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Preface
In today's information-centric globalized world, telecommunications have become an essential 
part of our lives. They penetrate and play crucial roles in almost every aspect of our day-to-day 
activities, from personal to professional. Sometimes, a failure to communicate information 
correctly and on time may lead to significant loss of material assets or even casualties.

Therefore, it is very important to provide the highest level of reliability when it comes to 
developing telecommunication software. However, it can be a really challenging task due 
to the inherent complexity of the domain and accidental complexity of the low-level tools 
provided by modern operating systems.

The Boost.Asio library is aimed at reducing accidental complexity by introducing type systems 
and exploiting object-oriented methods, and decreasing the development time by providing 
high degrees of reusability. In addition to this, because the library is cross-platform, the 
applications implemented with it can be built on multiple platforms, which enhances  
software qualities even more, while decreasing its costs.

This book contains more than 30 recipes—step-by-step solutions to various tasks that often 
(and not so often) arise in the area of network programming. All recipes take advantage of 
facilities provided by the Boost.Asio library, demonstrating best practices of applying the 
library to execute typical tasks and solve different problems.

What this book covers
Chapter 1, The Basics, introduces you to basic classes provided by the Boost.Asio library and 
demonstrates how to execute basic operations, such as resolving a DNS name, connecting a 
socket, accepting a connection, and so on.

Chapter 2, I/O Operations, demonstrates how to perform individual network I/O operations, 
both synchronous and asynchronous.
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Chapter 3, Implementing Client Applications, contains recipes that demonstrate how to 
implement different types of client applications.

Chapter 4, Implementing Server Applications, contains recipes that demonstrate how to 
implement different types of server applications.

Chapter 5, HTTP and SSL/TLS, covers more advanced topics on the HTTP and SSL/TLS 
protocol implementation.

Chapter 6, Other Topics, includes recipes that discuss less popular but still quite important 
topics, such as timers, socket options, composite buffers, and others.

What you need for this book
To compile samples presented in this book, you will need Visual Studio 2012+ on Windows or 
GCC 4.7+ on Unix platforms.

Who this book is for
If you want to enhance your C++ network programming skills using the Boost.Asio library and 
understand the theory behind the development of distributed applications, this book is just 
what you need. The prerequisite for this book is to have a basic knowledge of C++11. To get 
the most from the book and comprehend advanced topics, you will need some background 
experience in multithreading.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.
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How it works…
This section usually consists of a detailed explanation of what happened in the  
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In  
Boost.Asio a passive socket is represented by the asio::ip::tcp::acceptor class."

A block of code is set as follows:

  std::shared_ptr<boost::asio::ip::tcp::socket> m_sock;
  boost::asio::streambuf m_request;
  std::map<std::string, std::string> m_request_headers;
  std::string m_requested_resource;

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

  std::shared_ptr<boost::asio::ip::tcp::socket> m_sock;
  boost::asio::streambuf m_request;
  std::map<std::string, std::string> m_request_headers;
  std::string m_requested_resource;

New terms and important words are shown in bold.
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you  
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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1
The Basics

In this chapter, we will cover:

 f Creating an endpoint

 f Creating an active socket

 f Creating a passive socket

 f Resolving a DNS name

 f Binding a socket to an endpoint

 f Connecting a socket

 f Accepting connections

Introduction
Computer networks and communication protocols significantly increase capabilities of 
modern software, allowing different applications or separate parts of the same application 
to communicate with each other to achieve a common goal. Some applications have 
communication as their main function, for example, instant messengers, e-mail servers 
and clients, file download software, and so on. Others have the network communication 
layer as a fundamental component, on top of which the main functionality is built. Some 
of the examples of such applications are web browsers, network file systems, distributed 
database management systems, media streaming software, online games, offline games 
with multiplayer over the network option support, and many others. Besides, nowadays 
almost any application in addition to its main functionality provides supplementary functions, 
involving network communication. The most prominent examples of such functions are 
online registration and automatic software update. In the latter case, the update package 
is downloaded from the application developer's remote server and installed on the user's 
computer or mobile device.
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The application that consists of two or more parts, each of which runs on a separate 
computing device, and communicates with other parts over a computer network is called 
a distributed application. For example, a web server and a web browser together can be 
considered as one complex distributed application. The browser running on a user's computer 
communicates with the web server running on a different remote computer in order to achieve 
a common goal—to transmit and display a web page requested by the user.

Distributed applications provide significant benefits as compared to traditional applications 
running on a single computer. The most valuable of them are the following:

 f Ability to transmit data between two or more remote computing devices. This is 
absolutely obvious and the most valuable benefit of distributed software.

 f Ability to connect computers in a network and install special software on them, 
creating powerful computing systems that can perform tasks that can't otherwise  
be performed on a single computer in an adequate amount of time.

 f Ability to effectively store and share data in a network. In a computer network, a 
single device can be used as data storage to store big amounts of data and other 
devices can easily request some portions of that data when necessary without the 
need to keep the copy of all data on each device. As an example, consider large 
datacenters hosting hundreds of millions of websites. The end user can request the 
web page they need anytime by sending the request to the server over the network 
(usually, the Internet). There is no need to keep the copy of the website on the user's 
device. There is a single storage of the data (a website) and millions of users can 
request the data from that storage if and when this information is needed.

For two applications running on different computing devices to communicate with each other, 
they need to agree on a communication protocol. Of course, the developer of the distributed 
application is free to implement his or her own protocol. However, this would be rarely the 
case at least for two reasons. First, developing such a protocol is an enormously complex and 
time-consuming task. Secondly, such protocols are already defined, standardized, and even 
implemented in all popular operating systems including Windows, Mac OS X, and majority of 
the distributions of Linux.

These protocols are defined by the TCP/IP standard. Don't be fooled by the standard's  
name; it defines not only TCP and IP but many more other protocols, comprising a TCP/IP 
protocol stack with one or more protocols on each level of the stack. Distributed software 
developers usually deal with transport level protocols such as TCP or UDP. Lower layer 
protocols are usually hidden from the developer and are handled by the operating system  
and network devices.
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In this book, we only touch upon TCP and UDP protocols that satisfy the needs of most 
developers of distributed software. If the reader is not familiar with the TCP/IP protocol stack, 
the OSI model, or TCP and UDP protocols, it's highly advised to read some theory on these 
topics. Though this book provides some brief information about them, it is mostly focused on 
practical aspects of using TCP and UDP protocols in distributed software development.

The TCP protocol is a transport layer protocol with the following characteristics:

 f It's reliable, which means that this protocol guarantees delivery of the messages in 
proper order or a notification that the message has not been delivered. The protocol 
includes error handling mechanisms, which frees the developer from the need to 
implement them in the application.

 f It assumes logical connection establishment. Before one application can 
communicate with another over the TCP protocol, it must establish a logical 
connection by exchanging service messages according to the standard.

 f It assumes the point-to-point communication model. That is, only two applications 
can communicate over a single connection. No multicast messaging is supported.

 f It is stream-oriented. This means that the data being sent by one application to 
another is interpreted by the protocol as a stream of bytes. In practice, it means that 
if a sender application sends a particular block of data, there is no guarantee that it 
will be delivered to the receiver application as the same block of data in a single turn, 
that is, the sent message may be broken into as many parts as the protocol wants 
and each of them will be delivered separately, though in correct order.

The UDP protocol is a transport layer protocol having different (in some sense opposite) 
characteristics from those of the TCP protocol. The following are its characteristics:

 f It's unreliable, which means that if a sender sends a message over a UDP protocol, 
there is no guarantee that the message will be delivered. The protocol won't try to 
detect or fix any errors. The developer is responsible for all error handling.

 f It's connectionless, meaning that no connection establishment is needed before the 
applications can communicate.

 f It supports both one-to-one and one-to-many communication models. Multicast 
messages are supported by the protocol.

 f It's datagram oriented. This means that the protocol interprets data as messages of a 
particular size and will try to deliver them as a whole. The message (datagram) either 
will be delivered as a whole, or if the protocol fails to do that won't be delivered at all.

Because the UDP protocol is unreliable, it is usually used in reliable local networks. To use 
it for communication over the Internet (which is an unreliable network), the developer must 
implement error handling mechanisms in its application.
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When there is a need to communicate over the Internet, the TCP 
protocol is most often the best choice due to its reliability.

As it has already been mentioned, both TCP and UDP protocols and the underlying  
protocols required by them are implemented by most popular operating systems. A 
developer of a distributed application is provided an API through which it can use protocols 
implementation. The TCP/IP standard does not standardize the protocol API implementation; 
therefore, several API implementations exist. However, the one based on Berkeley Sockets 
API is the most widely used.

Berkeley Sockets API is the name of one of the many possible implementations of TCP and 
UDP protocols' API. This API was developed at the Berkeley University of California, USA 
(hence the name) in the early 1980s. It is built around a concept of an abstract object called 
a socket. Such a name was given to this object in order to draw the analogy with a usual 
electrical socket. However, this idea seems to have somewhat failed due to the fact that 
Berkeley Sockets turned out to be a significantly more complex concept.

Now Windows, Mac OS X, and Linux operating systems all have this API implemented  
(though with some minor variations) and software developers can use it to consume  
TCP and UDP protocols' functionality when developing distributed applications.

Though very popular and widely used, Sockets API has several flaws. First, because it was 
designed as a very generic API that should support many different protocols, it is quite 
complex and somewhat difficult to use. The second flaw is that this is a C-style functional 
API with a poor type system, which makes it error prone and even more difficult to use. For 
example, Sockets API doesn't provide a separate type representing a socket. Instead, the  
built-in type int is used, which means that by mistake any value of the int type can be 
passed as an argument to the function expecting a socket, and the compiler won't detect  
the mistake. This may lead to run-time crashes, the root cause of which is hard to find.
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Network programming is inherently complex and doing it with a low-level C-style socket API 
makes it even more complex and error prone. Boost.Asio is an O-O C++ library that is, just like 
raw Sockets API, built around the concept of a socket. Roughly speaking, Boost.Asio wraps 
raw Sockets API and provides the developer with O-O interface to it. It is intended to simplify 
network programming in several ways as follows:

 f It hides the raw C-style API and providing a user with an object-oriented API

 f It provides a rich-type system, which makes code more readable and allows it to 
catch many errors at compilation time

 f As Boost.Asio is a cross-platform library, it simplifies development of cross-platform 
distributed applications

 f It provides auxiliary functionality such as scatter-gather I/O operations, stream-based 
I/O, exception-based error handling, and others

 f The library is designed so that it can be relatively easily extended to add new  
custom functionality

This chapter introduces essential Boost.Asio classes and demonstrates how to perform basic 
operations with them.

Creating an endpoint
A typical client application, before it can communicate with a server application to consume 
its services, must obtain the IP address of the host on which the server application is running 
and the protocol port number associated with it. A pair of values consisting of an IP address 
and a protocol port number that uniquely identifies a particular application running on a 
particular host in a computer network is called an endpoint.

The client application will usually obtain the IP address and the port number identifying the 
server application either from the user directly through the application UI or as command-line 
arguments or will read it from the application's configuration file.

The IP address can be represented as a string containing an address in dot-decimal notation 
if it is an IPv4 address (for example, 192.168.10.112) or in hexadecimal notation if it is 
an IPv6 address (for example, FE36::0404:C3FA:EF1E:3829). Besides, the server IP 
address can be provided to the client application in an indirect form, as a string containing a 
DNS name (for example, localhost or www.google.com). Another way to represent an IP 
address is an integer value. The IPv4 address is represented as a 32-bit integer and IPv6 as a 
64-bit integer. However, due to poor readability and memorability this representation is used 
extremely rarely.

www.google.com
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If the client application is provided with a DNS name before it can communicate with  
the server application, it must resolve the DNS name to obtain the actual IP address of the 
host running the server application. Sometimes, the DNS name may map to multiple IP 
addresses, in which case the client may want to try addresses one by one until it finds the  
one that works. We'll consider a recipe describing how to resolve DNS names with Boost.Asio 
later in this chapter.

The server application needs to deal with endpoints too. It uses the endpoint to specify to the 
operating system on which the IP address and protocol port it wants to listen for incoming 
messages from the clients. If the host running the server application has only one network 
interface and a single IP address assigned to it, the server application has only one option 
as to on which address to listen. However, sometimes the host might have more than one 
network interface and correspondingly more than one IP address. In this situation, the server 
application encounters a difficult problem of selecting an appropriate IP address on which to 
listen for incoming messages. The problem is that the application knows nothing about details 
such as underlying IP protocol settings, packet routing rules, DNS names which are mapped 
to the corresponding IP addresses, and so on. Therefore, it is quite a complex task (and 
sometimes even not solvable) for the server application to foresee through which IP  
address the messages sent by clients will be delivered to the host.

If the server application chooses only one IP address to listen for incoming messages, it may 
miss messages routed to other IP addresses of the host. Therefore, the server application 
usually wants to listen on all IP addresses available on the host. This guarantees that the 
server application will receive all messages arriving at any IP address and the particular 
protocol port.

To sum up, the endpoints serve two goals:

 f The client application uses an endpoint to designate a particular server application it 
wants to communicate with.

 f The server application uses an endpoint to specify a local IP address and a port 
number on which it wants to receive incoming messages from clients. If there is more 
than one IP address on the host, the server application will want to create a special 
endpoint representing all IP addresses at once.

This recipe explains how to create endpoints in Boost.Asio both in client and  
server applications.

Getting ready
Before creating the endpoint, the client application must obtain the raw IP address and the 
protocol port number designating the server it will communicate with. The server application 
on the other hand, as it usually listens for incoming messages on all IP addresses, only needs 
to obtain a port number on which to listen.
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Here, we don't consider how the application obtains a raw IP address or a port number. In 
the following recipes, we assume that the IP address and the port number have already been 
obtained by the application and are available at the beginning of the corresponding algorithm.

How to do it…
The following algorithms and corresponding code samples demonstrate two common 
scenarios of creating an endpoint. The first one demonstrates how the client application 
can create an endpoint to specify the server it wants to communicate with. The second 
one demonstrates how the server application creates an endpoint to specify on which IP 
addresses and port it wants to listen for incoming messages from clients.

Creating an endpoint in the client to designate the server
The following algorithm describes steps required to perform in the client application to create 
an endpoint designating a server application the client wants to communicate with. Initially, 
the IP address is represented as a string in the dot-decimal notation if this is an IPv4 address 
or in hexadecimal notation if this is an IPv6 address:

1. Obtain the server application's IP address and port number. The IP address should be 
specified as a string in the dot-decimal (IPv4) or hexadecimal (IPv6) notation.

2. Represent the raw IP address as an object of the asio::ip::address class.

3. Instantiate the object of the asio::ip::tcp::endpoint class from the address 
object created in step 2 and a port number.

4. The endpoint is ready to be used to designate the server application in Boost.Asio 
communication related methods.

The following code sample demonstrates possible implementation of the algorithm:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. Assume that the client application has already 
  // obtained the IP-address and the protocol port number.
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  // Used to store information about error that happens
  // while parsing the raw IP-address.
  boost::system::error_code ec;
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  // Step 2. Using IP protocol version independent address
  // representation.
  asio::ip::address ip_address =
    asio::ip::address::from_string(raw_ip_address, ec);

  if (ec.value() != 0) {
    // Provided IP address is invalid. Breaking execution.
    std::cout 
      << "Failed to parse the IP address. Error code = "
      << ec.value() << ". Message: " << ec.message();
      return ec.value();
  }

  // Step 3.
  asio::ip::tcp::endpoint ep(ip_address, port_num);

  // Step 4. The endpoint is ready and can be used to specify a 
  // particular server in the network the client wants to 
  // communicate with.
  
  return 0;
}

Creating the server endpoint
The following algorithm describes steps required to perform in a server application to create 
an endpoint specifying all IP addresses available on the host and a port number on which the 
server application wants to listen for incoming messages from the clients:

1. Obtain the protocol port number on which the server will listen for incoming requests.

2. Create a special instance of the asio::ip::address object representing all IP 
addresses available on the host running the server.

3. Instantiate an object of the asio::ip::tcp::endpoint class from the address 
object created in step 2 and a port number.

4. The endpoint is ready to be used to specify to the operating system that the server 
wants to listen for incoming messages on all IP addresses and a particular protocol 
port number.

The following code sample demonstrates possible implementation of the algorithm. Note that 
it is assumed that the server application is going to communicate over the IPv6 protocol:

#include <boost/asio.hpp>
#include <iostream>
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using namespace boost;

int main()
{
  // Step 1. Here we assume that the server application has
  //already obtained the protocol port number.
  unsigned short port_num = 3333;

  // Step 2. Create special object of asio::ip::address class
  // that specifies all IP-addresses available on the host. Note
  // that here we assume that server works over IPv6 protocol.
  asio::ip::address ip_address = asio::ip::address_v6::any();

  // Step 3.
  asio::ip::tcp::endpoint ep(ip_address, port_num);

  // Step 4. The endpoint is created and can be used to 
  // specify the IP addresses and a port number on which 
  // the server application wants to listen for incoming 
  // connections.

  return 0;
}

How it works…
Let's consider the first code sample. The algorithm it implements is applicable in an 
application playing a role of a client that is an application that actively initiates the 
communication session with a server. The client application needs to be provided an IP 
address and a protocol port number of the server. Here we assume that those values have 
already been obtained and are available at the beginning of the algorithm, which makes step 
1 details a given.

Having obtained the raw IP address, the client application must represent it in terms of the 
Boost.Asio type system. Boost.Asio provides three classes used to represent an IP address:

 f asio::ip::address_v4: This represents an IPv4 address

 f asio::ip::address_v6: This represents an IPv6 address

 f asio::ip::address: This IP-protocol-version-agnostic class can represent both 
IPv4 and IPv6 addresses
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In our sample, we use the asio::ip::address class, which makes the client  
application IP-protocol-version-agnostic. This means that it can transparently work with  
both IPv4 and IPv6 servers.

