since we do not need to reuse code over and over again.

[157]

Debugging the Code
and Solving the Error

We successfully developed a server-client program in the previous chapter. We also
smoothly ran the program that we created. However, sometimes, we will face some
problems when we run the application, such as receiving an unexpected result or
the application crashing during runtime. In this situation, the debugging tool has the
ability to help us to solve these problems. While discussing the debugging tool, in
this chapter, we will cover the following topics:

•	 Choosing the debugging tool for our use and keeping it simple and
lightweight

•	 Setting up the debugging tool and preparing the executable file to be
debugged

•	 Familiarizing with commands that are used in the debugging tool

Choosing a debugging tool
Many debugging tools around come with the Integrated Development Environment
(IDE) of the programing language. For instance, Visual Studio has a debugging
tool for C, C++, C#, and Visual Basic. Alternatively, you may have heard about
CodeBlock and Bloodshed Dev-C++, which have their own debugging tools as well.
However, if you remember what we discussed in Chapter 1, Simplifying Your Network
Programming in C++, we decided not to use an IDE because its heavy load will not
load much resource to our computer. We need a tool that is lightweight to develop
our network application.

Debugging the Code and Solving the Error

[158]

Our choice of tool is the GNU Debugger (GDB). GDB is a powerful debugging tool
based on a command-line tool; this means that we don't need the complex Graphic
User Interface (GUI). In other words, all we need is a keyboard, not even a mouse,
so the system becomes lightweight as well.

There are four main things that GDB can do to help us solve the code problem, which
are as follows:

•	 Running our code line-by-line: When GDB runs our program, we can see
which line is being executed at the moment

•	 Stopping our code on a specific line: This is useful when we suspect that a
certain line has caused an error

•	 Examining the suspected line: When we successfully stop at the suspected
line, we can continue to examine it, for example, by checking the value of the
variable involved

•	 Changing the value of the variable: If we find the unexpected variable
value that has caused an error, we can replace the value at GDB runtime
with our expected value to ensure that the change of the value will solve
the problem

Installing a debugging tool
Fortunately, you will not need to install anything else if you followed all the steps
related to the installation of MinGW-w64 in Chapter 1, Simplifying Your Network
Programming in C++, because the installer package contains the GDB tool as well.
What we need to do now is to run the GDB tool in our command console to check
whether it runs properly.

In any active directory of our command prompt, type the following command:

gdb

We should get the following output in our console window:

C:\CPP>gdb

GNU gdb (GDB) 7.8.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.
html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show
copying"

and "show warranty" for details.

Chapter 7

[159]

This GDB was configured as "x86_64-w64-mingw32".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb)_

As we can see in the preceding output that we got on the console, we have the version
7.8.1 (this is not the latest version as we just obtained it from the MinGW-w64 installer
package). In the last line, we also have (gdb) with a blinking cursor next to it; this
means that GDB is ready to receive the command. However, for now, the command
we need to know is quit (alternatively, we can use q as a shortcut) to exit the GDB.
Just type q and press Enter, and you will come back to the command prompt.

Preparing a file for debugging
GDB needs at least one executable file to be debugged. For this purpose, we will go
back to the previous chapter to borrow the source code from there. Do you remember
that we created a game in Chapter 1, Simplifying Your Network Programming in C++,
where we had to guess the random number that the computer was thinking of? If you
remember, we have the source code, that we saved as rangen.cpp in the first chapter,
and we have modified it by adding the Boost library, saving it as rangen_boost.
cpp in Chapter 3, Introducing the Boost C++ Libraries. In the next section, we will use the
rangen_boost.cpp source code to demonstrate the use of GDB. Also, for those who
have forgotten the source code, I've rewritten it for you here:

/* rangen_boost.cpp */
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <iostream>

int main(void) {
 int guessNumber;
 std::cout << "Select number among 0 to 10: ";
 std::cin >> guessNumber;
 if(guessNumber < 0 || guessNumber > 10) {
 return 1;
 }
 boost::random::mt19937 rng;

Debugging the Code and Solving the Error

[160]

 boost::random::uniform_int_distribution<> ten(0,10);
 int randomNumber = ten(rng);

 if(guessNumber == randomNumber) {
 std::cout << "Congratulation, " << guessNumber << " is your
 lucky number.\n";
 }
 else {
 std::cout << "Sorry, I'm thinking about number " <<
 randomNumber << "\n";
 }
 return 0;
}

We will modify the compiling command in order for it to be used in GDB. We will
use the -g option so that the executable file that is created will contain the debugging
information and symbols that will be read by GDB. We will produce the rangen_
boost_gdb.exe executable file from the rangen_boost.cpp file, which contains the
debugging information and symbols using the following command:

g++ -Wall -ansi -I ../boost_1_58_0 rangen_boost.cpp -o
rangen_boost_gdb -g

As we can see in the preceding command, we add the -g option in the compiling
command in order to record the debugging information and symbols in the
executable file. Now, we should have the file named rangen_boost_gdb.exe in our
active directory. In the next section, we will debug it using GDB.

We are only able to debug the executable file that is compiled
using the -g option. In other words, we will not be able
to debug the executable file without having debugging
information and symbols. Also, we cannot debug the source
code file (*.cpp file) or header file (*.h file).

Running the program under GDB
After preparing the executable file that contains the debugging information and
symbols, let's run GDB to read all the symbols from the file and debug it. Run the
following command to start the debugging process:

gdb rangen_boost_gdb

Chapter 7

[161]

Our output will be as follows:

C:\CPP>gdb rangen_boost_gdb

GNU gdb (GDB) 7.8.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.
html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show
copying"

and "show warranty" for details.

This GDB was configured as "x86_64-w64-mingw32".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from rangen_boost_gdb...done.

(gdb)_

We got the same output as the previous GDB output, except for the last line before
(gdb). This line tells us that GDB has successfully read all the debugging symbols
and is ready to initiate the debugging process. In this step, we can also specify the
arguments, if our program needs any. Since our program does not need to specify
any argument, we can ignore it for now.

Starting the debugging process
To start the debugging process, we can call either the run or start command. The
former will start our program under GDB, while the latter will behave similarly but
will execute the code line-by-line. The difference is that if we have not yet set the
breakpoint, the program will run as usual if we call the run command, whereas the
debugger will automatically set the breakpoint in the main block of code, stopping
the program if it reaches that point, if we start with the start command.

Debugging the Code and Solving the Error

[162]

For now, let's use the start command for the debugging process. Just type start in
the GDB prompt, and the console will append the following output:

(gdb) start

Temporary breakpoint 1 at 0x401506: file rangen_boost.cpp, line 10.

Starting program: C:\CPP\rangen_boost_gdb.exe

[New Thread 10856.0x213c]

Temporary breakpoint 1, main () at rangen_boost.cpp:10

10 std::cout << "Select number among 0 to 10: ";

The debugging process is started. From the output, we can find that one breakpoint
is created automatically inside the main block which is in line 10. When there is no
breakpoint, the debugger will choose the first statement inside the main block. That
is why we get line 10 as our automatic breakpoint.

The continuing and stepping debugging
process
After we successfully start our program under GDB, the next step is to continue and
step. We can use one of the following commands to continue and step the debugging
process:

•	 continue: This command will resume the execution of the program until our
program completes normally. If it finds a breakpoint, the execution will stop
at the line where the breakpoint is set.

•	 step: This command will execute just one more step of our program. The
step might mean either one line of source code or one machine instruction. If
it finds the invocation of function, it will come into the function and run one
more step inside the function.

•	 next: This command behaves similar to the step command, but it only
continues to the next line in the current stack frame. In other words, if the next
command finds the invocation of a function, it will not come into the function.

For now, let's use the next command. Type the next command in the GDB prompt
just after we call the start command. We should get the following output:

(gdb) next

Select number among 0 to 10: 11 std::cin >> guessNumber;

Chapter 7

[163]

The GDB executes the 10th line and then continues to the 11th line. We will call the
next command again to continue the debugging process. However, if we just press
the Enter key, the GDB will execute our previous command. This is why we now just
need to press the Enter key, which will give us a blinking cursor. Now, we have to
input the number that we guessed to be stored in the guessNumber variable. I will
input the number 4, but you may enter your favorite number. Press the Enter key
again to continue debugging as many times as needed to exit the program normally.
The following output will be appended:

(gdb)

4

12 if(guessNumber < 0 || guessNumber > 10)

(gdb)

17 boost::random::mt19937 rng;

(gdb)

19 boost::random::uniform_int_distribution<> ten(0,10);

(gdb)

20 int randomNumber = ten(rng);

(gdb)

22 if(guessNumber == randomNumber)

(gdb)

28 std::cout << "Sorry, I'm thinking about
number " << randomNumber << "\n";

(gdb)

Sorry, I'm thinking about number 8

30 return 0;

(gdb)

31 }(gdb)

0x00000000004013b5 in __tmainCRTStartup ()

(gdb)

Single stepping until exit from function __tmainCRTStartup, which has
no line number information.