In step 2, we use the asio::ip::address class's static method, from_string(). This 
method accepts a raw IP address represented as a string, parses and validates the string, 
instantiates an object of the asio::ip::address class, and returns it to the caller. This 
method has four overloads. In our sample we use this one:

static asio::ip::address from_string(
    const std::string & str,
    boost::system::error_code & ec);

This method is very useful as it checks whether the string passed to it as an argument 
contains a valid IPv4 or IPv6 address and if it does, instantiates a corresponding object. If the 
address is invalid, the method will designate an error through the second argument. It means 
that this function can be used to validate the raw user input.

In step 3, we instantiate an object of the boost::asio::ip::tcp::endpoint class, 
passing the IP address and a protocol port number to its constructor. Now, the ep object can 
be used to designate a server application in the Boost.Asio communication related functions.

The second sample has a similar idea, although it somewhat differs from the first one. The 
server application is usually provided only with the protocol port number on which it should 
listen for incoming messages. The IP address is not provided because the server application 
usually wants to listen for the incoming messages on all IP addresses available on the host, 
not only on a specific one.

To represent the concept of all IP addresses available on the host, the classes 
asio::ip::address_v4 and asio::ip::address_v6 provide a static method any(), 
which instantiates a special object of corresponding class representing the concept. In step 
2, we use the any() method of the asio::ip::address_v6 class to instantiate such a 
special object.

Note that the IP-protocol-version-agnostic class asio::ip::address does not provide the 
any() method. The server application must explicitly specify whether it wants to receive 
requests either on IPv4 or on IPv6 addresses by using the object returned by the any() method 
of either the asio::ip::address_v4 or asio::ip::address_v6 class correspondingly. In 
step 2 of our second sample, we assume that our server communicates over IPv6 protocol and 
therefore called the any() method of the asio::ip::address_v6 class.

In step 3, we create an endpoint object which represents all IP addresses available on the 
host and a particular protocol port number.
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There's more...
In both our previous samples we used the endpoint class declared in the scope of the 
asio::ip::tcp class. If we look at the declaration of the asio::ip::tcp class,  
we'll see something like this:

class tcp
{
public:
  /// The type of a TCP endpoint.
  typedef basic_endpoint<tcp> endpoint;

  //...
}

It means that this endpoint class is a specialization of the basic_endpoint<> template 
class that is intended for use in clients and servers communicating over the TCP protocol.

However, creating endpoints that can be used in clients and servers that communicate 
over the UDP protocol is just as easy. To represent such an endpoint, we need to use the 
endpoint class declared in the scope of the asio::ip::udp class. The following code 
snippet demonstrates how this endpoint class is declared:

class udp
{
public:
  /// The type of a UDP endpoint.
  typedef basic_endpoint<udp> endpoint;

  //...
}

For example, if we want to create an endpoint in our client application to designate a  
server with which we want to communicate over the UDP protocol, we would only slightly 
change the implementation of step 3 in our sample. This is how that step would look like  
with changes highlighted:

// Step 3.
asio::ip::udp::endpoint ep(ip_address, port_num);

All other code would not need to be changed as it is transport protocol independent.

The same trivial change in the implementation of step 3 in our second sample is required to 
switch from a server communicating over TCP to one communicating over UDP.
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See also
 f The Binding a socket to an endpoint recipe explains how the endpoint object is used 

in a server application

 f The Connecting a socket recipe explains how the endpoint object is used in a  
client application

Creating an active socket
The TCP/IP standard tells us nothing about sockets. Moreover, it tells us almost nothing 
about how to implement the TCP or UDP protocol software API through which this software 
functionality can be consumed by the application.

If we look at section 3.8, Interface, of the RFC document #793 which describes the TCP 
protocol, we'll find out that it contains only functional requirements of a minimal set of 
functions that the TCP protocol software API must provide. A developer of the protocol 
software is given full control over all other aspects of the API, such as the structure of the 
API, names of the functions comprising the API, the object model, the abstractions involved, 
additional auxiliary functions, and so on. Every developer of the TCP protocol software is free 
to choose the way to implement the interface to his or her protocol implementation.

The same story applies with the UDP protocol: only a small set of functional requirements of 
mandatory operations are described in the RFC document #768 devoted to it. The control of 
all other aspects of the UDP protocol software API is reserved for the developer of this API.

As it has already been mentioned in the introduction to this chapter, Berkeley Sockets  
API is the most popular TCP and UDP protocols' API. It is designed around the concept of a 
socket—an abstract object representing a communication session context. Before we can 
perform any network I/O operations, we must first allocate a socket object and then  
associate each I/O operation with it.

Boost.Asio borrows many concepts from Berkeley Sockets API and is so much similar to it that 
we can call it "an object oriented Berkeley Sockets API". The Boost.Asio library includes a class 
representing a socket concept, which provides interface methods similar to those found in 
Berkeley Sockets API.

Basically, there are two types of sockets. A socket intended to be used to send and receive 
data to and from a remote application or to initiate a connection establishment process with 
it is called an active socket, whereas a passive socket is the one used to passively wait for 
incoming connection requests from remote applications. Passive sockets don't take part in 
user data transmission. We'll talk about passive sockets later in this chapter.

This recipe explains how to create and open an active socket.
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How to do it...
The following algorithm describes the steps required to perform in a client application to 
create and open an active socket:

1. Create an instance of the asio::io_service class or use the one that has been 
created earlier.

2. Create an object of the class that represents the transport layer protocol (TCP or UDP) 
and the version of the underlying IP protocol (IPv4 or IPv6) over which the socket is 
intended to communicate.

3. Create an object representing a socket corresponding to the required protocol type.  
Pass the object of asio::io_service class to the socket's constructor.

4. Call the socket's open() method, passing the object representing the protocol 
created in step 2 as an argument.

The following code sample demonstrates possible implementation of the algorithm. It is 
assumed that the socket is intended to be used to communicate over the TCP protocol and 
IPv4 as the underlying protocol:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. An instance of 'io_service' class is required by
  // socket constructor. 
  asio::io_service ios;

  // Step 2. Creating an object of 'tcp' class representing
  // a TCP protocol with IPv4 as underlying protocol.
  asio::ip::tcp protocol = asio::ip::tcp::v4();

  // Step 3. Instantiating an active TCP socket object.
  asio::ip::tcp::socket sock(ios);

  // Used to store information about error that happens
  // while opening the socket.
  boost::system::error_code ec;
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  // Step 4. Opening the socket.
  sock.open(protocol, ec);

  if (ec.value() != 0) {
    // Failed to open the socket.
    std::cout
      << "Failed to open the socket! Error code = "
      << ec.value() << ". Message: " << ec.message();
      return ec.value();
  }

  return 0;
}

How it works...
In step 1, we instantiate an object of the asio::io_service class. This class is a central 
component in the Boost.Asio I/O infrastructure. It provides access to the network I/O 
services of the underlying operating system. Boost.Asio sockets get access to those services 
through the object of this class. Therefore, all socket class constructors require an object of 
asio::io_service as an argument. We'll consider the asio::io_service class in more 
detail in the following chapters.

In the next step, we create an instance of the asio::ip::tcp class. This class represents a 
TCP protocol. It provides no functionality, but rather acts like a data structure that contains a 
set of values that describe the protocol.

The asio::ip::tcp class doesn't have a public constructor. Instead, it provides two static 
methods, asio::ip::tcp::v4() and asio::ip::tcp::v6(), that return an object of 
the asio::ip::tcp class representing the TCP protocol with the underlying IPv4 or IPv6 
protocol correspondingly.

Besides, the asio::ip::tcp class contains declarations of some basic types 
intended to be used with the TCP protocol. Among them are asio::tcp::endpoint, 
asio::tcp::socket, asio::tcp::acceptor, and others. Let's have a look at those 
declarations found in the boost/asio/ip/tcp.hpp file:

namespace boost {
namespace asio {
namespace ip {

  // ...
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  class tcp
  {
  public:
    /// The type of a TCP endpoint.
    typedef basic_endpoint<tcp> endpoint;
    
    // ...
  
    /// The TCP socket type.
    typedef basic_stream_socket<tcp> socket;

    /// The TCP acceptor type.
    typedef basic_socket_acceptor<tcp> acceptor;
    
    // ...

In step 3, we create an instance of the asio::ip::tcp::socket class, passing the 
object of the asio::io_service class to its constructor as an argument. Note that this 
constructor does not allocate the underlying operating system's socket object. The real 
operating system's socket is allocated in step 4 when we call the open() method and pass 
an object specifying protocol to it as an argument.

In Boost.Asio, opening a socket means associating it with full set of parameters describing a 
specific protocol over which the socket is intended to be communicating. When the Boost.Asio 
socket object is provided with these parameters, it has enough information to allocate a real 
socket object of the underlying operating system.

The asio::ip::tcp::socket class provides another constructor that accepts a protocol 
object as an argument. This constructor constructs a socket object and opens it. Note that 
this constructor throws an exception of the type boost::system::system_error if  
it fails. Here is a sample demonstrating how we could combine steps 3 and 4 from the 
previous sample:

try {
  // Step 3 + 4 in single call. May throw.
  asio::ip::tcp::socket sock(ios, protocol);
} catch (boost::system::system_error & e) {
  std::cout << "Error occured! Error code = " << e.code()
    << ". Message: "<< e.what();
}
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There's more...
The previous sample demonstrates how to create an active socket intended to communicate 
over the TCP protocol. The process of creating a socket intended for communication over the 
UDP protocol is almost identical.

The following sample demonstrates how to create an active UDP socket. It is assumed that the 
socket is going to be used to communicate over the UDP protocol with IPv6 as the underlying 
protocol. No explanation is provided with the sample because it is very similar to the previous 
one and therefore should not be difficult to understand:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. An instance of 'io_service' class is required by
  // socket constructor. 
  asio::io_service ios;

  // Step 2. Creating an object of 'udp' class representing
  // a UDP protocol with IPv6 as underlying protocol.
  asio::ip::udp protocol = asio::ip::udp::v6();

  // Step 3. Instantiating an active UDP socket object.
  asio::ip::udp::socket sock(ios);

  // Used to store information about error that happens
  // while opening the socket.
  boost::system::error_code ec;

  // Step 4. Opening the socket.
  sock.open(protocol, ec);

  if (ec.value() != 0) {
    // Failed to open the socket.
    std::cout
      << "Failed to open the socket! Error code = "
      << ec.value() << ". Message: " << ec.message();
    return ec.value();
  }

  return 0;
}
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See also
 f The Creating a passive socket recipe, as its name suggests, provides discussion of 

passive sockets and demonstrates their use

 f The Connecting a socket recipe explains one of the uses of active sockets, namely 
connecting to the remote application

Creating a passive socket
A passive socket or acceptor socket is a type of socket that is used to wait for connection 
establishment requests from remote applications that communicate over the TCP protocol. 
This definition has two important implications:

 f Passive sockets are used only in server applications or hybrid applications that may 
play both roles of the client and server.

 f Passive sockets are defined only for the TCP protocol. As the UDP protocol doesn't 
imply connection establishment, there is no need for a passive socket when 
communication is performed over UDP.

This recipe explains how to create and open a passive socket in Boost.Asio.

How to do it…
In Boost.Asio a passive socket is represented by the asio::ip::tcp::acceptor class. 
The name of the class suggests the key function of the objects of the class—to listen for and 
accept or handle incoming connection requests.

The following algorithm describes the steps required to perform to create an acceptor socket:

1. Create an instance of the asio::io_service class or use the one that has been 
created earlier.

2. Create an object of the asio::ip::tcp class that represents the TCP protocol and 
the required version of the underlying IP protocol (IPv4 or IPv6).

3. Create an object of the asio::ip::tcp::acceptor class representing  
an acceptor socket, passing the object of the asio::io_service class to  
its constructor.

4. Call the acceptor socket's open() method, passing the object representing the 
protocol created in step 2 as an argument.
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The following code sample demonstrates the possible implementation of the algorithm. It is 
assumed that the acceptor socket is intended to be used over the TCP protocol and IPv6 as 
the underlying protocol:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. An instance of 'io_service' class is required by
  // socket constructor. 
  asio::io_service ios;

  // Step 2. Creating an object of 'tcp' class representing
  // a TCP protocol with IPv6 as underlying protocol.
  asio::ip::tcp protocol = asio::ip::tcp::v6();

  // Step 3. Instantiating an acceptor socket object.
  asio::ip::tcp::acceptor acceptor(ios);

  // Used to store information about error that happens
  // while opening the acceptor socket.
  boost::system::error_code ec;

  // Step 4. Opening the acceptor socket.
  acceptor.open(protocol, ec);

  if (ec.value() != 0) {
    // Failed to open the socket.
    std::cout
      << "Failed to open the acceptor socket!"
      << "Error code = "
      << ec.value() << ". Message: " << ec.message();
    return ec.value();
  }

  return 0;
}
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How it works…
Because an acceptor socket is very similar to an active socket, the procedure of creating 
them is almost identical. Therefore, here we only shortly go through the sample code. For 
more details about each step and each object involved in the procedure, please refer to the 
Creating an active socket recipe.

In step 1, we create an instance of the asio::io_service class. This class is needed by all 
Boost.Asio components that need access to the services of the underlying operating system.

In step 2, we create an object representing a TCP protocol with IPv6 as its underlying protocol.

Then in step 3, we create an instance of the asio::ip::tcp::acceptor class, passing 
an object of the asio::io_service class as an argument to its constructor. Just as 
in the case of an active socket, this constructor instantiates an object of Boost.Asio the 
asio::ip::tcp::acceptor class, but does not allocate the actual socket object of the 
underlying operating system.

The operating system socket object is allocated in step 4, where we open the acceptor socket 
object, calling its open() method and passing the protocol object to it as an argument. If 
the call succeeds, the acceptor socket object is opened and can be used to start listening for 
incoming connection requests. Otherwise, the ec object of the boost::system::error_
code class will contain error information.

See also
 f The Creating an active socket recipe provides more details about the  

asio::io_service and asio::ip::tcp classes

Resolving a DNS name
Raw IP addresses are very inconvenient for humans to perceive and remember, especially if 
they are IPv6 addresses. Take a look at 192.168.10.123 (IPv4) or 8fee:9930:4545:a:10
5:f8ff:fe21:67cf (IPv6). Remembering those sequences of numbers and letters could be 
a challenge for anyone.

To enable labeling the devices in a network with human-friendly names, the Domain Name 
System (DNS) was introduced. In short, DNS is a distributed naming system that allows 
associating human-friendly names with devices in a computer network. A DNS name or a 
domain name is a string that represents a name of a device in the computer network.
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To be precise, a DNS name is an alias for one or more IP addresses but not the devices.  
It doesn't name a particular physical device but an IP address that can be assigned to 
a device. Thus, DNS introduces a level of indirection in addressing a particular server 
application in the network.

DNS acts as a distributed database storing mappings of DNS names to corresponding IP 
addresses and providing an interface, allowing querying the IP addresses to which a particular 
DNS name is mapped. The process of transforming a DNS name into corresponding IP 
addresses is called a DNS name resolution. Modern network operating systems contain 
functionality that can query DNS to resolve DNS names and provides the interface that  
can be used by applications to perform DNS name resolution.

When given a DNS name, before a client can communicate with a corresponding server 
application, it must first resolve the name to obtain IP addresses associated with that name.

This recipe explains how to perform a DNS name resolution with Boost.Asio.

How to do it…
The following algorithm describes steps required to perform in a client application in order to 
resolve a DNS name to obtain IP addresses (zero or more) of hosts (zero or more) running the 
server application that the client application wants to communicate with:

1. Obtain the DNS name and the protocol port number designating the server 
application and represent them as strings.

2. Create an instance of the asio::io_service class or use the one that has been 
created earlier.

3. Create an object of the resolver::query class representing a DNS name 
resolution query.

4. Create an instance of DNS name resolver class suitable for the necessary protocol.

5. Call the resolver's resolve() method, passing a query object created in step 3 to it 
as an argument.

The following code sample demonstrates the possible implementation of the algorithm. It is 
assumed that the client application is intended to communicate with the server application 
over the TCP protocol and IPv6 as the underlying protocol. Besides, it is assumed that the 
server DNS name and a port number have already been obtained and represented as strings 
by the client application:

#include <boost/asio.hpp>
#include <iostream>
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using namespace boost;

int main()
{
  // Step 1. Assume that the client application has already
  // obtained the DNS name and protocol port number and 
  // represented them as strings.
  std::string host = "samplehost.com";
  std::string port_num = "3333";

  // Step 2.
  asio::io_service ios;

  // Step 3. Creating a query.
  asio::ip::tcp::resolver::query resolver_query(host,
    port_num, asio::ip::tcp::resolver::query::numeric_service);

  // Step 4. Creating a resolver.
  asio::ip::tcp::resolver resolver(ios);

  // Used to store information about error that happens
  // during the resolution process.
  boost::system::error_code ec;

  // Step 5.
  asio::ip::tcp::resolver::iterator it =
    resolver.resolve(resolver_query, ec);

  // Handling errors if any.
  if (ec != 0) {
    // Failed to resolve the DNS name. Breaking execution.
    std::cout << "Failed to resolve a DNS name."
      << "Error code = " << ec.value() 
      << ". Message = " << ec.message();

    return ec.value();
  }

  return 0;
}
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How it works…
In step 1, we begin by obtaining a DNS name and a protocol port number and representing 
them as strings. Usually, these parameters are supplied by a user through the client 
application's UI or as command-line arguments. The process of obtaining and validating  
these parameters is behind the scope of this recipe; therefore, here we assume that they  
are available at the beginning of the sample.