[Inferior 1 (process 11804) exited normally]

As we can see in the preceding output, after we enter the number guessed, the
program executes the if statement to ensure that the number we entered is not
out of range. If our guessing number is valid, the program continues to generate a
random number. Our guessing number is then compared with a random number
generated by our program. The program will give a different output irrespective of
the two numbers being same or not. Unfortunately, my guessing number is different
than the random number. You might obtain a different output if you are able to
guess the number correctly.

Debugging the Code and Solving the Error

[164]

Printing the source code
Sometimes, we may want to examine our source file while we run the debugging
process. Since the debugging information and symbol are recorded in our program,
GDB can print the source code even if it is an executable file. To print the source
code, we can type list (or the l command for the shortcut) in the GDB prompt.
By default, GDB will print ten lines at every invocation of the command. However,
we can change this setting using the set listsize command. Also, to know the
number of lines that will be displayed by the list command, we can invoke the
show listsize command. Let's see the following command line output:

(gdb) show listsize

Number of source lines gdb will list by default is 10.

(gdb) set listsize 20

(gdb) show listsize

Number of source lines gdb will list by default is 20.

(gdb)_

We increase the number of lines to be displayed using the list command. Now,
every time the list command is invoked, the output will display twenty lines of
source code.

The following are several forms of the list command, which are the most common:

•	 list: This command will show the source code for as many lines as the list
size defines. If we call it again, it will display the remaining lines as many as
the list size defines.

•	 list [linenumber]: This command will display the lines centered on
linenumber. The command list 10 will display line 5 to line 14 since line
10 is at the center.

•	 list [functionname]: This command will display lines centered on the
beginning of the functionname variable. The command list main will
display the int main(void) function at the center of list.

•	 list [first,last]: This command will display lines from first to last. The
command list 15,16 will display line 15 and line 16 only.

•	 list [,last]: This command will display lines ending with the last. The
command list ,5 will display line 1 to line 5.

•	 list [first,]: This command will display all the lines starting with the
specified line as the first. The command list 5, will display line 5 to the
rest of line if the number of the lines is more than the specified line number.
Otherwise, it will display as many lines as the list size setting.

Chapter 7

[165]

•	 list +: This command will display all the lines following the lines last
displayed.

•	 list -: This command will display all the lines preceding the lines last
displayed.

Setting and deleting the breakpoint
If we suspect that a line makes an error, we can set a breakpoint in that line so that
the debugger stops the debugging process at that line. To set a breakpoint, we can
call the break [linenumber] command. Consider that we want to stop at line 20,
which contains the following code:

int randomNumber = ten(rng);

Here, we will have to call the break 20 command just after we load our program
under GDB to set a breakpoint at line 20. The following output console illustrates this:

(gdb) break 20

Breakpoint 1 at 0x401574: file rangen_boost.cpp, line 20.

(gdb) run

Starting program: C:\CPP\rangen_boost_gdb.exe

[New Thread 1428.0x13f4]

Select number among 0 to 10: 2

Breakpoint 1, main () at rangen_boost.cpp:20

20 int randomNumber = ten(rng);

(gdb) next

22 if(guessNumber == randomNumber)

(gdb)

28 std::cout << "Sorry, I'm thinking about
number " << randomNumber << "\n";

(gdb)

Sorry, I'm thinking about number 8

30 return 0;

(gdb)

31 }(gdb)

0x00000000004013b5 in __tmainCRTStartup ()

(gdb)

Single stepping until exit from function __tmainCRTStartup,

which has no line number information.

[Inferior 1 (process 1428) exited normally]

(gdb)_

Debugging the Code and Solving the Error

[166]

In the preceding output console, just after our program is loaded under GDB, we call
the break 20 command. The debugger then sets a new breakpoint at line 20. Instead
of calling the start command as we previously did, we call the run command to
execute the program and let it stop when it finds a breakpoint. After we enter our
guessing number, 2 for example, the debugger stops at line 20, the line at which we
expected it to stop. Then, we call the next command to continue the debugger and
press the Enter key several times until the program exits.

If we want to delete a breakpoint, simply use the delete N command, in which N is
the order in which all the breakpoints are set. If we do not memorize all the locations
of the breakpoints that we set, we can call the info break command to get a list of
all breakpoints. We can also use the delete command (without N), which will delete
all breakpoints.

Printing a variable value
We were already able to stop at our desired line. We can also discover the value of
the variable that we use in our program. We can call the print [variablename]
command to print the value of any variable. Using the previous breakpoint, we
will print the value of the variable randomNumber. Just after the debugger hits the
breakpoint in line 20, we will call the print randomNumber command. Then, we
call the next command and print the randomNumber variable again. Look at the
following illustration of the command invocation:

(gdb) break 20

Breakpoint 1 at 0x401574: file rangen_boost.cpp, line 20.

(gdb) run

Starting program: C:\CPP\rangen_boost_gdb.exe

[New Thread 5436.0x1b04]

Select number among 0 to 10: 3

Breakpoint 1, main () at rangen_boost.cpp:20

20 int randomNumber = ten(rng);

(gdb) print randomNumber

$1 = 0

(gdb) next

22 if(guessNumber == randomNumber)

(gdb) print randomNumber

$2 = 8

(gdb)_

Chapter 7

[167]

As we can see in the preceding output, the following line is where the breakpoint
is set:

int randomNumber = ten(rng);

Before the line is executed, we peek the value of randomNumber variable. The value
of the variable is 0. Then, we call the next command to instruct debugger to execute
the line. After that, we peek at the value of the variable again, and this time it is 8. Of
course, in this experiment, you might get the different value rather than 8.

Modifying a variable value
We will cheat our program by modifying the value of one of the variables. The value
of a variable can be reassigned using the set var [variablename]=[newvalue]
command. To ensure the type of the variable that we want to modify, we can call the
whatis [variablename] command to get the required type of variable.

Now, let's change the value of the randomNumber variable after the program assigns
a random number to the variable. We will restart the debugging process, delete
all the breakpoints we set already, set a new breakpoint at line 22, and continue
the debugging process by typing the continue command until the debugger
hits the breakpoint in line 22. On this condition, we can reassign the value of the
randomNumber variable to be exactly the same as the value of the guessNumber
variable. Now, call the continue command again. After this, we will be
congratulated for guessing the correct number.

For more details, let's take a look at the following output console, which will
illustrate the preceding step:

(gdb) start

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Temporary breakpoint 2 at 0x401506: file rangen_boost.cpp, line 10.

Starting program: C:\CPP\rangen_boost_gdb.exe

[New Thread 6392.0x1030]

Temporary breakpoint 2, main () at rangen_boost.cpp:10

10 std::cout << "Select number among 0 to 10: ";

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x0000000000401574 in main()

 at rangen_boost.cpp:20

Debugging the Code and Solving the Error

[168]

(gdb) delete 1

(gdb) info break

No breakpoints or watchpoints.

(gdb) break 22

Breakpoint 3 at 0x40158d: file rangen_boost.cpp, line 22.

(gdb) continue

Continuing.

Select number among 0 to 10: 5

Breakpoint 3, main () at rangen_boost.cpp:22

22 if(guessNumber == randomNumber)

(gdb) whatis randomNumber

type = int

(gdb) print randomNumber

$3 = 8

(gdb) set var randomNumber=5

(gdb) print randomNumber

$4 = 5

(gdb) continue

Continuing.

Congratulation, 5 is your lucky number.

[Inferior 1 (process 6392) exited normally]

(gdb)_

As we can see in the preceding output, when we call the start command, the
debugger asks us to stop the previous debugging process since it is still running.
Just type the Y key and press the Enter key to answer the query. We can list all the
available breakpoints using the info break command and then delete the desired
breakpoint based on the order we get from the info break command. We call the
continue command to resume the debugging process, and when the debugger hits the
breakpoint, we reassign the randomNumber variable with the value of the guessNumber
variable. We continue the debugging process and successfully modify the value of the
randomNumber variable at runtime since we are congratulated by the program.

If we have many variables in the program, instead of printing all of the
variables one-by-one, we can print the values of all the variables using the
info locals command.

Chapter 7

[169]

Calling the command prompt
I occasionally call the Windows shell command inside the GDB prompt, such as
the cls command to clear the screen, the dir command to list the content of the
active directory, and even the compiling command. If you also want to execute the
Windows shell command, the GDB command that you can use is shell [Windows
shell command]. It actually just adds the shell command before the Windows
shell command and argument when needed. Let's see the following console output
to understand executing the Windows shell command inside the GDB prompt. Let's
take a look at the following output:

C:\CPP>gdb

GNU gdb (GDB) 7.8.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show
copying"

and "show warranty" for details.