Then, in step 2, we create an instance of the asio::io_service class that is used by the 
resolver to access underlying OS's services during a DNS name resolution process.

In step 3 we create an object of the asio::ip::tcp::resolver::query class.  
This object represents a query to the DNS. It contains a DNS name to resolve, a port number  
that will be used to construct an endpoint object after the DNS name resolution and a set  
of flags controlling some specific aspects of resolution process, represented as a bitmap.  
All these values are passed to the query class's constructor. Because the service is specified 
as a protocol port number (in our case, 3333) and not as a service name (for example, 
HTTP, FTP, and so on), we passed the asio::ip::tcp::resolver::query::numeric_
service flag to explicitly inform the query object about that, so that it properly parses  
the port number value.

In step 4, we create an instance of the asio::ip::tcp::resolver class. This class 
provides the DNS name resolution functionality. To perform the resolution, it requires services 
of the underlying operating system and it gets access to them through the object of the 
asio::io_services class being passed to its constructor as an argument.

The DNS name resolution is performed in step 5 in the resolver object's resolve() 
method. The method overload we use in our sample accepts objects of the 
asio::ip::tcp::resolver::query and system::error_code classes. The latter 
object will contain information describing the error if the method fails.

If successful, the method returns an object of the asio::ip::tcp::resolver::ite
rator class, which is an iterator pointing to the first element of a collection representing 
resolution results. The collection contains objects of the asio::ip::basic_resolver_
entry<tcp> class. There are as many objects in the collection as the total number of 
IP addresses that resolution yielded. Each collection element contains an object of the 
asio::ip::tcp::endpoint class instantiated from one IP address resulting from the 
resolution process and a port number provided with the corresponding query object. 
The endpoint object can be accessed through the asio::ip::basic_resolver_
entry<tcp>::endopoint() getter method.
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The default-constructed object of the asio::ip::tcp::resolver::iterator class 
represents an end iterator. Consider the following sample demonstrating how we can iterate 
through the elements of the collection representing the DNS name resolution process results 
and how to access the resulting endpoint objects:

asio::ip::tcp::resolver::iterator it = 
    resolver.resolve(resolver_query, ec);

asio::ip::tcp::resolver::iterator it_end;

for (; it != it_end; ++it) {
  // Here we can access the endpoint like this.
  asio::ip::tcp::endpoint ep = it->endpoint();
}

Usually, when a DNS name of the host running the server application is resolved to more than 
one IP address and correspondingly to more than one endpoint, the client application doesn't 
know which one of the multiple endpoints to prefer. The common approach in this case is to 
try to communicate with each endpoint one by one, until the desired response is received.

Note that when the DNS name is mapped to more than one IP address and some of them 
are IPv4 and others are IPv6 addresses, the DNS name may be resolved either to the IPv4 
address or to the IPv6 address or to both. Therefore, the resulting collection may contain 
endpoints representing both IPv4 and IPv6 addresses.

There's more…
To resolve a DNS name and obtain a collection of endpoints that can be used in the client  
that is intended to communicate over the UDP protocol, the code is very similar. The sample  
is given here with differences highlighted and without explanation:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. Assume that the client application has already
// obtained the DNS name and protocol port number and 
// represented them as strings.
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std::string host = "samplehost.book";
  std::string port_num = "3333";

  // Step 2.
  asio::io_service ios;

  // Step 3. Creating a query.
  asio::ip::udp::resolver::query resolver_query(host,
port_num, asio::ip::udp::resolver::query::numeric_service);

  // Step 4. Creating a resolver.
  asio::ip::udp::resolver resolver(ios);

  // Used to store information about error that happens
  // during the resolution process.
  boost::system::error_code ec;

  // Step 5.
  asio::ip::udp::resolver::iterator it =
    resolver.resolve(resolver_query, ec);

  // Handling errors if any.
  if (ec != 0) {
    // Failed to resolve the DNS name. Breaking execution.
    std::cout << "Failed to resolve a DNS name."
<< "Error code = " << ec.value() 
<< ". Message = " << ec.message();

    return ec.value();
  }

asio::ip::udp::resolver::iterator it_end;

for (; it != it_end; ++it) {
    // Here we can access the endpoint like this.
    asio::ip::udp::endpoint ep = it->endpoint();
}

  return 0;
}
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See also
 f The Creating an endpoint recipe provides more information on endpoints

 f For more information on DNS and domain names, refer to the specification of the 
system that can be found in the RFC #1034 and RFC #1035 documents

Binding a socket to an endpoint
Before an active socket can communicate with a remote application or a passive socket can 
accept incoming connection requests, they must be associated with a particular local IP 
address (or multiple addresses) and a protocol port number, that is, an endpoint. The process 
of associating a socket with a particular endpoint is called binding. When a socket is bound 
to an endpoint, all network packets coming into the host from the network with that endpoint 
as their target address will be redirected to that particular socket by the operating system. 
Likewise, all the data coming out from a socket bound to a particular endpoint will be output 
from the host to the network through a network interface associated with the corresponding IP 
address specified in that endpoint.

Some operations bind unbound sockets implicitly. For example, an operation that connects 
an unbound active socket to a remote application, binds it implicitly to an IP address and 
a protocol port number chosen by the underlying operating system. Usually, the client 
application doesn't need to explicitly bind an active socket to a specific endpoint just because 
it doesn't need that specific endpoint to communicate with the server; it only needs any 
endpoint for that purpose. Therefore, it usually delegates the right to choose the IP address 
and the port number to which the socket should be bound to the operating system. However, 
in some special cases, the client application might need to use a specific IP address and a 
protocol port number to communicate with the remote application and therefore will bind its 
socket explicitly to that specific endpoint. We wouldn't consider these cases in our book.

When socket binding is delegated to the operating system, there is no guarantee that it will be 
bound to the same endpoint each time. Even if there is a single network interface and a single 
IP address on the host, the socket may be bound to a different protocol port number every 
time the implicit binding is performed.

Unlike client applications that usually don't care through which IP address and protocol 
port number its active socket will be communicating with the remote application, the server 
application usually needs to bind its acceptor socket to a particular endpoint explicitly. This is 
explained by the fact that the server's endpoint must be known to all the clients that want to 
communicate with it and should stay the same after the server application is restarted.

This recipe explains how to bind a socket to particular endpoint with Boost.Asio.
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How to do it…
The following algorithm describes steps required to create an acceptor socket and to bind it to 
an endpoint designating all IP addresses available on the host and a particular protocol port 
number in the IPv4 TCP server application:

1. Obtain the protocol port number on which the server should listen for incoming 
connection requests.

2. Create an endpoint that represents all IP addresses available on the host and the 
protocol port number obtained in the step 1.

3. Create and open an acceptor socket.

4. Call the acceptor socket's bind() method, passing the endpoint object as an 
argument to it.

The following code sample demonstrates possible implementation of the algorithm. It is 
assumed that the protocol port number has already been obtained by the application:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. Here we assume that the server application has
  // already obtained the protocol port number.
  unsigned short port_num = 3333;

  // Step 2. Creating an endpoint.
  asio::ip::tcp::endpoint ep(asio::ip::address_v4::any(),
    port_num);

  // Used by 'acceptor' class constructor.
  asio::io_service ios;

  // Step 3. Creating and opening an acceptor socket.
  asio::ip::tcp::acceptor acceptor(ios, ep.protocol());

  boost::system::error_code ec;

  // Step 4. Binding the acceptor socket.
  acceptor.bind(ep, ec);
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  // Handling errors if any.
  if (ec != 0) {
    // Failed to bind the acceptor socket. Breaking
    // execution.
    std::cout << "Failed to bind the acceptor socket."
      << "Error code = " << ec.value() << ". Message: "
      << ec.message();

    return ec.value();
  }

  return 0;
}

How it works…
We begin by obtaining a protocol port number in step 1. The process of obtaining this 
parameter is beyond the scope of this recipe; therefore, here we assume that the port  
number has already been obtained and is available at the beginning of the sample.

In step 2 we create an endpoint representing all IP addresses available on the host and the 
specified port number.

In step 3 we instantiate and open the acceptor socket. The endpoint we created in step 2 
contains information about the transport protocol and the version of the underlying IP  
protocol (IPv4). Therefore, we don't need to create another object representing the  
protocol to pass it to the acceptor socket's constructor. Instead, we use the endpoint's  
protocol() method, which returns an object of the asio::ip::tcp class representing  
the corresponding protocols.

The binding is performed in step 4. This is quite a simple operation. We call the acceptor 
socket's bind() method, passing an object representing an endpoint to which the acceptor 
socket should be bound as an argument of the method. If the call succeeds, the acceptor 
socket is bound to the corresponding endpoint and is ready to start listening for incoming 
connection requests on that endpoint.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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There's more…
UDP servers don't establish connections and use active sockets to wait for incoming  
requests. The process of binding an active socket is very similar to binding an acceptor 
socket. Here, we present a sample code demonstrating how to bind a UDP active socket  
to an endpoint designating all IP addresses available on the host and a particular protocol 
port number. The code is provided without explanation:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. Here we assume that the server application has
  // already obtained the protocol port number.
  unsigned short port_num = 3333;

  // Step 2. Creating an endpoint.
  asio::ip::udp::endpoint ep(asio::ip::address_v4::any(),
    port_num);

  // Used by 'socket' class constructor.
  asio::io_service ios;

  // Step 3. Creating and opening a socket.
  asio::ip::udp::socket sock(ios, ep.protocol());

  boost::system::error_code ec;

  // Step 4. Binding the socket to an endpoint.
  sock.bind(ep, ec);

  // Handling errors if any.
  if (ec != 0) {
    // Failed to bind the socket. Breaking execution.
    std::cout << "Failed to bind the socket."
      << "Error code = " << ec.value() << ". Message: "
      << ec.message();
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    return ec.value();
  }

  return 0;
}

See also
 f The Creating an endpoint recipe provides more information on endpoints

 f The Creating an active socket recipe provides more details about the asio::io_
service and asio::ip::tcp classes and demonstrates how to create and open 
an active socket

 f The Creating a passive socket recipe provides information about passive sockets and 
demonstrates how to create and open them

Connecting a socket
Before a TCP socket can be used to communicate with a remote application, it must  
establish a logical connection with it. According to the TCP protocol, the connection 
establishment process lies in exchanging of service messages between two applications, 
which, if succeeds, results in two applications being logically connected and ready for 
communication with each other.

Roughly, the connection establishment process looks like this. The client application,  
when it wants to communicate with the server application, creates and opens an active 
socket and issues a connect() command on it, specifying a target server application with 
an endpoint object. This leads to a connection establishment request message being sent 
to the server application over the network. The server application receives the request and 
creates an active socket on its side, marking it as connected to a specific client and replies 
back to the client with the message acknowledging that connection is successfully set up on 
the server side. Next, the client having received the acknowledgement from the server, marks 
its socket as connected to the server, and sends one more message to it acknowledging 
that the connection is successfully set up on the client side. When the server receives the 
acknowledgement message from the client, the logical connection between two applications 
is considered established.

The point-to-point communication model is assumed between two connected sockets.  
This means that if socket A is connected to socket B, both can only communicate with  
each other and cannot communicate with any other socket C. Before socket A can 
communicate with socket C, it must close the connection with socket B and establish  
a new connection with socket C.

This recipe explains how to synchronously connect a socket to a remote application with  
Boost.Asio.
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How to do it…
The following algorithm descries steps required to perform in the TCP client application to 
connect an active socket to the server application:

1. Obtain the target server application's IP address and a protocol port number.

2. Create an object of the asio::ip::tcp::endpoint class from the IP address and 
the protocol port number obtained in step 1.

3. Create and open an active socket.

4. Call the socket's connect() method specifying the endpoint object created in step 2 
as an argument.

5. If the method succeeds, the socket is considered connected and can be used to send 
and receive data to and from the server.

The following code sample demonstrates a possible implementation of the algorithm:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step 1. Assume that the client application has already
  // obtained the IP address and protocol port number of the
  // target server.
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    // Step 2. Creating an endpoint designating 
    // a target server application.
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    // Step 3. Creating and opening a socket.
    asio::ip::tcp::socket sock(ios, ep.protocol());
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    // Step 4. Connecting a socket.
    sock.connect(ep);

    // At this point socket 'sock' is connected to 
    // the server application and can be used
    // to send data to or receive data from it.
  }
  // Overloads of asio::ip::address::from_string() and 
  // asio::ip::tcp::socket::connect() used here throw
  // exceptions in case of error condition.
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();
    
    return e.code().value();
  }

  return 0;
}

How it works…
In step 1, we begin with obtaining the target server's IP address and a protocol port number. 
The process of obtaining these parameters is beyond the scope of this recipe; therefore,  
here we assume that they have already been obtained and are available at the beginning  
of our sample.

In step 2, we create an object of the asio::ip::tcp::endpoint class designating the 
target server application to which we are going to connect.

Then, in step 3 an active socket is instantiated and opened.

In step 4, we call the socket's connect() method, passing an endpoint object designating 
the target server to it as an argument. This function connects the socket to the server. The 
connection is performed synchronously, which means that the method blocks the caller 
thread until either the connection operation is established or an error occurs.

Note that we didn't bind the socket to any local endpoint before connecting it. This doesn't 
mean that the socket stays unbound. Before performing the connection establishment 
procedure, the socket's connect() method will bind the socket to the endpoint consisting  
of an IP address and a protocol port number chosen by the operating system.
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Another thing to note in this sample is that we use an overload of the connect() method 
that throws an exception of the boost::system::system_error type if the operation fails, 
and so does overload of the asio::ip::address::from_string() static method we use 
in step 2. Therefore, both calls are enclosed in a try block. Both methods have overloads 
that don't throw exceptions and accept an object of the boost::system::error_code 
class, which is used to conduct error information to the caller in case the operation fails. 
However, in this case, using exceptions to handle errors makes code better structured.

There's more…
The previous code sample showed how to connect a socket to a specific server application 
designated by an endpoint when an IP address and a protocol port number are provided 
to the client application explicitly. However, sometimes the client application is provided 
with a DNS name that may be mapped to one or more IP addresses. In this case, we 
first need to resolve the DNS name using the resolve() method provided by the 
asio::ip::tcp::resolver class. This method resolves a DNS name, creates an object of 
the asio::ip::tcp::endpoint class from each IP address resulted from resolution, puts 
all endpoint objects in a collection, and returns an object of the asio::ip::tcp::resolve
r::iterator class, which is an iterator pointing to the first element in the collection.

When a DNS name resolves to multiple IP addresses, the client application—when deciding 
to which one to connect—usually has no reasons to prefer one IP address to any other. The 
common approach in this situation is to iterate through endpoints in the collection and try 
to connect to each of them one by one until the connection succeeds. Boost.Asio provides 
auxiliary functionality that implements this approach.

The free function asio::connect() accepts an active socket object and an object of the as
io::ip::tcp::resolver::iterator class as input arguments, iterates over a collection 
of endpoints, and tries to connect the socket to each endpoint. The function stops iteration, 
and returns when it either successfully connects a socket to one of the endpoints or when it 
has tried all the endpoints and failed to connect the socket to all of them.

The following algorithm demonstrates steps required to connect a socket to a server 
application represented by a DNS name and a protocol port number:

1. Obtain the DNS name of a host running the server application and the server's port 
number and represent them as strings.

2. Resolve a DNS name using the asio::ip::tcp::resolver class.

3. Create an active socket without opening it.

4. Call the asio::connect() function passing a socket object and an iterator object 
obtained in step 2 to it as arguments.
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The following code sample demonstrates possible implementation of the algorithm:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // Step1. Assume that the client application has already
  // obtained the DNS name and protocol port number and
  // represented them as strings.
  std::string host = "samplehost.book";
  std::string port_num = "3333";

  // Used by a 'resolver' and a 'socket'.
  asio::io_service ios;

  // Creating a resolver's query.
  asio::ip::tcp::resolver::query resolver_query(host, port_num,
    asio::ip::tcp::resolver::query::numeric_service);

  // Creating a resolver.
  asio::ip::tcp::resolver resolver(ios);

  try {
    // Step 2. Resolving a DNS name.
    asio::ip::tcp::resolver::iterator it =
      resolver.resolve(resolver_query);

    // Step 3. Creating a socket.
    asio::ip::tcp::socket sock(ios);

    // Step 4. asio::connect() method iterates over
    // each endpoint until successfully connects to one
    // of them. It will throw an exception if it fails
    // to connect to all the endpoints or if other
    // error occurs.
    asio::connect(sock, it);
    
    // At this point socket 'sock' is connected to 
    // the server application and can be used
    // to send data to or receive data from it.
  }
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  // Overloads of asio::ip::tcp::resolver::resolve and 
  // asio::connect() used here throw
  // exceptions in case of error condition.
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

Note that in step 3, we don't open the socket when we create it. This is because we  
don't know the version of IP addresses to which the provided DNS name will resolve.  
The asio::connect() function opens the socket before connecting it to each endpoint 
specifying proper protocol object and closes it if the connection fails.

All other steps in the code sample should not be difficult to understand, therefore no 
explanation is provided.

See also
 f The Creating an endpoint recipe provides more information on endpoints

 f The Creating an active socket recipe explains how to create and open a socket and 
provides more details about the asio::io_service class

 f The Resolving a DNS name recipe explains how to use a resolver class to resolve a 
DNS name

 f The Binding a socket recipe provides more information about socket binding

Accepting connections
When the client application wants to communicate to the server application over a TCP 
protocol, it first needs to establish a logical connection with that server. In order to do that, the 
client allocates an active socket and issues a connect command on it (for example by calling 
the connect() method on the socket object), which leads to a connection establishment 
request message being sent to the server.