This GDB was configured as "x86_64-w64-mingw32".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb) shell dir rangen_boost* /w

 Volume in drive C is SYSTEM

 Volume Serial Number is 8EA6-1DBE

 Directory of C:\CPP

rangen_boost.cpp rangen_boost.exe rangen_boost_gdb.exe

 3 File(s) 190,379 bytes

 0 Dir(s) 141,683,314,688 bytes free

(gdb) shell g++ -Wall -ansi -I ../boost_1_58_0 rangen_boost.cpp -o
rangen_boost_gdb_2 -g

Debugging the Code and Solving the Error

[170]

(gdb) shell dir rangen_boost* /w

 Volume in drive C is SYSTEM

 Volume Serial Number is 8EA6-1DBE

 Directory of C:\CPP

rangen_boost.cpp rangen_boost.exe
rangen_boost_gdb.exe

rangen_boost_gdb_2.exe

 4 File(s) 259,866 bytes

 0 Dir(s) 141,683,249,152 bytes free

In the preceding console output, we invoke the dir command to list all files that
begin with the rangen_boost name within the active directory. Then, we invoke the
compiling command to produce the rangen_boost_gdb_2.exe executable file
in the active directory. Then, we call the dir command again to ensure that the
rangen_boost_gdb_2.exe executable file has been successfully created.

You can use the apropos shell command to get more
information about shell command in GDB.

Solving the error
In Chapter 5, Delving into the Boost.Asio Library, we discussed handling exception
and error. If we follow all the source code in this book, we may never get any
error code to confuse us. However, if we try to modify the source code, even just
a little, an error code may be thrown for which the program will not give us any
description. Since the error code thrown by the Boost library is based on Windows
system error code and is beyond the scope of this book, we can find the description
on Microsoft Developer Network (MSDN) website at msdn.microsoft.com/en-
us/library/windows/desktop/ms681381%28v=vs.85%29.aspx. Here, we can
find all translations of error codes from error 0 to 15999. Using GDB and error code
translation from MSDN would become a powerful tool for solving an error that
occurs in our program.

msdn.microsoft.com/en-us/library/windows/desktop/ms681381%28v=vs.85%29.aspx
msdn.microsoft.com/en-us/library/windows/desktop/ms681381%28v=vs.85%29.aspx

Chapter 7

[171]

Let's go back to Chapter 6, Creating a Client-server Application and run the
serverasync program. When the program is run, it listens to the client in 127.0.0.1
on port 4444, which will be simulated by telnet in our example. However, what will
happen if the client is not responding? To know further, let's run the serverasync
program without running telnet. The following error will be displayed because the
client is not responding:

We got the system error code 995. Now, with this error code, we can visit MSDN
System Error Codes and find the error description, which is The I/O operation has
been aborted because of either a thread exit or an application request. (ERROR_
OPERATION_ABORTED).

What's next?
We are familiar with the basic GDB commands. There are many more commands in
GDB that we cannot discuss in this book. GDB has an official site that we can visit at
www.gnu.org/software/gdb/documentation/. Here, we can find all the complete
commands that we have not yet discussed.

We can also get more detailed information on Boost C++
Libraries on the official website at www.boost.org,
especially for the Boost.Asio library documentation, which
is available at www.boost.org/doc/libs/1_58_0/doc/
html/boost_asio.html.

www.gnu.org/software/gdb/documentation/
www.boost.org
www.boost.org/doc/libs/1_58_0/doc/html/boost_asio.html
www.boost.org/doc/libs/1_58_0/doc/html/boost_asio.html

Debugging the Code and Solving the Error

[172]

Summary
The debugging process is an essential thing that we can do to analyse our program
by running it step-by-step. When our program produces unexpected results or
it crashes in the middle of an execution, there is no other choice than to run the
debugging process. GDB is our choice since it is compatible with the C++ language,
as it comes with MinGW-w64 installer packages and is lightweight when loaded.

GDB can only run an executable file that compiles using the -g option. This
option will add the debugging information and symbol, which are important in
the debugging process. You will be unable to debug the executable files that are
compiled without the -g option.

After we successfully load our program under GDB, we can choose either the run or
start command to execute the debugging process. The run command will execute
our program as usual but will stop if the debugger finds a breakpoint, while the
start command will stop at the main block of program at the first execution.

When the debugger stops at certain line, we have to decide whether to continue the
debugging process. We have the option to run the program until it exits or if the
breakpoint is found using the continue command. Alternatively, we can run the
debugger step-by-step using the next command.