On the server side, some arrangements must be performed before the server application 
can accept and handle the connection requests arriving from the clients. Before that, all 
connection requests targeted at this server application are rejected by the operating system.
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First, the server application creates and opens an acceptor socket and binds it to the 
particular endpoint. At this point, the client's connection requests arriving at the acceptor 
socket's endpoint are still rejected by the operating system. For the operating system to start 
accepting connection requests targeted at particular endpoint associated with particular 
acceptor socket, that acceptor socket must be switched into listening mode. After that, the 
operating system allocates a queue for pending connection requests associated with this 
acceptor socket and starts accepting connection request addressed to it.

When a new connection request arrives, it is initially received by the operating system, which 
puts it to the pending connection requests queue associated with an acceptor socket being 
the connection request's target. When in the queue, the connection request is available to 
the server application for processing. The server application, when ready to process the next 
connection request, de-queues one and processes it.

Note that the acceptor socket is only used to establish connections with client applications 
and is not used in the further communication process. When processing a pending connection 
request, the acceptor socket allocates a new active socket, binds it to an endpoint chosen by 
the operating system, and connects it to the corresponding client application that has issued 
that connection request. Then, this new active socket is ready to be used for communication 
with the client. The acceptor socket becomes available to process the next pending 
connection request.

This recipe describes how to switch an acceptor socket into listening mode and accept 
incoming connection requests in a TCP server application using Boost.Asio.

How to do it…
The following algorithm describes how to set up an acceptor socket so that it starts listening 
for incoming connections and then how to use it to synchronously process the pending 
connection request. The algorithm assumes that only one incoming connection will be 
processed in synchronous mode:

1. Obtain the port number on which the server will receive incoming  
connection requests.

2. Create a server endpoint.

3. Instantiate and open an acceptor socket.

4. Bind the acceptor socket to the server endpoint created in step 2.

5. Call the acceptor socket's listen() method to make it start listening for incoming 
connection requests on the endpoint.

6. Instantiate an active socket object.
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7. When ready to process a connection request, call the acceptor socket's accept() 
method passing an active socket object created in step 6 as an argument.

8. If the call succeeds, the active socket is connected to the client application and is 
ready to be used for communication with it.

The following code sample demonstrates possible implementation of the server application 
that follows the algorithm. Here, we assume that the server is intended to communicate over 
the TCP protocol with IPv4 as the underlying protocol:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  // The size of the queue containing the pending connection
  // requests.
  const int BACKLOG_SIZE = 30;

  // Step 1. Here we assume that the server application has
  // already obtained the protocol port number.
  unsigned short port_num = 3333;

  // Step 2. Creating a server endpoint.
  asio::ip::tcp::endpoint ep(asio::ip::address_v4::any(),
    port_num);

  asio::io_service ios;

  try {
    // Step 3. Instantiating and opening an acceptor socket.
    asio::ip::tcp::acceptor acceptor(ios, ep.protocol());

    // Step 4. Binding the acceptor socket to the 
    // server endpint.
    acceptor.bind(ep);

    // Step 5. Starting to listen for incoming connection
    // requests.
    acceptor.listen(BACKLOG_SIZE);
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    // Step 6. Creating an active socket.
    asio::ip::tcp::socket sock(ios);

    // Step 7. Processing the next connection request and 
    // connecting the active socket to the client.
    acceptor.accept(sock);

    // At this point 'sock' socket is connected to 
    //the client application and can be used to send data to
    // or receive data from it.
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

How it works…
In step 1, we obtain the protocol port number to which the server application binds its 
acceptor socket. Here, we assume that the port number has already been obtained and  
is available at the beginning of the sample.

In step 2, we create a server endpoint that designates all IP addresses available on the host 
running the server application and a specific protocol port number.

Then in step 3, we instantiate and open an acceptor socket and bind it to the server  
endpoint in step 4.

In step 5, we call the acceptor's listen() method passing the BACKLOG_SIZE  
constant value as an argument. This call switches the acceptor socket into the state  
in which it listens for incoming connection requests. Unless we call the listen() method 
on the acceptor object, all connection requests arriving at corresponding endpoint will be 
rejected by the operating system network software. The application must explicitly notify the 
operating system that it wants to start listening for incoming connection requests on specific 
endpoint by this call.
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The argument that the listen() method accepts as an argument specifies the size of the 
queue maintained by the operating system to which it puts connection requests arriving from 
the clients. The requests stay in the queue and are waiting for the server application to de-
queue and process them. When the queue becomes full, the new connection requests are 
rejected by the operating system.

In step 6, we create an active socket object without opening it. We'll need it in step 7.

In step 7, we call the acceptor socket's accept() method. This method accepts an active 
socket as an argument and performs several operations. First, it checks the queue associated 
with the acceptor socket containing pending connection requests. If the queue is empty, the 
method blocks execution until a new connection request arrives to an endpoint to which the 
acceptor socket is bound and the operating system puts it in the queue.

If at least one connection request is available in the queue, the one on the top of the queue  
is extracted from it and processed. The active socket that was passed to the accept() 
method as an argument is connected to the corresponding client application which issued  
the connection request.

If the connection establishment process succeeds, the accept() method returns and the 
active socket is opened and connected to the client application and can be used to send  
data to and receive data from it.

Remember that the acceptor socket doesn't connect itself to the 
client application while processing a connection request. Instead, it 
opens and connects another active socket, which is then used for 
communication with the client application. The acceptor socket only 
listens for and processes (accepts) incoming connection requests.

Note that UDP servers don't use acceptor sockets because the UDP protocol doesn't imply 
connection establishment. Instead, an active socket is used that is bound to an endpoint and 
listens for incoming I/O messages, and this same active socket is used for communication.

See also
 f The Creating a passive socket recipe provides information about passive sockets and 

demonstrates how to create and open them

 f The Creating an endpoint recipe provides more information on endpoints

 f The Creating an active socket recipe explains how to create and open a socket and 
provides more details about the asio::io_service class

 f The Binding a socket recipe provides more information about socket binding
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2
I/O Operations

In this chapter, we will cover the following recipes:

 f Using fixed length I/O buffers

 f Using extensible stream-oriented I/O buffers

 f Writing to a TCP socket synchronously

 f Reading from a TCP socket synchronously

 f Writing to a TCP socket asynchronously

 f Reading from a TCP socket asynchronously

 f Canceling asynchronous operations

 f Shutting down and closing a socket

Introduction
I/O operations are the key operations in the networking infrastructure of any distributed 
application. They are directly involved in the process of data exchange. Input operations  
are used to receive data from remote applications, whereas output operations allow sending 
data to them.

In this chapter, we will see several recipes that show how to perform I/O operations and other 
operations related to them. In addition to this, we'll see how to use some classes provided by 
Boost.Asio, which are used in conjunction with I/O operations.

The following is the short summary and introduction to the topics discussed in this chapter.



I/O Operations

40

I/O buffers
Network programming is all about organizing inter-process communication over a  
computer network. Communication in this context implies exchanging data between  
two or more processes. From the perspective of a process that participates in such 
communication, the process performs I/O operations, sending data to and receiving  
it from other participating processes.

Like any other type of I/O, the network I/O involves using memory buffers, which are 
contiguous blocks of memory allocated in the process's address space used to store the data. 
When doing any sort of input operation (for example, reading some data from a file, a pipe, 
or a remote computer over the network), the data arrives at the process and must be stored 
somewhere in its address space so that it is available for further processing. That is, when the 
buffer comes in handy. Before performing an input operation, the buffer is allocated and then 
used as a data destination point during the operation. When the input operation is completed, 
the buffer contains input data, which can be processed by the application. Likewise, before 
performing the output operation, the data must be prepared and put into an output buffer, 
which is then used in the output operation, where it plays the role of the data source.

Apparently, the buffers are essential ingredients of any application that performs any  
type of I/O, including the network I/O. That's why it is critical for the developer who develops  
a distributed application to know how to allocate and prepare the I/O buffers to use them in 
the I/O operations.

Synchronous and asynchronous I/O operations
Boost.Asio supports two types of I/O operations: synchronous and asynchronous. 
Synchronous operations block the thread of execution invoking them and unblock only  
when the operation is finished. Hence, the name of this type of operation: synchronous.

The second type is an asynchronous operation. When an asynchronous operation is initiated, 
it is associated with a callback function or functor, which is invoked by the Boost.Asio library 
when the operation is finished. These types of I/O operations provide great flexibility, but 
may significantly complicate the code. The initiation of the operation is simple and doesn't 
block the thread of execution, which allows us to use the thread to run other tasks, while the 
asynchronous operation is being run in the background.

The Boost.Asio library is implemented as a framework, which exploits an inversion of control 
approach. After one or more asynchronous operations are initiated, the application hands over 
one of its threads of execution to the library, and the latter uses this thread to run the event 
loop and invoke the callbacks provided by the application to notify it about the completion of 
the previously initiated asynchronous operation. The results of asynchronous operations are 
passed to the callback as arguments.
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Additional operations
In addition to this, we are going to consider such operations as canceling asynchronous 
operations, shutting down, and closing a socket.

The ability to cancel a previously initiated asynchronous operation is very important. It allows 
the application to state that the previously initiated operation is not relevant anymore, which 
may save the application's resources (both CPU and memory), that otherwise (in case, the 
operation would continue its execution even after it was known that nobody is interested in it 
anymore) would be unavoidably wasted.

Shutting down the socket is useful if there is a need for one part of the distributed application 
to inform the other part that the whole message has been sent, when the application layer 
protocol does not provide us with other means to indicate the message boundary.

As with any other operating system resource, a socket should be returned back to the 
operating system when it is not needed anymore by the application. A closing operation  
allows us to do so.

Using fixed length I/O buffers
Fixed length I/O buffers are usually used with I/O operations and play the role of either  
a data source or destination when the size of the message to be sent or received is known. 
For example, this can be a constant array of chars allocated on a stack, which contain a  
string that represents the request to be sent to the server. Or, this can be a writable buffer 
allocated in the free memory, which is used as a data destination point, when reading data 
from a socket.

In this recipe, we'll see how to represent fixed length buffers so that they can be used with 
Boost.Asio I/O operations.

How to do it…
In Boost.Asio, a fixed length buffer is represented by one of the two classes: 
asio::mutable_buffer or asio::const_buffer. Both these classes represent a 
contiguous block of memory that is specified by the address of the first byte of the block 
and its size in bytes. As the names of these classes suggest, asio::mutable_buffer 
represents a writable buffer, whereas asio::const_buffer represents a read-only one.

However, neither the asio::mutable_buffer nor asio::const_buffer 
classes are used in Boost.Asio I/O functions and methods directly. Instead, the 
MutableBufferSequence and ConstBufferSequence concepts are introduced.
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The MutableBufferSequence concept specifies an object that represents a collection 
of the asio::mutable_buffer objects. Correspondingly, the ConstBufferSequence 
concept specifies an object that represents a collection of the asio::const_buffer 
objects. Boost.Asio functions and methods that perform I/O operations accept 
objects that satisfy the requirements of either the MutableBufferSequence or 
ConstBufferSequence concept as their arguments that represent buffers.

A complete specification of the MutableBufferSequence and 
ConstBufferSequence concepts are available in the Boost.Asio 
documentation section, which can be found at the following links:

 f Refer to http://www.boost.org/doc/libs/1_58_0/doc/
html/boost_asio/reference/MutableBufferSequence.
html for MutableBufferSequence

 f Refer to http://www.boost.org/doc/libs/1_58_0/doc/
html/boost_asio/reference/ConstBufferSequence.
html for ConstBufferSequence

Although in most use cases, a single buffer is involved in a single I/O operation, in some 
specific circumstances (for example, in a memory-constrained environment), a developer may 
want to use a composite buffer that comprises multiple smaller simple buffers distributed 
over the process's address space. Boost.Asio I/O functions and methods are designed to 
work with composite buffers that are represented as a collection of buffers that fulfill the 
requirements of either the MutableBufferSequence or ConstBufferSequence concept.

For instance, an object of the std::vector<asio::mutable_buffer> class satisfies the 
requirements of the MutableBufferSequence concept, and therefore, it can be used to 
represent a composite buffer in I/O-related functions and methods.

So, now we know that if we have a buffer that is represented as an object of the 
asio::mutable_buffer or asio::const_buffer class, we still can't use it with  
I/O-related functions or methods provided by Boost.Asio. The buffer must be represented 
as an object, satisfying the requirements of either the MutableBufferSequence or 
ConstBufferSequence concept, respectively. To do this, we for example could create 
a collection of buffer objects consisting of a single buffer by instantiating an object of the 
std::vector<asio::mutable_buffer> class and placing our buffer object into it. 
Now that the buffer is part of the collection, satisfying the MutableBufferSequence 
requirements can be used in I/O operations.

However, although this method is fine to create composite buffers consisting of two or more 
simple buffers, it looks overly complex when it comes to such simple tasks as representing 
a single simple buffer so that it can be used with Boost.Asio I/O functions or methods. 
Fortunately, Boost.Asio provides us with a way to simplify the usage of single buffers with  
I/O-related functions and methods.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/MutableBufferSequence.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/MutableBufferSequence.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/MutableBufferSequence.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/ConstBufferSequence.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/ConstBufferSequence.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/ConstBufferSequence.html
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The asio::buffer() free function has 28 overloads that accept a variety of 
representations of a buffer and return an object of either the asio::mutable_
buffers_1 or asio::const_buffers_1 classes. If the buffer argument passed to 
the asio::buffer() function is a read-only type, the function returns an object of the 
asio::const_buffers_1 class; otherwise, an object of the asio::mutable_buffers_1 
class is returned.

The asio::mutable_buffers_1 and asio::const_buffers_1 classes are 
adapters of the asio::mutable_buffer and asio::const_buffer classes, 
respectively. They provide an interface and behavior that satisfy the requirements of the 
MutableBufferSequence and ConstBufferSequence concepts, which allows us to pass 
these adapters as arguments to Boost.Asio I/O functions and methods.

Let's consider two algorithms and corresponding code samples that describe how to prepare  
a memory buffer that can be used with Boost.Asio I/O operations. The first algorithm deals 
with buffers intended to be used for an output operation and the second one is used for an 
input operation.

Preparing a buffer for an output operation
The following algorithm and corresponding code sample describes how to prepare a buffer 
that can be used with the Boost.Asio socket's method that performs an output operation  
such as asio::ip::tcp::socket::send() or the asio::write()free function:

1. Allocate a buffer. Note that this step does not involve any functionality or data types 
from Boost.Asio.

2. Fill the buffer with the data that is to be used as the output.

3. Represent the buffer as an object that satisfies the ConstBufferSequence 
concept's requirements.

4. The buffer is ready to be used with Boost.Asio output methods and functions.

Let's say we want to send a string Hello to the remote application. Before we send the  
data using Boost.Asio, we need to properly represent the buffer. This is how we do this in  
the following code:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  std::string buf; // 'buf' is the raw buffer. 
  buf = "Hello";   // Step 1 and 2 in single line.
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  // Step 3. Creating buffer representation that satisfies 
  // ConstBufferSequence concept requirements.
  asio::const_buffers_1 output_buf = asio::buffer(buf);

  // Step 4. 'output_buf' is the representation of the
  // buffer 'buf' that can be used in Boost.Asio output
  // operations.

  return 0;
}

Preparing a buffer for an input operation
The following algorithm and corresponding code sample describes how to prepare the buffer 
that can be used with the Boost.Asios socket's method that performs an input operation such 
as asio::ip::tcp::socket::receive() or the asio::read()free function:

1. Allocate a buffer. The size of the buffer must be big enough to fit the block of data 
to be received. Note that this step does not involve any functionalities or data types 
from Boost.Asio.

2. Represent the buffer using an object that satisfies the MutableBufferSequence 
concept's requirements.

3. The buffer is ready to be used with Boost.Asio input methods and functions.

Let's say we want to receive a block of data from the server. To do this, we first need to 
prepare a buffer where the data will be stored. This is how we do this in the following code:

#include <boost/asio.hpp>
#include <iostream>
#include <memory> // For std::unique_ptr<>

using namespace boost;

int main()
{
  // We expect to receive a block of data no more than 20 bytes 
  // long. 
  const size_t BUF_SIZE_BYTES = 20;

  // Step 1. Allocating the buffer. 
  std::unique_ptr<char[]> buf(new char[BUF_SIZE_BYTES]);
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  // Step 2. Creating buffer representation that satisfies 
  // MutableBufferSequence concept requirements.
  asio::mutable_buffers_1 input_buf =
    asio::buffer(static_cast<void*>(buf.get()),
     BUF_SIZE_BYTES);

  // Step 3. 'input_buf' is the representation of the buffer
  // 'buf' that can be used in Boost.Asio input operations.
  
  return 0;
}

How it works…
Both the samples look quite simple and straightforward; however, they contain some 
subtleties, which are important to understand so that we can properly use buffers with  
Boost.Asio. In this section, we'll see how each sample works in detail.

Preparing a buffer for an output operation
Let's consider the first code sample that demonstrates how to prepare a buffer that can be 
used with Boost.Asio output methods and functions. The main()entry point function starts 
with instantiating the object of the std::string class. Because we want to send a string of 
text, std::string is a good candidate to store this kind of data. In the next line, the string 
object is assigned a value of Hello. This is where the buffer is allocated and filled with data. 
This line implements steps 1 and 2 of the algorithm.