To make the debugger stop at the execution of the debugging process, call the break
[linenumber] command to set the breakpoint. If we want to ensure that we set
the correct line number, call the list command to print the source code. Calling
the delete N command will then delete the breakpoint where N can find the info
break command.

Retrieving the value of a variable is also important when finding an error. If the
program produces unexpected output, we can trace the value of a variable by printing
it. We can do this by using the print [variablename] command. At the variable
we suspect is causing an error, we can reassign the value of that variable with a new
one using the set var [variablename]=[newvalue] command. We can then run
the debugger again until we obtain the expected output. When we have fixed all
the errors, and are sure that everything is perfect, we can recompile our program by
calling the compiling command inside GDB prompt using the shell [Windows shell
command] command.

[173]

Index
Symbol
7ZIP application

URL 54

A
algorithms 50
Application layer, OSI reference model

about 26
Domain Name System (DNS) 25
Dynamic Host Configuration Protocol

(DHCP) 26
File Transfer Protocol (FTP) 25
Hypertext Transfer Protocol (HTTP) 25
Internet Message Access Protocol

(IMAP) 26
Lower Layer 26
Post Office Protocol (POP3) 26
Server Message Block (SMB) 26
Simple Mail Transfer Protocol (SMTP) 26
Simple Network Management Protocol

(SNMP) 26
Trivial FTP (TFTP) 25
Upper Layer 26

Asynchronous I/O (input and output) 67
asynchronous process 68

B
basic_stream_socket object

reference link 140
Boost.Asio library

about 67-70
I/O service, examining 71
URL 171

Boost.Bind library
about 79
function invocation, wrapping 80-83
using 83-85

Boost C++ libraries
about 52
advantages 53
Boost.Chrono 58
Boost.Context 58
Boost.DateTime 59
Boost.Exception 60
Boost.Filesystem 58
Boost.Graph 59
Boost.GraphParallel 58
Boost.IOStreams 58
Boost.Locale 58
Boost.Math 59
Boost.MPI 58
Boost.ProgramOptions 59
Boost.Python 59
Boost.Random 60
Boost.Regex 59
Boost.Serialization 59
Boost.Signals 59
Boost.System 59
Boost.Test 60
Boost.Thread 59
Boost.Timer 59
Boost.Wave 59
building 58-64
deploying 54, 55
downloading 53, 54
preparing, for MinGW compiler 53
URL 52
using 55-58

[174]

Boost Graph Library (BGL) 58
Boost.Mutex library

used, for synchronizing data access 85-87

C
client-server application

about 127
asynchronous client, connecting 132-135
asynchronous server, connecting 135-139
client program, developing 147
connection, establishing 127
network code, wrapping 147
server program, developing 147
simple client program, creating 152-156
simple echo server, creating 147-152
socket, reading 140-146
socket, writing 140-146
synchronous client, connecting 128-132

concurrent programming
versus nonconcurrent programming 68-70

containers 50
continue command 162

D
data access

synchronizing, with Boost.Mutex
library 85-87

Data Link layer, OSI reference model
about 22
Logical Link Control (LLC) 22
Media Access Control (MAC) 22
physical address 22

deadline timer 116
debugging process

continuing 162, 163
starting 161
stepping 162, 163

debugging tool
file, preparing 159, 160
installing 158, 159
selecting 157

dispatch() function
using 91-93

Domain Name System (DNS) 25
Dynamic Host Configuration Protocol

(DHCP) 26

E
errors

handling 104, 110-115
solving 170, 171

exceptions
handling 104-109

F
file

preparing, to be debugged 159, 160
File Transfer Protocol (FTP) 25
function invocation

wrapping 80-83

G
GCC C++ compiler

C++ program, compiling 6-8
help options, for command-line options 18
multiple source files, compiling 10-12
options 15-17
program, compiling 13
program, linking 13
troubleshooting 17
using 6
verbose compilation 19
version numbers 18
warnings, detecting in C++ program 14, 15

generics 51
GNU Debugger (GDB)

about 158
breakpoint, deleting 165, 166
breakpoint, setting 165, 166
command prompt, calling 169, 170
commands 171
debugging process, continuing 162, 163
debugging process, starting 161
debugging process, stepping 162, 163
features 158
running 160, 161
source code, printing 164
URL 171
variable value, modifying 167, 168
variable value, printing 166, 167

Graphic User Interface (GUI) 158

[175]

H
Hypertext Transfer Protocol (HTTP) 25, 132

I
Integrated Development Environment

(IDE) 5, 157
Internet Assigned Numbers Authority

(IANA)
about 30
URL 30

Internet Control Message Protocol
(ICMP) 39

Internet Message Access Protocol
(IMAP) 26

Internet Protocol
about 31
IPv4 32-34
IPv6 35, 36

I/O object 71
I/O service

dispatch() function, using 91-93
examining, in Boost.Asio library 71
handler, wrapping through strand

object 102-104
non-blocking poll() function, using 73, 74
post() function, using 87-90
run() function, blocking 71, 72
run() function, using 71, 72
serializing, with strand function 95-101
threads, dealing with 77-79
work object, removing 75, 76

ipconfig command
about 37
DNS, displaying 37, 38
DNS, flushing 38
full configuration information,

displaying 37
IP address, releasing 39
IP address, renewing 39

iterators 50

L
list command 164
Logical Link Control (LLC) 22

M
Media Access Control (MAC) 22, 23
Message Passing Interface (MPI) 58
Microsoft Developer Network (MSDN)

URL 170
MinGW compiler

Boost C++ libraries, preparing 53
setting up 1

MinGW-w64
installing 2, 3
URL 2

Minimalistic GNU for Windows
(MinGW) 1

N
netstat command 45
networking systems

about 21
layer 21
OSI reference model 22
protocol 21
TCP/IP reference model 27

Network layer, OSI reference model 24
next command 162
non-blocking poll() function

using 73, 74
nonconcurrent programming

versus concurrent programming 68-70
non-copyable error 83
Notepad++

URL 5

O
OSI reference model

about 22
Application layer 25, 26
Data Link layer 22, 23
Network layer 24
Physical layer 22
Presentation layer 25
Session layer 24
Transport layer 24

[176]

P
Path environment

about 3
setting up 3, 4

pathping command 43-45
physical address 22
Physical layer, OSI reference model 22
ping command 40, 41
ports

about 30, 31
port number 30

post() function
using 87-90

Post Office Protocol (POP3) 26
Presentation layer, OSI reference model 25
Pseudorandom Number Generator

(PRNG) 61

R
Round Trip Time (RTT) 43
run() function

blocking 71, 72
using 71, 72

S
Session layer, OSI reference model

communication methods 24, 25
share_ptr pointer

URL 76
Simple Network Management Protocol

(SNMP) 26
socket

OnRecv() function, using 147
OnSend() function, using 146
reading 140-146
Recv() function, using 147
Send() function, using 146
writing 140-146

Standard Template Library (STL)
about 49
algorithms 50
containers 50

example 50-52
iterators 50

start command 161
step command 162
strand function

using 96-101
synchronous process 68

T
TCP/IP reference model

about 27
layers 27

TCP/IP tools, for troubleshooting
about 37
ipconfig command 37
netstat command 45, 46
pathping command 43-45
ping command 39-41
telnet command 47, 48
tracert command 42, 43

Text Editor
installing 5
selecting 5

threads
dealing with 76-79

timer
creating, with timer class 116
expiring 116-118
using, with boost::bind function 119-122
using, with boost::strand function 123-126

Transmission Control Protocol (TCP)
about 28, 29
acknowledge (ACK) flags 28
Cyclical Redundancy Check (CRC) 29
negative acknowledge (NACK) packet 29
sliding window 29
synchronize (SYN) flag 28

Transport layer, OSI reference model
Transmission Control Protocol (TCP) 24
User Datagram Protocol (UDP) 24

Trivial FTP (TFTP) 25

U
User Datagram Protocol (UDP) 29, 30

[177]

V
vector 51
Visual Studio 157
Voice over IP (VoIP) 30

W
work object

removing 75, 76

Thank you for buying
Boost.Asio C++ Network Programming

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Boost.Asio C++ Network
Programming
ISBN: 978-1-78216-326-8 Paperback: 156 pages

Enhance your skills with practical examples for C++
network programming

1.	 Augment your C++ network programming
using Boost.Asio.

2.	 Discover how Boost.Asio handles synchronous
and asynchronous programming models.

3.	 Practical examples of client/server applications.

4.	 Learn how to deal with threading when writing
network applications.

Getting Started with C++
Audio Programming for Game
Development
ISBN: 978-1-84969-909-9 Paperback: 116 pages

A hands-on guide to audio programming in game
development with the FMOD audio library and
toolkit