Next, before the buffer can be used with Boost.Asio I/O methods and functions, it must be 
properly represented. To better understand why this is needed, let's take a look at one of the 
Boost.Asio output functions. Here is the declaration of the send()method of the Boost.Asio 
class that represents a TCP socket:

template<typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence & buffers);

As we can see, this is a template method, and it accepts an object that satisfies the 
requirements of the ConstBufferSeqenece concept as its argument that represents the 
buffer. A suitable object is a composite object that represents a collection of objects of the 
asio::const_buffer class and provides a typical collection interface that supports an 
iteration over its elements. For example, an object of the std::vector<asio::const_
buffer> class is suitable for being used as the argument of the send() method, but objects 
of the std::string or asio::const_bufer class are not.
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In order to use our std::string object with the send()method of the class that represents 
a TCP socket, we can do something like this:

asio::const_buffer asio_buf(buf.c_str(), buf.length());
std::vector<asio::const_buffer> buffers_sequence;
buffers_sequence.push_back(asio_buf);

The object named buffer_sequence in the preceding snippet satisfies the 
ConstBufferSequence concept's requirements, and therefore, it can be used as an 
argument for the send() method of the socket object. However, this approach is very 
complex. Instead, we use the asio::buffer()function provided by Boost.Asio to obtain 
adaptor objects, which we can directly use in I/O operations:

asio::const_buffers_1 output_buf = asio::buffer(buf);

After the adaptor object is instantiated, it can be used with Boost.Asio output operations to 
represent the output buffer.

Preparing a buffer for an input operation
The second code sample is very similar to the first one. The main difference is that the buffer 
is allocated but is not filled with data because its purpose is different. This time, the buffer is 
intended to receive the data from a remote application during the input operation.

With an output buffer, an input buffer must be properly represented so that it can be used 
with Boost.Asio I/O methods and functions. However, in this case, the buffer must be 
represented as an object that meets the requirements of the MutableBufferSequence 
concept. Contrary to ConstBufferSequence, this concept represents the collection 
of mutable buffers, that is, those that can be written to. Here, we use the buffer() 
function, which helps us create the required representation of the buffer. The object of the 
mutable_buffers_1 adaptor class represents a single mutable buffer and meets the 
MutableBufferSequence concept's requirements.

In the first step, the buffer is allocated. In this case, the buffer is an array of chars allocated 
in the free memory. In the next step, the adaptor object is instantiated that can be used with 
both the input and output operations.

Buffer ownership
It's important to note that neither the classes that represent the buffers 
nor the adaptor classes provided by Boost.Asio that we've considered 
(namely, asio::mutable_buffer, asio::const_buffer, 
asio::mutable_buffers_1, and asio::const_buffers_1) 
take ownership of the underlying raw buffer. These classes only provide 
the interface to the buffer and don't control its lifetime.
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See also
 f The Writing to a TCP socket synchronously recipe demonstrates how to write data to 

the socket from a fixed-length buffer

 f The Reading from a TCP socket synchronously recipe demonstrates how to read data 
from the socket to a fixed-length buffer

 f The Using composite buffers for scatter/gather operations recipe in Chapter 6, Other 
Topics, provides more information on composite buffers and demonstrates how to 
use them

Using extensible stream-oriented I/O buffers
Extensible buffers are those buffers that dynamically increase their size when new data 
is written to them. They are usually used to read data from sockets when the size of the 
incoming message is unknown.

Some application layer protocols do not define the exact size of the message. Instead, the 
boundary of the message is represented by a specific sequence of symbols at the end of the 
message itself or by a transport protocol service message end of file (EOF) issued by the 
sender after it finishes sending the message.

For example, according to the HTTP protocol, the header section of the request and response 
messages don't have a fixed length and its boundary is represented by a sequence of 
four ASCII symbols, <CR><LF><CR><LF>, which is part of the message. In such cases, 
dynamically extensible buffers and functions that can work with them, which are provided by 
the Boost.Asio library, are very useful.

In this recipe, we will see how to instantiate extensible buffers and how to read and write 
data to and from them. To see how these buffers can be used with I/O-related methods 
and functions provided by Boost.Asio, refer to the corresponding recipes dedicated to I/O 
operations listed in the See also section.

How to do it…
Extensible stream-oriented buffers are represented in Boost.Asio with the asio::streambuf 
class, which is a typedef for asio::basic_streambuf:

typedef basic_streambuf<> streambuf;

The asio::basic_streambuf<> class is inherited from std::streambuf, which  
means that it can be used as a stream buffer for STL stream classes. In addition to this, 
several I/O functions provided by Boost.Asio deal with buffers that are represented as  
objects of this class.
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We can work with an object of the asio::streambuf class just like we would work with 
any stream buffer class that is inherited from the std::streambuf class. For example, 
we can assign this object to a stream (for example, std::istream, std::ostream, or 
std::iostream, depending on our needs), and then, use stream's operator<<() and 
operator>>() operators to write and read data to and from the stream.

Let's consider a sample application in which an object of asio::streambuf is instantiated, 
some data is written to it, and then the data is read back from the buffer to an object of the 
std::string class:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  asio::streambuf buf;

  std::ostream output(&buf);

  // Writing the message to the stream-based buffer.
  output << "Message1\nMessage2";

  // Now we want to read all data from a streambuf
  // until '\n' delimiter.
  // Instantiate an input stream which uses our 
  // stream buffer.
  std::istream input(&buf);
  
  // We'll read data into this string.
  std::string message1;

  std::getline(input, message1);

  // Now message1 string contains 'Message1'.

  return 0;
} 

Note that this sample does not contain any network I/O operations because it focuses on the 
asio::streambuf class itself and its operations rather than on how to use this class with 
I/O operations.
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How it works…
The main() application entry point function begins with instantiating an object of the 
asio::streambuf class named buf. Next, the output stream object of the std::ostream 
class is instantiated. The buf object is used as a stream buffer for the output stream.

In the next line, the Message1\nMessage2 sample data string is written to the output 
stream object, which in turn redirects the data to the buf stream buffer.

Usually, in a typical client or server application, the data will be written to the buf stream 
buffer by the Boost.Asio input function such as asio::read(), which accepts a stream 
buffer object as an argument and reads data from the socket to that buffer.

Now, we want to read the data back from the stream buffer. To do this, we allocate an input 
stream and pass the buf object as a stream buffer argument to its constructor. After this, we 
allocate a string object named message1, and then, use the std::getline function to read 
part of the string currently stored in the buf stream buffer until the delimiter symbol, \n.

As a result, the string1 object contains the Message1 string and the buf stream buffer 
contains the rest of the initial string after the delimiter symbol, that is, Message2.

See also
 f The Reading from a TCP socket asynchronously recipe demonstrates how to read 

data from the socket to an extensible stream-oriented buffer

Writing to a TCP socket synchronously
Writing to a TCP socket is an output operation that is used to send data to the remote 
application connected to this socket. Synchronous writing is the simplest way to send the data 
using a socket provided by Boost.Asio. The methods and functions that perform synchronous 
writing to the socket block the thread of execution and do not return until the data (at least 
some amount of data) is written to the socket or an error occurs.

In this recipe, we will see how to write data to a TCP socket synchronously.

How to do it…
The most basic way to write to the socket provided by the Boost.Asio library is to use the 
write_some() method of the asio::ip::tcp::socket class. Here is the declaration  
of one of the method's overloads:

template<
typename ConstBufferSequence>
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std::size_t write_some(
const ConstBufferSequence & buffers);

This method accepts an object that represents a composite buffer as an argument, and as 
its name suggests, writes some amount of data from the buffer to the socket. If the method 
succeeds, the return value indicates the number of bytes written. The point to emphasize here 
is that the method may not send all the data provided to it through the buffers argument. 
The method only guarantees that at least one byte will be written if an error does not occur. 
This means that, in a general case, in order to write all the data from the buffer to the socket, 
we may need to call this method several times.

The following algorithm describes the steps required to synchronously write data to a TCP 
socket in a distributed application:

1. In a client application, allocate, open, and connect an active TCP socket. In a server 
application, obtain a connected active TCP socket by accepting a connection request 
using an acceptor socket.

2. Allocate the buffer and fill it with data that is to be written to the socket.

3. In a loop, call the socket's write_some() method as many times as it is needed to 
send all the data available in the buffer.

The following code sample demonstrates a client application, which operates according to  
the algorithm:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

void writeToSocket(asio::ip::tcp::socket& sock) {
  // Step 2. Allocating and filling the buffer.
  std::string buf = "Hello";

  std::size_t total_bytes_written = 0;

  // Step 3. Run the loop until all data is written
  // to the socket.
  while (total_bytes_written != buf.length()) {
    total_bytes_written += sock.write_some(
      asio::buffer(buf.c_str() +
      total_bytes_written,
      buf.length() - total_bytes_written));
  }
}
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int main()
{
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

// Step 1. Allocating and opening the socket.
    asio::ip::tcp::socket sock(ios, ep.protocol());

    sock.connect(ep);

    writeToSocket(sock);
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

Although in the presented code sample, writing to the socket is performed in the context of 
an application that acts as a client, the same approach can be used to write to the socket in a 
server application.

How it works…
The main()application entry point function is quite simple. It allocates a socket, opens, and 
synchronously connects it to a remote application. Then, the writeToSocket() function is 
called and the socket object is passed to it as an argument. In addition to this, the main()
function contains a try-catch block intended to catch and handle exceptions that may be 
thrown by Boost.Asio methods and functions.
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The interesting part in the sample is the writeToSocket()function that performs 
synchronous writing to the socket. It accepts a reference to the socket object as an  
argument. Its precondition is that the socket passed to it is already connected; otherwise,  
the function fails.

The function begins with allocating and filling the buffer. In this sample, we use an ASCII 
string as data that is to be written to the socket, and, therefore, we allocate an object of the 
std::string class and assign it a value of Hello, which we will use as a dummy message 
that will be written to the socket.

Then, the variable named total_bytes_written is defined and its value is set to 0. This 
variable is used as a counter that stores the count of bytes already written to the socket.

Next, the loop is run in which the socket's write_some() method is called. Except for the 
degenerate case when the buffer is empty (that is, the buf.length() method returns a 
value of 0), at least one iteration of the loop is executed and the write_some() method is 
called at least once. Let's take a closer look at the loop:

  while (total_bytes_written != buf.length()) {
    total_bytes_written += sock.write_some(
      asio::buffer(buf.c_str() +
      total_bytes_written,
      buf.length() - total_bytes_written));
  }

The termination condition evaluates to true when the value of the total_bytes_written 
variable is equal to the size of the buffer, that is, when all the bytes available in the buffer 
have been written to the socket. In each iteration of the loop, the value of the total_bytes_
written variable is increased by the value returned by the write_some() method, which is 
equal to the number of bytes written during this method call.

Each time the write_some() method is called, the argument passed to it is adjusted. The 
start byte of the buffer is shifted by the value of total_bytes_written as compared to 
the original buffer (because the previous bytes have already been sent by preceding calls 
to the write_some() method) and the size of the buffer is decreased by the same value, 
correspondingly.

After the loop terminates, all the data from the buffer is written to the socket and the 
writeToSocket() function returns.

It's worth noting that the amount of bytes written to the socket during a single call to the 
write_some() method depends on several factors. In the general case, it is not known 
to the developer; and therefore, it should not be accounted for. A demonstrated solution is 
independent of this value and calls the write_some() method as many times as needed to 
write all the data available in the buffer to the socket.
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Alternative – the send() method
The asio::ip::tcp::socket class contains another method to synchronously  
write data to the socket named send(). There are three overloads of this method. One  
of them is equivalent to the write_some() method, as described earlier. It has exactly the 
same signature and provides exactly the same functionality. These methods are synonyms in 
a sense.

The second overload accepts one additional argument as compared to the write_some() 
method. Let's take a look at it:

template<
typename ConstBufferSequence>
std::size_t send(
    const ConstBufferSequence & buffers,
    socket_base::message_flags flags);

This additional argument is named flags. It can be used to specify a bit mask, representing 
flags that control the operation. Because these flags are used quite rarely, we won't consider 
them in this book. Refer to the Boost.Asio documentation to find out more information on  
this topic.

The third overload is equivalent to the second one, but it doesn't throw exceptions in case of 
a failure. Instead, the error information is returned by means of an additional method's output 
argument of the boost::system::error_code type.

There's more...
Writing to a socket using the socket's write_some() method seems very complex for such a 
simple operation. Even if we want to send a small message that consists of several bytes, we 
must use a loop, a variable to keep track of how many bytes have already been written, and 
properly construct a buffer for each iteration of the loop. This approach is error-prone  
and makes the code more difficult to understand.

Fortunately, Boost.Asio provides a free function, which simplifies writing to a socket.  
This function is called asio::write(). Let's take a look at one of its overloads:

template<
    typename SyncWriteStream,
    typename ConstBufferSequence>
std::size_t write(
    SyncWriteStream & s,
    const ConstBufferSequence & buffers);
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This function accepts two arguments. The first of them named s is a reference to an 
object that satisfies the requirements of the SyncWriteStream concept. For a complete 
list of the requirements, refer to the corresponding Boost.Asio documentation section at 
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
SyncWriteStream.html. The object of the asio::ip::tcp::socket class that 
represents a TCP socket satisfies these requirements and, therefore, can be used as the 
first argument of the function. The second argument named buffers represents the buffer 
(simple or composite) and contains data that is to be written to the socket.

In contrast to the socket object's write_some() method, which writes some amount of data 
from the buffer to the socket, the asio::write() function writes all the data available in 
the buffer. This simplifies writing to the socket and makes the code shorter and cleaner.

This is how our writeToSocket() function from a previous sample would look like if we 
used the asio::write() function instead of the socket object's write_some() method  
to write data to the socket:

void writeToSocketEnhanced(asio::ip::tcp::socket& sock) {
  // Allocating and filling the buffer.
  std::string buf = "Hello";

  // Write whole buffer to the socket.
  asio::write(sock, asio::buffer(buf));
}

The asio::write() function is implemented in a similar way as the original 
writeToSocket() function is implemented by means of several calls to the socket  
object's write_some() method in a loop.

Note that the asio::write() function has seven more 
overloads on the top of the one we just considered. Some of 
them may be very useful in specific cases. Refer to the Boost.Asio 
documentation to find out more about this function at http://
www.boost.org/doc/libs/1_58_0/doc/html/boost_
asio/reference/write.html.

See also
 f The Implementing a synchronous TCP client recipe in Chapter 3, Implementing 

Client Applications, demonstrates how to implement a synchronous TCP client that 
performs synchronous writing to send request messages to the server

 f The Implementing a synchronous iterative TCP server recipe in Chapter 4, 
Implementing Server Applications, demonstrates how to implement a synchronous TCP 
server that performs synchronous writing to send response messages to the client

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncWriteStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncWriteStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/write.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/write.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/write.html
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Reading from a TCP socket synchronously
Reading from a TCP socket is an input operation that is used to receive data sent by the 
remote application connected to this socket. Synchronous reading is the simplest way to 
receive the data using a socket provided by Boost.Asio. The methods and functions that 
perform synchronous reading from the socket blocks the thread of execution and doesn't 
return until the data (at least some amount of data) is read from the socket or an error occurs.

In this recipe, we will see how to read data from a TCP socket synchronously.

How to do it…
The most basic way to read data from the socket provided by the Boost.Asio library is the 
read_some() method of the asio::ip::tcp::socket class. Let's take a look at one of 
the method's overloads:

template<
typename MutableBufferSequence>
std::size_t read_some(
    const MutableBufferSequence & buffers);

This method accepts an object that represents a writable buffer (single or composite) as 
an argument, and as its name suggests, reads some amount of data from the socket to 
the buffer. If the method succeeds, the return value indicates the number of bytes read. It's 
important to note that there is no way to control how many bytes the method will read. The 
method only guarantees that at least one byte will be read if an error does not occur. This 
means that, in a general case, in order to read a certain amount of data from the socket,  
we may need to call the method several times.

The following algorithm describes the steps required to synchronously read data from a TCP 
socket in a distributed application:

1. In a client application, allocate, open, and connect an active TCP socket. In a server 
application, obtain a connected active TCP socket by accepting a connection request 
using an acceptor socket.

2. Allocate the buffer of a sufficient size to fit in the expected message to be read.

3. In a loop, call the socket's read_some() method as many times as it is needed to 
read the message.
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The following code sample demonstrates a client application, which operates according to  
the algorithm:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

std::string readFromSocket(asio::ip::tcp::socket& sock) {
  const unsigned char MESSAGE_SIZE = 7;
  char buf[MESSAGE_SIZE];
  std::size_t total_bytes_read = 0;

  while (total_bytes_read != MESSAGE_SIZE) {
    total_bytes_read += sock.read_some(
      asio::buffer(buf + total_bytes_read,
      MESSAGE_SIZE - total_bytes_read));
  }

  return std::string(buf, total_bytes_read);
}

int main()
{
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    asio::ip::tcp::socket sock(ios, ep.protocol());

    sock.connect(ep);

    readFromSocket(sock);
  }
  catch (system::system_error &e) {
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    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

Although in the presented code sample, reading from a socket is performed in the context of 
an application that acts as a client, the same approach can be used to read data from the 
socket in a server application.

How it works…
The main()application entry point function is quite simple. First, it allocates a TCP socket, 
opens, and synchronously connects it to a remote application. Then, the readFromSocket() 
function is called and the socket object is passed to it as an argument. In addition to this, the 
main() function contains a try-catch block intended to catch and handle exceptions that 
may be thrown by Boost.Asio methods and functions.

The interesting part in the sample is the readFromSocket() function that performs 
synchronous reading from the socket. It accepts a reference to the socket object as an input 
argument. Its precondition is that the socket passed to it as an argument must be connected; 
otherwise, the function fails.

The function begins with allocating a buffer named buf. The size of the buffer is chosen to be 
7 bytes. This is because in our sample, we expect to receive exactly a 7 bytes long message 
from a remote application.

Then, a variable named total_bytes_read is defined and its value is set to 0. This variable 
is used as a counter that keeps the count of the total number of bytes read from the socket.

Next, the loop is run in which the socket's read_some() method is called. Let's take a closer 
look at the loop:

  while (total_bytes_read != MESSAGE_SIZE) {
    total_bytes_read += sock.read_some(
      asio::buffer(buf + total_bytes_read,
      MESSAGE_SIZE - total_bytes_read));
  }
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The termination condition evaluates to true when the value of the total_bytes_read 
variable is equal to the size of the expected message, that is, when the whole message has 
been read from the socket. In each iteration of the loop, the value of the total_bytes_read 
variable is increased by the value returned by the read_some() method, which is equal to 
the number of bytes read during this method call.

Each time the read_some() method is called, the input buffer passed to it is adjusted. The 
start byte of the buffer is shifted by the value of total_bytes_read as compared to the 
original buffer (because the preceding part of the buffer has already been filled with data 
read from the socket during preceding calls to the read_some() method) and the size of the 
buffer is decreased by the same value, correspondingly.

After the loop terminates, all the data expected to be read from the socket is now in the buffer.

The readFromSocket() function ends with instantiating an object of the std::string 
class from the received buffer and returning it to the caller.

It's worth noting that the amount of bytes read from the socket during a single call to the 
read_some() method depends on several factors. In a general case, it is not known to 
the developer; and, therefore, it should not be accounted for. The proposed solution is 
independent of this value and calls the read_some() method as many times as needed to 
read all the data from the socket.

Alternative – the receive() method
The asio::ip::tcp::socket class contains another method to read data from the socket 
synchronously called receive(). There are three overloads of this method. One of them is 
equivalent to the read_some() method, as described earlier. It has exactly the same signature 
and provides exactly the same functionality. These methods are synonyms in a sense.

The second overload accepts one additional argument as compared to the read_some() 
method. Let's take a look at it:

template<
    typename MutableBufferSequence>
std::size_t receive(
    const MutableBufferSequence & buffers,
    socket_base::message_flags flags);

This additional argument is named flags. It can be used to specify a bit mask, representing 
flags that control the operation. Because these flags are rarely used, we won't consider them 
in this book. Refer to the Boost.Asio documentation to find out more about this topic.

The third overload is equivalent to the second one, but it doesn't throw exceptions in case of a 
failure. Instead, the error information is returned by means of an additional output argument 
of the boost::system::error_code type.
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There's more...
Reading from a socket using the socket's read_some() method seems very complex for such 
a simple operation. This approach requires us to use a loop, a variable to keep track  
of how many bytes have already been read, and properly construct a buffer for each iteration 
of the loop. This approach is error-prone and makes the code more difficult to understand  
and maintain.

Fortunately, Boost.Asio provides a family of free functions that simplify synchronous reading  
of data from a socket in different contexts. There are three such functions, each having 
several overloads, that provide a rich functionality that facilitates reading data from a socket.

The asio::read() function
The asio::read() function is the simplest one out of the three. Let's take a look at the 
declaration of one of its overloads:

template<
    typename SyncReadStream,
    typename MutableBufferSequence>
std::size_t read(
    SyncReadStream & s,
    const MutableBufferSequence & buffers);

This function accepts two arguments. The first of them named s is a reference to an object 
that satisfies the requirements of the SyncReadStream concept. For a complete list of the 
requirements, refer to the corresponding Boost.Asio documentation section available at 
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
SyncReadStream.html. The object of the asio::ip::tcp::socket class that 
represents a TCP socket satisfies these requirements and, therefore, can be used as the first 
argument of the function. The second argument named buffers represents a buffer (simple 
or composite) to which the data will be read from the socket.

In contrast to the socket's read_some() method, which reads some amount of data from the 
socket to the buffer, the asio::read() function, during a single call, reads data from the 
socket until the buffer passed to it as an argument is filled or an error occurs. This simplifies 
reading from the socket and makes the code shorter and cleaner.

This is how our readFromSocket() function from the previous sample would look like if we 
used the asio::read() function instead of the socket object's read_some() method to 
read data from the socket:

std::string readFromSocketEnhanced(asio::ip::tcp::socket& sock) {
  const unsigned char MESSAGE_SIZE = 7;
  char buf[MESSAGE_SIZE];

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncReadStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncReadStream.html
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  asio::read(sock, asio::buffer(buf, MESSAGE_SIZE));

  return std::string(buf, MESSAGE_SIZE);
}

In the preceding sample, a call to the asio::read() function will block the thread of 
execution until exactly 7 bytes are read or an error occurs. The benefits of this approach  
over the socket's read_some() method are obvious.

The asio::read() function has several overloads, which provide 
flexibility in specific contexts. Refer to the corresponding section of 
the Boost.Asio documentation to find out more about this function 
at http://www.boost.org/doc/libs/1_58_0/doc/html/
boost_asio/reference/read.html.

The asio::read_until() function
The asio::read_until() function provides a way to read data from a socket until a 
specified pattern is encountered in the data. There are eight overloads of this function.  
Let's consider one of them:

template<
    typename SyncReadStream,
    typename Allocator>
std::size_t read_until(
    SyncReadStream & s,
    boost::asio::basic_streambuf< Allocator > & b,
    char delim);

This function accepts three arguments. The first of them named s is a reference to an 
object that satisfies the requirements of the SyncReadStream concept. For a complete 
list of the requirements, refer to the corresponding Boost.Asio documentation section at 
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
SyncReadStream.html. The object of the asio::ip::tcp::socket class that 
represents a TCP socket satisfies these requirements and, therefore, can be used as  
the first argument of the function.

The second argument named b represents a stream-oriented extensible buffer in which the 
data will be read. The last argument named delim specifies a delimiter character.

The asio::read_until() function will read data from the s socket to the buffer b until 
it encounters a character specified by the delim argument in the read portion of the data. 
When the specified character is encountered, the function returns.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncReadStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/SyncReadStream.html


Chapter 2

61

It's important to note that the asio::read_until() function is implemented so that it 
reads the data from the socket by blocks of variable sizes (internally it uses the socket's 
read_some() method to read the data). When the function returns, the buffer b may contain 
some symbols after the delimiter symbol. This may happen if the remote application sends 
some more data after the delimiter symbol (for example, it may send two messages in a row, 
each having a delimiter symbol in the end). In other words, when the asio::read_until() 
function returns successfully, it is guaranteed that the buffer b contains at least one delimiter 
symbol but may contain more. It is the developer's responsibility to parse the data in the 
buffer and handle the situation when it contains data after the delimiter symbol.

This is how we will implement our readFromSocket() function if we want to read all the 
data from a socket until a specific symbol is encountered. Let's assume the message delimiter 
to be a new line ASCII symbol, \n:

std::string readFromSocketDelim(asio::ip::tcp::socket& sock) {
  asio::streambuf buf;

  // Synchronously read data from the socket until
  // '\n' symbol is encountered.  
  asio::read_until(sock, buf, '\n');

  std::string message;

  // Because buffer 'buf' may contain some other data
  // after '\n' symbol, we have to parse the buffer and
  // extract only symbols before the delimiter. 
  
  std::istream input_stream(&buf);
  std::getline(input_stream, message);
  return message;
}

This example is quite simple and straightforward. Because buf may contain more symbols 
after the delimiter symbol, we use the std::getline() function to extract the messages 
of interest before the delimiter symbol and put them into the message string object, which is 
then returned to the caller.

The read_until() function has several overloads, which provide 
more sophisticated ways to specify termination conditions, such as string 
delimiters, regular expressions, or functors. Refer to the corresponding 
Boost.Asio documentation section to find out more about this topic 
at http://www.boost.org/doc/libs/1_58_0/doc/html/
boost_asio/reference/read_until.html.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read_until.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read_until.html
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The asio::read_at() function
The asio::read_at() function provides a way to read data from a socket, starting at a 
particular offset. Because this function is rarely used, it is beyond the scope of this book. 
Refer to the corresponding Boost.Asio documentation section for more details about this 
function and its overloads at http://www.boost.org/doc/libs/1_58_0/doc/html/
boost_asio/reference/read_at.html.

The asio::read(), asio::read_until(), and asio::read_at() functions are 
implemented in a similar way to how the original readFromSocket() function in our sample 
is implemented by means of several calls to the socket object's read_some() method in a 
loop until the termination condition is satisfied or an error occurs.

See also
 f The Using extensible stream-oriented I/O buffers recipe demonstrates how to write 

and read data to and from the asio::streambuf buffer

 f The Implementing a synchronous TCP client recipe in Chapter 3, Implementing Client 
Applications, demonstrates how to implement a synchronous TCP client that performs 
synchronous reading from a socket to receive response messages sent by the server

 f The Implementing a synchronous iterative TCP server recipe in Chapter 4, 
Implementing Server Applications, demonstrates how to implement a synchronous 
TCP server that performs synchronous reading to receive request messages from  
the client

Writing to a TCP socket asynchronously
Asynchronous writing is a flexible and efficient way to send data to a remote application.  
In this recipe, we will see how to write data to a TCP socket asynchronously.

How to do it…
The most basic tool used to asynchronously write data to the socket provided by the Boost.
Asio library is the async_write_some() method of the asio::ip::tcp::socket class. 
Let's take a look at one of the method's overloads:

template<
    typename ConstBufferSequence,
    typename WriteHandler>
void async_write_some(
    const ConstBufferSequence & buffers,
    WriteHandler handler);

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read_at.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/read_at.html
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This method initiates the write operation and returns immediately. It accepts an object that 
represents a buffer that contains the data to be written to the socket as its first argument. 
The second argument is a callback, which will be called by Boost.Asio when an initiated 
operation is completed. This argument can be a function pointer, functor, or any other object 
that satisfies the requirements of the WriteHandler concept. The complete list of the 
requirements can be found in the corresponding section of the Boost.Asio documentation at 
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
WriteHandler.html.

The callback should have the following signature:

void write_handler(
    const boost::system::error_code& ec,
    std::size_t bytes_transferred);

Here, ec is an argument that indicates an error code if one occurs, and the  
bytes_transferred argument indicates how many bytes have been written  
to the socket during the corresponding asynchronous operation.

As the async_write_some() method's name suggests, it initiates an operation that  
is intended to write some amount of data from the buffer to the socket. This method 
guarantees that at least one byte will be written during the corresponding asynchronous 
operation if an error does not occur. This means that, in a general case, in order to write all 
the data available in the buffer to the socket, we may need to perform this asynchronous 
operation several times.

Now that we know how the key method works, let's see how to implement an application that 
performs asynchronous writing to the socket.

The following algorithm describes the steps required to perform and implement an 
application, which writes data to a TCP socket asynchronously. Note that this algorithm 
provides a possible way to implement such an application. Boost.Asio is quite flexible and 
allows us to organize and structure the application by writing data to a socket asynchronously 
in many different ways:

1. Define a data structure that contains a pointer to a socket object, a buffer, and a 
variable used as a counter of bytes written.

2. Define a callback function that will be called when the asynchronous writing 
operation is completed.

3. In a client application, allocate and open an active TCP socket and connect it to a 
remote application. In a server application, obtain a connected active TCP socket by 
accepting a connection request.

4. Allocate a buffer and fill it with data that is to be written to the socket.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/WriteHandler.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/WriteHandler.html
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5. Initiate an asynchronous writing operation by calling the socket's async_write_
some() method. Specify a function defined in step 2 as a callback.

6. Call the run() method on an object of the asio::io_service class.

7. In a callback, increase the counter of bytes written. If the number of bytes written is 
less than the total amount of bytes to be written, initiate a new asynchronous writing 
operation to write the next portion of the data.

Let's implement a sample client application that performs asynchronous writing in accordance 
with the preceding algorithm.

We begin with adding the include and using directives:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

Next, according to step 1 of the algorithm, we define a data structure that contains a pointer 
to the socket object, a buffer that contains data to be written, and a counter variable that 
contains the number of bytes already written:

// Keeps objects we need in a callback to
// identify whether all data has been written
// to the socket and to initiate next async
// writing operation if needed.
struct Session {
  std::shared_ptr<asio::ip::tcp::socket> sock;
  std::string buf;
  std::size_t total_bytes_written;
};

In step 2, we define a callback function, which will be called when the asynchronous operation 
is completed:

// Function used as a callback for 
// asynchronous writing operation.
// Checks if all data from the buffer has
// been written to the socket and initiates
// new asynchronous writing operation if needed.
void callback(const boost::system::error_code& ec,
        std::size_t bytes_transferred,
        std::shared_ptr<Session> s) 
{
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  if (ec != 0) {
    std::cout << "Error occured! Error code = " 
    << ec.value()
    << ". Message: " << ec.message();

    return;
  }

  s->total_bytes_written += bytes_transferred;

  if (s->total_bytes_written == s->buf.length()) {
    return;
  }

  s->sock->async_write_some(
  asio::buffer(
  s->buf.c_str() + 
  s->total_bytes_written, 
  s->buf.length() - 
  s->total_bytes_written),
  std::bind(callback, std::placeholders::_1,
  std::placeholders::_2, s));
}

Let's skip step 3 for now and implement steps 4 and 5 in a separate function. Let's call this 
function writeToSocket():

void writeToSocket(std::shared_ptr<asio::ip::tcp::socket> sock) {

  std::shared_ptr<Session> s(new Session);

  // Step 4. Allocating and filling the buffer.
  s->buf = std::string("Hello");
  s->total_bytes_written = 0;
  s->sock = sock;

  // Step 5. Initiating asynchronous write operation.
  s->sock->async_write_some(
  asio::buffer(s->buf),
  std::bind(callback, 
  std::placeholders::_1,
  std::placeholders::_2, 
  s));
}
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Now, we come back to step 3 and implement it in the main()application entry point function:

int main()
{
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    // Step 3. Allocating, opening and connecting a socket.
    std::shared_ptr<asio::ip::tcp::socket> sock(
    new asio::ip::tcp::socket(ios, ep.protocol()));

    sock->connect(ep);

    writeToSocket(sock);

    // Step 6.
    ios.run();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

How it works…
Now, let's track the application's execution path to better understand how it works.

The application is run by a single thread, in the context of which the application's main() 
entry point function is called. Note that Boost.Asio may create additional threads for some 
internal operations, but it guarantees that no application code is executed in the context of 
those threads.
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The main() function allocates, opens, and synchronously connects a socket to a remote 
application and then calls the writeToSocket() function by passing a pointer to the socket 
object. This function initiates an asynchronous write operation and returns. We'll consider this 
function in a moment. The main() function continues with calling the run() method on the 
object of the asio::io_service class, where Boost.Asio captures the thread of execution 
and uses it to call the callback functions associated with asynchronous operations when they 
get completed.

The asio::os_service::run() method blocks, as long as, at least one pending 
asynchronous operation. When the last callback of the last pending asynchronous operation 
is completed, this method returns.

Now, let's come back to the writeToSocket() function and analyze its behavior. It begins 
with allocating an instance of the Session data structure in the free memory. Then, it 
allocates and fills the buffer with the data to be written to the socket. After this, a pointer 
to the socket object and the buffer are stored in the Session object. Because the socket's 
async_write_some() method may not write all the data to the socket in one go, we may 
need to initiate another asynchronous write operation in a callback function. That's why we 
need the Session object and we allocate it in the free memory and not on the stack; it must 
live until the callback function is called.

Finally, we initiate the asynchronous operation, calling the socket object's async_write_
some() method. The invocation of this method is somewhat complex, and, therefore, let's 
consider this in more detail:

s->sock->async_write_some(
  asio::buffer(s->buf),
  std::bind(callback,
     std::placeholders::_1,
std::placeholders::_2, 
s));

The first argument is a buffer that contains data to be written to the socket. Because the 
operation is asynchronous, this buffer may be accessed by Boost.Asio at any moment 
between operation initiation and when the callback is called. This means that the buffer must 
stay intact and must be available until the callback is called. We guarantee this by storing the 
buffer in a Session object, which in turn is stored in the free memory.

The second argument is a callback that is to be invoked when the asynchronous operation is 
completed. Boost.Asio defines a callback as a concept, which can be a function or a functor, 
that accepts two arguments. The first argument of the callback specifies an error that occurs 
while the operation is being executed, if any. The second argument specifies the number of 
bytes written by the operation.
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Because we want to pass an additional argument to our callback function, a pointer to 
the corresponding Session object, which acts as a context for the operation, we use the 
std::bind() function to construct a function object to which we attach a pointer to the 
Session object as the third argument. The function object is then passed as a callback 
argument to the socket object's async_write_some() method.

Because it is asynchronous, the async_write_some() method doesn't block the thread of 
execution. It initiates the writing operation and returns.

The actual writing operation is executed behind the scenes by the Boost.Asio library and 
underlying operating system, and when the operation is complete or an error occurs, the 
callback is invoked.

When invoked, the callback function named, literally, callback in our sample application 
begins with checking whether the operation succeeded or an error occurred. In the latter 
case, the error information is output to the standard output stream and the function returns. 
Otherwise, the counter of the total written bytes is increased by the number of bytes written 
as a result of an operation. Then, we check whether the total number of bytes written to the 
socket is equal to the size of the buffer. If these values are equal, this means that all the data 
has been written to the socket and there is no more work to do. The callback function returns. 
However, if there is still data in the buffer that is to be written, a new asynchronous write 
operation is initiated:

s->sock->async_write_some(
asio::buffer(
s->buf.c_str() + 
s->total_bytes_written, 
s->buf.length() – 
s->total_bytes_written),
std::bind(callback, std::placeholders::_1,
std::placeholders::_2, s));

Note how the beginning of the buffer is shifted by the number of bytes already written,  
and how the size of the buffer is decreased by the same value, correspondingly.