1.	 Add audio to your game using FMOD and
wrap it in your own code.

2.	 Understand the core concepts of audio
programming and work with audio at different
levels of abstraction.

3.	 Work with a technology that is widely
considered to be the industry standard in audio
middleware.

Please check www.PacktPub.com for information on our titles

Advanced Quantitative Finance
with C++
ISBN: 978-1-78216-722-8 Paperback: 124 pages

Create and implement mathematical models in C++
using Quantitative Finance

1.	 Describes the key mathematical models used
for price equity, currency, interest rates, and
credit derivatives.

2.	 The complex models are explained step-by-step
along with a flow chart of every implementation.

3.	 Illustrates each asset class with fully solved
C++ examples, both basic and advanced, that
support and complement the text.

Build a Network Application
with Node [Video]
ISBN: 978-1-78216-827-0 Duration: 02:20 hours

Build, tune, and test a tangible Node.js application
from start to finish

1.	 Offers the reader a primer in node conventions,
along with best practices for publishing
modules, optimizing performance, and
organizing code.

2.	 Step-by-step examples that demonstrate how
to progressively enhance your app.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Simplifying Your Network Programming in C++
	Setting up the MinGW compiler and
Text Editor
	Installing MinGW-w64
	Setting up the Path environment
	Choosing and installing the Text Editor

	Using the GCC C++ compiler
	Compiling a C++ program
	Compiling multiple source files
	Compiling and linking a program separately
	Detecting a warning in the C++ program

	Knowing other important options in the GCC C++ compiler
	Troubleshooting in the GCC C++ compiler
	Help for command-line options
	Version numbers
	The verbose compilation

	Summary

	Chapter 2: Understanding the Networking Concepts
	An introduction to networking systems
	The OSI reference model
	The Physical layer
	The Data Link layer
	The Network layer
	The Transport layer
	The Session layer
	The Presentation layer
	The Application layer

	The TCP/IP reference model

	Understanding TCP and UDP
	Transmission Control Protocol
	User Datagram Protocol
	Understanding ports

	Exploring the Internet Protocol
	Internet Protocol Version 4 – IPv4
	Internet Protocol Version 6 – IPv6

	Using TCP/IP tools for troubleshooting
	The ipconfig command
	Displaying the full configuration information
	Displaying DNS
	Flushing DNS
	Renewing the IP address
	Releasing the IP address

	The ping command
	The tracert command
	The pathping command
	The netstat command
	The telnet command

	Summary

	Chapter 3: Introducing the Boost
C++ Libraries
	Introducing the C++ standard template library
	Introducing the Boost C++ libraries
	Advantages of Boost libraries

	Preparing Boost libraries for the MinGW compiler
	Downloading Boost libraries
	Deploying Boost libraries
	Using Boost libraries
	Building Boost libraries

	Summary

	Chapter 4: Getting Started with
Boost.Asio
	Getting closer to the Boost.Asio library
	Examining the I/O service in the Boost.Asio library
	Using and blocking the run() function
	Using the non-blocking poll() function
	Removing the work object
	Dealing with many threads

	Understanding the Boost.Bind library
	Wrapping a function invocation
	Working with the Boost.Bind library
	Synchronizing data access with the Boost.Mutex library

	Giving some work to the I/O service
	Using the post() function
	Using the dispatch() function

	Summary

	Chapter 5: Delving into the
Boost.Asio Library
	Serializing the I/O service work
	Using the strand function
	Wrapping a handler through the strand object

	Handling exceptions and errors
	Handling an exception
	Handling an error

	Timing the work execution using the timer class
	An expiring timer
	Using the timer along with the boost::bind function
	Using the timer along with the boost::strand function

	Summary

	Chapter 6: Creating a Client-server Application
	Establishing a connection
	A synchronous client
	An asynchronous client
	An asynchronous server

	Reading and writing to the socket
	The Send() and OnSend() functions
	The Recv() and OnRecv() functions

	Wrapping the network code
	Developing a client and server program
	Creating a simple echo server
	Creating a simple client program

	Summary

	Chapter 7: Debugging the Code
and Solving the Error
	Choosing a debugging tool
	Installing a debugging tool
	Preparing a file for debugging

	Running the program under GDB
	Starting the debugging process
	The continuing and stepping debugging process
	Printing the source code
	Setting and deleting the breakpoint
	Printing a variable value
	Modifying a variable value
	Calling the command prompt

	Solving the error
	What's next?
	Summary

	Index