As a callback, we specify the same callback() function using the std::bind() function 
to attach an additional argument—the Session object, just like we did when we initiated the 
first asynchronous operation.

The cycles of initiation of an asynchronous writing operation and consequent callback 
invocation repeat until all the data from the buffer is written to the socket or an error occurs.

When the callback function returns without initiating a new asynchronous operation, the 
asio::io_service::run() method, called in the main() function, unblocks the thread of 
execution and returns. The main() function returns as well. This is when the application exits.
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There's more...
Although the async_write_some() method described in the previous sample allows 
asynchronously writing data to the socket, the solution based on it is somewhat complex  
and error-prone. Fortunately, Boost.Asio provides a more convenient way to asynchronously 
write data to a socket using the free function asio::async_write(). Let's consider one  
of its overloads:

template<
    typename AsyncWriteStream,
    typename ConstBufferSequence,
    typename WriteHandler>
void async_write(
    AsyncWriteStream & s,
    const ConstBufferSequence & buffers,
    WriteHandler handler);

This function is very similar to the socket's async_write_some() method. Its first argument 
is an object that satisfies the requirements of the AsyncWriteStream concept. For the 
complete list of the requirements, refer to the corresponding Boost.Asio documentation 
section at http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/
reference/AsyncWriteStream.html. The object of the asio::ip::tcp::socket 
class satisfies these requirements and, therefore, can be used with this function.

The second and the third arguments of the asio::async_write() function are similar to 
the first and second arguments of the async_write_some() method of a TCP socket object 
described in the previous sample. These arguments are buffers that contain data that is to 
be written and functions or objects that represent a callback, which will be called when the 
operation is completed.

In contrast to the socket's async_write_some() method, which initiates the operation 
that writes some amount of data from the buffer to the socket, the asio::async_write() 
function initiates the operation, which writes all the data available in the buffer. In this case, the 
callback is called only when all the data available in the buffer is written to the socket or when 
an error occurs. This simplifies writing to the socket and makes the code shorter and cleaner.

If we change our previous sample so that it uses the asio::async_write() function 
instead of the socket object's async_write_some() method to write data to the socket 
asynchronously, our application becomes significantly simpler.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/AsyncWriteStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/AsyncWriteStream.html
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Firstly, we don't need to keep track of the number of bytes written to the socket, so therefore, 
the Session structure becomes smaller:

struct Session {
  std::shared_ptr<asio::ip::tcp::socket> sock;
  std::string buf;
}; 

Secondly, we know that when the callback function is invoked, it means that either all the 
data from the buffer has been written to the socket or an error has occurred. This makes the 
callback function much simpler:

void callback(const boost::system::error_code& ec,
  std::size_t bytes_transferred,
  std::shared_ptr<Session> s)
{
  if (ec != 0) {
    std::cout << "Error occured! Error code = "
      << ec.value()
      << ". Message: " << ec.message();

    return;
  }

  // Here we know that all the data has
  // been written to the socket.
}

The asio::async_write() function is implemented by means of zero or more 
calls to the socket object's async_write_some() method. This is similar to how the 
writeToSocket() function in our initial sample is implemented.

Note that the asio::async_write() function has three more 
overloads, providing additional functionalities. Some of them may 
be very useful in specific circumstances. Refer to the Boost.Asio 
documentation to find out more about this function at http://www.
boost.org/doc/libs/1_58_0/doc/html/boost_asio/
reference/async_write.html.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/async_write.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/async_write.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/async_write.html
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See also
 f The Writing to a TCP socket synchronously recipe describes how to write data to  

a TCP socket synchronously

 f The Implementing an asynchronous TCP client recipe in Chapter 3, Implementing 
Client Applications, demonstrates how to implement an asynchronous TCP client  
that performs asynchronous writing to a TCP socket to send request messages  
to the server

 f The Implementing an asynchronous TCP server recipe in Chapter 4, Implementing 
Server Applications, demonstrates how to implement an asynchronous TCP server 
that performs asynchronous writing to a TCP socket to send response messages to 
the client

Reading from a TCP socket asynchronously
Asynchronous reading is a flexible and efficient way to receive data from a remote application. 
In this recipe, we will see how to read data from a TCP socket asynchronously.

How to do it…
The most basic tool used to asynchronously read data from a TCP socket provided by the 
Boost.Asio library is the async_read_some() method of the asio::ip::tcp::socket 
class. Here is one of the method's overloads:

template<
    typename MutableBufferSequence,
    typename ReadHandler>
void async_read_some(
    const MutableBufferSequence & buffers,
    ReadHandler handler);

This method initiates an asynchronous read operation and returns immediately. It accepts 
an object that represents a mutable buffer as its first argument to which the data will be 
read from the socket. The second argument is a callback that is called by Boost.Asio when 
the operation is completed. This argument can be a function pointer, a functor, or any other 
object that satisfies the requirements of the ReadHandler concept. The complete list of the 
requirements can be found in the corresponding section of the Boost.Asio documentation at 
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
ReadHandler.html.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/ReadHandler.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/ReadHandler.html
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The callback should have the following signature:

void read_handler(
    const boost::system::error_code& ec,
    std::size_t bytes_transferred);

Here, ec is an argument that notifies an error code if one occurs, and the  
bytes_transferred argument indicates how many bytes have been read from  
the socket during the corresponding asynchronous operation.

As the async_read_some() method's name suggests, it initiates an operation that is 
intended to read some amount of data from the socket to the buffer. This method guarantees 
that at least one byte will be read during the corresponding asynchronous operation if an  
error does not occur. This means that, in a general case, in order to read all the data from  
the socket, we may need to perform this asynchronous operation several times.

Now that we know how the key method works, let's see how to implement an application that 
performs asynchronous reading from the socket.

The following algorithm describes the steps required to implement an application, which 
reads data from a socket asynchronously. Note that this algorithm provides a possible way 
to implement such an application. Boost.Asio is quite flexible and allows us to organize and 
structure the application by reading data from a socket asynchronously in different ways:

1. Define a data structure that contains a pointer to a socket object, a buffer, a variable 
that defines the size of the buffer, and a variable used as a counter of bytes read.

2. Define a callback function that will be called when an asynchronous reading 
operation is completed.

3. In a client application, allocate and open an active TCP socket, and then, connect it to 
a remote application. In a server application, obtain a connected active TCP socket by 
accepting a connection request.

4. Allocate a buffer big enough for the expected message to fit in.

5. Initiate an asynchronous reading operation by calling the socket's async_read_
some() method, specifying a function defined in step 2 as a callback.

6. Call the run() method on an object of the asio::io_service class.

7. In a callback, increase the counter of bytes read. If the number of bytes read is less 
than the total amount of bytes to be read (that is, the size of an expected message), 
initiate a new asynchronous reading operation to read the next portion of data.

Let's implement a sample client application which will perform asynchronous reading in 
accordance with the preceding algorithm.
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We begin with adding the include and using directives:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

Next, according to step 1, we define a data structure that contains a pointer to the socket 
object named sock, a pointer to the buffer named buf, a variable named buf_size that 
contains the size of the buffer, and a total_bytes_read variable that contains the number 
of bytes already read:

// Keeps objects we need in a callback to
// identify whether all data has been read
// from the socket and to initiate next async
// reading operation if needed.
struct Session {
  std::shared_ptr<asio::ip::tcp::socket> sock;
  std::unique_ptr<char[]> buf;
  std::size_t total_bytes_read;
  unsigned int buf_size;
};

In step 2, we define a callback function, which will be called when asynchronous operation  
is completed:

// Function used as a callback for 
// asynchronous reading operation.
// Checks if all data has been read
// from the socket and initiates
// new reading operation if needed.
void callback(const boost::system::error_code& ec,
  std::size_t bytes_transferred,
  std::shared_ptr<Session> s)
{
  if (ec != 0) {
    std::cout << "Error occured! Error code = "
      << ec.value()
      << ". Message: " << ec.message();

    return;
  }
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  s->total_bytes_read += bytes_transferred;

  if (s->total_bytes_read == s->buf_size) {
    return;
  }

  s->sock->async_read_some(
    asio::buffer(
    s->buf.get() +
      s->total_bytes_read,
    s->buf_size -
      s->total_bytes_read),
    std::bind(callback, std::placeholders::_1,
    std::placeholders::_2, s));
} 

Let's skip step 3 for now and implement steps 4 and 5 in a separate function. Let's name this 
function readFromSocket():

void readFromSocket(std::shared_ptr<asio::ip::tcp::socket> sock) {  
  std::shared_ptr<Session> s(new Session);

  // Step 4. Allocating the buffer.
  const unsigned int MESSAGE_SIZE = 7;

  s->buf.reset(new char[MESSAGE_SIZE]);
  s->total_bytes_read = 0;
  s->sock = sock;
  s->buf_size = MESSAGE_SIZE;

  // Step 5. Initiating asynchronous reading operation.
  s->sock->async_read_some(
    asio::buffer(s->buf.get(), s->buf_size),
    std::bind(callback,
      std::placeholders::_1,
      std::placeholders::_2,
      s));
}

Now, we come back to step 3 and implement it in the application's main() entry  
point function:

int main()
{
  std::string raw_ip_address = "127.0.0.1";
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  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    // Step 3. Allocating, opening and connecting a socket.
    std::shared_ptr<asio::ip::tcp::socket> sock(
      new asio::ip::tcp::socket(ios, ep.protocol()));

    sock->connect(ep);

    readFromSocket(sock);

    // Step 6.
    ios.run();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
} 

How it works…
Now, let's track the application's execution path to better understand how it works.

The application is run by a single thread; in the context of which the application's main() 
entry point function is called. Note that Boost.Asio may create additional threads for some 
internal operations, but it guarantees that no application code is called in the context of  
those threads.
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The main() function begins with allocating, opening, and connecting a socket to a remote 
application. Then, it calls the readFromSocket() function and passes a pointer to the 
socket object as an argument. The readFromSocket() function initiates an asynchronous 
reading operation and returns. We'll consider this function in a moment. The main() function 
continues with calling the run() method on the object of the asio::io_service class, 
where Boost.Asio captures the thread of execution and uses it to call the callback functions 
associated with asynchronous operations when they get completed.

The asio::io_service::run() method blocks as long as there is at least one pending 
asynchronous operation. When the last callback of the last pending operation is completed, 
this method returns.

Now, let's come back to the readFromSocket() function and analyze its behavior. It 
begins with allocating an instance of the Session data structure in the free memory. 
Then, it allocates a buffer and stores a pointer to it in a previously allocated instance of the 
Session data structure. A pointer to the socket object and the size of the buffer are stored 
in the Session data structure as well. Because the socket's async_read_some() method 
may not read all the data in one go, we may need to initiate another asynchronous reading 
operation in the callback function. This is why we need the Session data structure and why 
we allocate it in the free memory and not on a stack. This structure and all the objects that 
reside in it must live at least until the callback is invoked.

Finally, we initiate the asynchronous operation, calling the socket object's async_read_
some() method. The invocation of this method is somewhat complex; therefore, let's take  
a look at it in more detail:

s->sock->async_read_some(
  asio::buffer(s->buf.get(), s->buf_size),
  std::bind(callback,
    std::placeholders::_1,
    std::placeholders::_2,
    s));

The first argument is the buffer to which the data will be read. Because the operation is 
asynchronous, this buffer may be accessed by Boost.Asio at any moment between the 
operation initiation and when the callback is invoked. This means that the buffer must stay 
intact and be available until the callback is invoked. We guarantee this by allocating the  
buffer in the free memory and storing it in the Session data structure, which in turn is 
allocated in the free memory as well.

The second argument is a callback that is to be invoked when the asynchronous operation is 
completed. Boost.Asio defines a callback as a concept, which can be a function or a functor, 
that accepts two arguments. The first argument of the callback specifies an error that occurs 
while the operation is being executed, if any. The second argument specifies the number of 
bytes read by the operation.
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Because we want to pass an additional argument to our callback function, a pointer to the 
corresponding Session object, which serves as a context for the operation—we use the 
std::bind() function to construct a function object to which we attach a pointer to the 
Session object as the third argument. The function object is then passed as a callback 
argument to the socket object's async_write_some() method.

Because it is asynchronous, the async_write_some() method doesn't block the thread of 
execution. It initiates the reading operation and returns.

The actual reading operation is executed behind the scenes by the Boost.Asio library and 
underlying operating system, and when the operation is completed or an error occurs, the 
callback is invoked.

When invoked, the callback function named, literally, callback in our sample application 
begins with checking whether the operation succeeded or an error occurred. In the latter 
case, the error information is output to the standard output stream and the function returns. 
Otherwise, the counter of the total read bytes is increased by the number of bytes read as 
a result of the operation. Then, we check whether the total number of bytes read from the 
socket is equal to the size of the buffer. If these values are equal, it means that the buffer 
is full and there is no more work to do. The callback function returns. However, if there is 
still some space in the buffer, we need to continue with reading; therefore, we initiate a new 
asynchronous reading operation:

s->sock->async_read_some(
    asio::buffer(s->buf.get(), s->buf_size),
    std::bind(callback,
      std::placeholders::_1,
      std::placeholders::_2,
      s));

Note that the beginning of the buffer is shifted by the number of bytes already read and the 
size of the buffer is decreased by the same value, respectively.

As a callback, we specify the same callback function using the std::bind() function to 
attach an additional argument—the Session object.

The cycles of initiation of an asynchronous reading operation and consequent callback 
invocation repeat until the buffer is full or an error occurs.

When the callback function returns without initiating a new asynchronous operation, the 
asio::io_service::run() method, called in the main() function, unblocks the thread of 
execution and returns. The main() function returns as well. This is when the application exits.
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There's more...
Although the async_read_some() method, as described in the previous sample,  
allows asynchronously reading data from the socket, the solution based on it is somewhat 
complex and error-prone. Fortunately, Boost.Asio provides a more convenient way to 
asynchronously read data from a socket: the free function asio::async_read().  
Let's consider one of its overloads:

template<
    typename AsyncReadStream,
    typename MutableBufferSequence,
    typename ReadHandler>
void async_read(
    AsyncReadStream & s,
    const MutableBufferSequence & buffers,
    ReadHandler handler);

This function is very similar to the socket's async_read_some() method. Its first argument 
is an object that satisfies the requirements of the AsyncReadStream concept. For the 
complete list of the requirements, refer to the corresponding Boost.Asio documentation 
section at http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/
reference/AsyncReadStream.html. The object of the asio::ip::tcp::socket  
class satisfies these requirements and, therefore, can be used with this function.

The second and third arguments of the asio::async_read() function are similar to the 
first and second arguments of the async_read_some() method of a TCP socket object 
described in the previous sample. These arguments are buffers used as data destination 
points and functions or objects that represent a callback, which will be called when the 
operation is completed.

In contrast to the socket's async_read_some() method, which initiates the operation, 
that reads some amount of data from the socket to the buffer, the asio::async_read() 
function initiates the operation that reads the data from the socket until the buffer passed to 
it as an argument is full. In this case, the callback is called when the amount of data read is 
equal to the size of the provided buffer or when an error occurs. This simplifies reading from 
the socket and makes the code shorter and cleaner.

If we change our previous sample so that it uses the asio::async_read() function 
instead of the socket object's async_read_some() method to read data from the socket 
asynchronously, our application becomes significantly simpler.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/AsyncReadStream.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/AsyncReadStream.html
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Firstly, we don't need to keep track of the number of bytes read from the socket; therefore,  
the Session structure becomes smaller:

struct Session {
  std::shared_ptr<asio::ip::tcp::socket> sock;
  std::unique_ptr<char[]> buf;
  unsigned int buf_size;
}; 

Secondly, we know that when the callback function is invoked, it means that either an 
expected amount of data has been read from the socket or an error has occurred.  
This makes the callback function much simpler:

void callback(const boost::system::error_code& ec,
  std::size_t bytes_transferred,
  std::shared_ptr<Session> s)
{
  if (ec != 0) {
    std::cout << "Error occured! Error code = "
      << ec.value()
      << ". Message: " << ec.message();

    return;
  }

  // Here we know that the reading has completed
  // successfully and the buffer is full with
  // data read from the socket.
}

The asio::async_read() function is implemented by means of zero or more 
calls to the socket object's async_read_some() method. This is similar to how the 
readFromSocket() function in our initial sample is implemented.

Note that the asio::async_read() function has three more 
overloads, providing additional functionalities. Some of them may be very 
useful in specific circumstances. Refer to the Boost.Asio documentation to 
find out about this at http://www.boost.org/doc/libs/1_58_0/
doc/html/boost_asio/reference/async_read.html.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/async_read.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/async_read.html
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See also
 f The Reading from a TCP socket synchronously recipe describes how to read data 

from a TCP socket synchronously

 f The Implementing an asynchronous TCP client recipe in Chapter 3, Implementing 
Client Applications, demonstrates how to implement an asynchronous TCP client that 
performs asynchronous reading from a TCP socket to receive response messages 
sent by the server

 f The Implementing an asynchronous TCP server recipe in Chapter 4, Implementing 
Server Applications, demonstrates how to implement an asynchronous TCP server 
that performs asynchronous reading from a TCP socket to receive request messages 
from the client

Canceling asynchronous operations
Sometimes, after an asynchronous operation has been initiated and has not yet completed, 
the conditions in the application may change so that the initiated operation becomes 
irrelevant or outdated and nobody is interested in the completion of the operation.

In addition to this, if an initiated asynchronous operation is a reaction to a user command, 
the user may change their mind while the operation is being executed. The user may want to 
discard the previous issued command and may want to issue a different one or decide to exit 
from the application.

Consider a situation where a user types a website address in a typical web browser's 
address bar and hits the Enter key. The browser immediately initiates a DNS name resolution 
operation. When the DNS name is resolved and the corresponding IP address is obtained, 
it initiates the connection operation to connect to the corresponding web server. When a 
connection is established, the browser initiates an asynchronous write operation to send 
a request to the server. Finally, when the request is sent, the browser starts waiting for the 
response message. Depending on the responsiveness of the server application, the volume 
of the data transmitted over the network, the state of the network, and other factors, all 
these operations may take a substantial amount of time. And the user while waiting for the 
requested web page to be loaded, may change their mind, and before the page gets loaded, 
the user may type another website address in the address bar and hit Enter.

Another (extreme) situation is where a client application sends a request to the server 
application and starts waiting for the response message, but the server application while 
processing the client's request, gets into a deadlock due to bugs in it. In this case, the user 
would have to wait forever for the response message and would never get it.
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In both the cases, the user of the client application would benefit from having the ability to 
cancel the operation they initiated before it completes. In general, it is a good practice to 
provide the user with the ability to cancel an operation that may take a noticeable amount 
of time. Because the network communication operations fall into a class of operations that 
may last for unpredictably long periods of time, it is important to support the cancelation of 
operations in distributed applications that communicate over the network.

One of the benefits of asynchronous operations provided by the Boost.Asio library is that they 
can be canceled at any moment after the initiation. In this recipe, we'll see how to cancel 
asynchronous operations.

How to do it…
The following algorithm provides the steps required to initiate and cancel asynchronous 
operations with Boost.Asio:

1. If the application is intended to run on Windows XP or Windows Server 2003, define 
flags that enable asynchronous operation canceling on these versions of Windows.

2. Allocate and open a TCP or UDP socket. It may be an active or passive (acceptor) 
socket in the client or server application.

3. Define a callback function or functor for an asynchronous operation. If needed, in this 
callback, implement a branch of code that handles the situation when the operation 
has been canceled.

4. Initiate one or more asynchronous operations and specify a function or an object 
defined in step 4 as a callback.

5. Spawn an additional thread and use it to run the Boost.Asio event loop.

6. Call the cancel() method on the socket object to cancel all the outstanding 
asynchronous operations associated with this socket.

Let's consider the implementation of the client application designed in accordance with  
the presented algorithm in which an asynchronous connection operation is first initiated  
and then canceled.

According to step 1, to compile and run our code on Windows XP or Windows Server 2003, 
we need to define some flags that control the behavior of the Boost.Asio library with regard to 
which mechanisms of the underlying OS to exploit.
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By default, when it is compiled for Windows, Boost.Asio uses the I/O completion port 
framework to run operations asynchronously. On Windows XP and Windows Server 2003, this 
framework has some issues and limitations with regard to the cancelation of an operation. 
Therefore, Boost.Asio requires developers to explicitly notify that they want to enable the 
asynchronous operation canceling functionality despite of the known issues, when targeting 
the application in versions of Windows in question. To do this, the BOOST_ASIO_ENABLE_
CANCELIO macro must be defined before Boost.Asio headers are included. Otherwise, if this 
macro is not defined, while the source code of the application contains calls to asynchronous 
operations, cancelation methods and functions, the compilation will always fail.

In other words, it is mandatory to define the BOOST_ASIO_ENABLE_CANCELIO macro, 
when targeting Windows XP or Windows Server 2003, and the application needs to cancel 
asynchronous operations.

To get rid of issues and limitations imposed by the usage of the I/O completion port 
framework on Windows XP and Windows Server 2003, we can prevent Boost.Asio from 
using this framework by defining another macro named BOOST_ASIO_DISABLE_IOCP 
before including Boost.Asio headers. With this macro defined, Boost.Asio doesn't use the I/O 
completion port framework on Windows; and therefore, problems related to asynchronous 
operations canceling disappear. However, the benefits of scalability and efficiency of the I/O 
completion ports framework disappear too.

Note that the mentioned issues and limitations related to asynchronous operation canceling 
do not exist on Windows Vista and Windows Server 2008 and later. Therefore, when targeting 
these versions of Windows, canceling works fine, and there is no need to disable the I/O 
completion port framework usage unless there is another reason to do so. Refer to the 
asio::ip::tcp::cancel() method's documentation section for more details on this issue 
at http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/
basic_stream_socket/cancel/overload1.html.

In our sample, we will consider how to construct a cross-platform application that, when 
targeted at Windows during compilation, can be run on any Windows version, starting 
from Windows XP or Windows Server 2003. Therefore, we define both the BOOST_ASIO_
DISABLE_IOCP and BOOST_ASIO_ENABLE_CANCELIO macros.

To determine the target operating system at compile time, we use the Boost.Predef 
library. This library provides us with macro definitions that allow us to identify parameters 
of the environment in which the code is compiled as the target operating system family 
and its version, processor architecture, compiler, and many others. Refer to the Boost.Asio 
documentation section for more details on this library at http://www.boost.org/doc/
libs/1_58_0/libs/predef/doc/html/index.html.

To use the Boost.Predef library, we include the following header file:

#include <boost/predef.h> // Tools to identify the OS.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/basic_stream_socket/cancel/overload1.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/basic_stream_socket/cancel/overload1.html
http://www.boost.org/doc/libs/1_58_0/libs/predef/doc/html/index.html
http://www.boost.org/doc/libs/1_58_0/libs/predef/doc/html/index.html
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Then, we check whether the code is being compiled for Windows XP or Windows Server 
2003, and if it is, we define the BOOST_ASIO_DISABLE_IOCP and BOOST_ASIO_ENABLE_
CANCELIO macros:

#ifdef BOOST_OS_WINDOWS
#define _WIN32_WINNT 0x0501

#if _WIN32_WINNT <= 0x0502 // Windows Server 2003 or earlier.
#define BOOST_ASIO_DISABLE_IOCP
#define BOOST_ASIO_ENABLE_CANCELIO  
#endif
#endif

Next, we include the common Boost.Asio header and standard library <thread> header. We 
will need the latter because we'll spawn additional threads in our application. In addition to 
this, we specify a using directive to make the names of Boost.Asio classes and functions 
shorter and more convenient to use:

#include <boost/asio.hpp>
#include <iostream>
#include <thread>

using namespace boost;

Then, we define the application's main() entry point function, which contains all the 
functionalities of the application:

int main()
{
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    std::shared_ptr<asio::ip::tcp::socket> sock(
      new asio::ip::tcp::socket(ios, ep.protocol()));

    sock->async_connect(ep,
      [sock](const boost::system::error_code& ec)
    {
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      // If asynchronous operation has been
      // cancelled or an error occured during
      // execution, ec contains corresponding
      // error code.
      if (ec != 0) {
        if (ec == asio::error::operation_aborted) {
          std::cout << "Operation cancelled!";
        }
        else {
          std::cout << "Error occured!"
            << " Error code = "
            << ec.value()
            << ". Message: "
            << ec.message();
        }

        return;
      }
      // At this point the socket is connected and
      // can be used for communication with 
      // remote application.
    });

    // Starting a thread, which will be used
    // to call the callback when asynchronous 
    // operation completes.
    std::thread worker_thread([&ios](){
      try {
        ios.run();
      }
      catch (system::system_error &e) {
        std::cout << "Error occured!"
        << " Error code = " << e.code()
        << ". Message: " << e.what();
      }
    });

    // Emulating delay.
    std::this_thread::sleep_for(std::chrono::seconds(2));

    // Cancelling the initiated operation.
    sock->cancel();
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    // Waiting for the worker thread to complete.
    worker_thread.join();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

How it works…
Now, let's analyze how the application works.

Our sample client application consists of a single function, which is the application's main() 
entry point function. This function begins with allocating and opening a TCP socket according 
to step 2 of the algorithm.

Next, the asynchronous connection operation is initiated on the socket. The callback provided 
to the method is implemented as a lambda function. This corresponds to steps 3 and 4 of the 
algorithm. Note how the fact that the operation was canceled is determined in the callback 
function. When an asynchronous operation is canceled, the callback is invoked and its 
argument that specifies the error code contains an OS dependent error code defined in  
Boost.Asio as asio::error::operation_aborted.

Then, we spawn a thread named worker_thread, which will be used to run the Boost.Asio 
event loop. In the context of this thread, the callback function will be invoked by the library. 
The entry point function of the worker_thread thread is quite simple. It contains a  
try-catch block and a call to the asio::io_service object's run() method. This 
corresponds to step 5 of the algorithm.

After the worker thread is spawned, the main thread is put to sleep for 2 seconds. This is to 
allow the connection operation to progress a bit and emulate what could be a delay between 
the two commands issued by the user in the real application; for example, a web browser.

According to the last step 6 of the algorithm, we call the socket object's cancel() method to 
cancel the initiated connection operation. At this point, if the operation has not yet finished, 
it will be canceled and the corresponding callback will be invoked with an argument that 
specifies the error code containing the asio::error::operation_aborted value to notify 
that the operation was canceled. However, if the operation has already finished, calling the 
cancel() method has no effect.
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When the callback function returns, the worker thread exits the event loop because there 
are no more outstanding asynchronous operations to be executed. As a result, the thread 
exits its entry point function. This leads to the main thread running to its completion as well. 
Eventually, the application exits.

There's more...
In the previous sample, we considered the canceling of an asynchronous connection 
operation associated with an active TCP socket. However, any operation associated with both 
the TCP and UDP sockets can be canceled in a similar way. The cancel() method should be 
called on the corresponding socket object after the operation has been initiated.

In addition to this, the async_resolve() method of the asio::ip::tcp::resolver or 
asio::ip::udp::resolver class used to asynchronously resolve a DNS name can be 
canceled by calling the resolver object's cancel() method.

All asynchronous operations initiated by the corresponding free functions provided by Boost.
Asio can be canceled as well by calling the cancel() method on an object that was passed 
to the free function as the first argument. This object can represent either a socket (active or 
passive) or a resolver.

See also
 f The Implementing an asynchronous TCP client recipe in Chapter 3, Implementing 

Client Applications, demonstrates how to construct a more complex client application 
that supports the asynchronous operation cancelation functionality

 f Chapter 1, The Basics, contains recipes that demonstrate how to synchronously 
connect a socket and resolve a DNS name

Shutting down and closing a socket
In some distributed applications that communicate over the TCP protocol, there is a need 
to transfer messages that do not have a fixed size and specific byte sequence, marking its 
boundary. This means that the receiving side, while reading the message from the socket, 
cannot determine where the message ends by analyzing the message itself with either its  
size or its content.

One approach to solve this problem is to structure each message in such a way that it consists 
of a logical header section and a logical body section. The header section has a fixed size and 
structure and specifies the size of the body section. This allows the receiving side to first read 
and parse the header, find out the size of the message body, and then properly read the rest 
of the message.
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This approach is quite simple and is widely used. However, it brings some redundancy and 
additional computation overhead, which may be unacceptable in some circumstances.

Another approach can be applied when an application uses a separate socket for each 
message sent to its peer, which is a quite popular practice. The idea of this approach is to 
shut down the send part of the socket by the message sender after the message is written  
to the socket. This results in a special service message being sent to the receiver, informing 
the receiver that the message is over and the sender will not send anything else using the 
current connection.

The second approach provides many more benefits than the first one and, because it is part 
of the TCP protocol software, it is readily available to the developer for usage.

Another operation on a socket, that is, closing may seem similar to shutting down, but it 
is actually very different from it. Closing a socket assumes returning the socket and all the 
other resources associated with it back to the operating system. Just like memory, a process 
or a thread, a file handle or a mutex, a socket is a resource of an operating system. And like 
any other resource, a socket should be returned back to the operating system after it has 
been allocated, used, and is not needed by the application anymore. Otherwise, a resource 
leak may occur, which may eventually lead to the exhaustion of the resource and to the 
application's fault or instability of the whole operating system.

Serious issues that may occur when sockets are not closed make closing a very  
important operation.

The main difference between shutting down and closing a TCP socket is that closing interrupts 
the connection if one is established and, eventually, deallocates the socket and returns it 
back to the operating system, while shutting down only disables writing, reading, or both the 
operations on the socket and sends a service message to the peer application notifying about 
this fact. Shutting down a socket never results in deallocating the socket.

In this recipe, we'll see how to shut down and close a TCP socket.

How to do it…
Here, we'll consider a distributed application that consists of two parts: a client and a server 
to better understand how a socket shut down operation can be used to make an application 
layer protocol more efficient and clear when the communication between parts of distributed 
applications is based on binary messages of random sizes.

For simplicity, all operations in both the client and server applications are synchronous.
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The client application
The purpose of the client application is to allocate the socket and connect it to the server 
application. After the connection is established, the application should prepare and send  
a request message notifying its boundary by shutting down the socket after writing the 
message to it.

After the request is sent, the client application should read the response. The size of the 
response is unknown; therefore, the reading should be performed until the server closes  
its socket to notify the response boundary.

We begin the client application by specifying the include and using directives:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

Next, we define a function that accepts a reference to the socket object connected to the 
server and performs the communication with the server using this socket. Let's name this 
function communicate():

void communicate(asio::ip::tcp::socket& sock) {
  // Allocating and filling the buffer with
  // binary data.
  const char request_buf[] = {0x48, 0x65, 0x0, 0x6c, 0x6c,
 0x6f};

  // Sending the request data.
  asio::write(sock, asio::buffer(request_buf));

  // Shutting down the socket to let the
  // server know that we've sent the whole
  // request.
  sock.shutdown(asio::socket_base::shutdown_send);

  // We use extensible buffer for response
  // because we don't know the size of the
  // response message.
  asio::streambuf response_buf;

  system::error_code ec;
  asio::read(sock, response_buf, ec);



Chapter 2

89

  if (ec == asio::error::eof) {
    // Whole response message has been received.
    // Here we can handle it.
  }
  else {
    throw system::system_error(ec);
  }
}

Finally, we define an application's main() entry point function. This function allocates  
and connects the socket, and then calls the communicate() function defined in the  
previous step:

int main()
{
  std::string raw_ip_address = "127.0.0.1";
  unsigned short port_num = 3333;

  try {
    asio::ip::tcp::endpoint
      ep(asio::ip::address::from_string(raw_ip_address),
      port_num);

    asio::io_service ios;

    asio::ip::tcp::socket sock(ios, ep.protocol());

    sock.connect(ep);

    communicate(sock);
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}
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The server application
The server application is intended to allocate an acceptor socket and passively wait for a 
connection request. When the connection request arrives, it should accept it and read the 
data from the socket connected to the client until the client application shuts down the socket 
on its side. Having received the request message, the server application should send the 
response message notifying its boundary by shutting down the socket.

We begin the client application by specifying include and using directives:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

Next, we define a function that accepts a reference to the socket object connected to  
the client application and performs the communication with the client using this socket.  
Let's name this function processRequest():

void processRequest(asio::ip::tcp::socket& sock) {
  // We use extensible buffer because we don't
  // know the size of the request message.
  asio::streambuf request_buf;

  system::error_code ec;

  // Receiving the request.
  asio::read(sock, request_buf, ec);

  if (ec != asio::error::eof)
    throw system::system_error(ec);

  // Request received. Sending response.
  // Allocating and filling the buffer with
  // binary data.
  const char response_buf[] = { 0x48, 0x69, 0x21 };

  // Sending the request data.
  asio::write(sock, asio::buffer(response_buf));

  // Shutting down the socket to let the
  // client know that we've sent the whole
  // response.
  sock.shutdown(asio::socket_base::shutdown_send);
}
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Finally, we define the application's main() entry point function. This function allocates 
an acceptor socket and waits for the incoming connection requests. When the connection 
request arrives, it obtains an active socket that is connected to the client application and calls 
the processRequest() function defined in the previous step by passing a connected socket 
object to it:

int main()
{
  unsigned short port_num = 3333;
  
  try {
    asio::ip::tcp::endpoint ep(asio::ip::address_v4::any(),
      port_num);

    asio::io_service ios;

    asio::ip::tcp::acceptor acceptor(ios, ep);

    asio::ip::tcp::socket sock(ios);

    acceptor.accept(sock);

    processRequest(sock);
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

Closing a socket
In order to close an allocated socket, the close() method should be called on the 
corresponding object of the asio::ip::tcp::socket class. However, usually, there is no 
need to do it explicitly because the destructor of the socket object closes the socket if one 
was not closed explicitly.
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How it works…
The server application is first started. In its main() entry point function, an acceptor socket 
is allocated, opened, bound to port 3333, and starts waiting for the incoming connection 
request from the client.

Then, the client application is started. In its main() entry point function, an active socket 
is allocated, opened, and connected to the server. After the connection is established, the 
communicate() function is called. In this function, all the interesting things take place.

The client application writes a request message to the socket and then calls the socket's 
shutdown() method, passing an asio::socket_base::shutdown_send constant as an 
argument. This call shuts down the send part of the socket. At this point, writing to the socket 
is disabled, and there is no way to restore the socket state to make it writable again:

sock.shutdown(asio::socket_base::shutdown_send);

Shutting down the socket in the client application is seen in the server application as a 
protocol service message that arrives to the server, notifying the fact that the peer application 
has shut down the socket. Boost.Asio delivers this message to the application code by means 
of an error code returned by the asio::read() function. The Boost.Asio library defines this 
code as asio::error::eof. The server application uses this error code to find out when 
the client finishes sending the request message.

When the server application receives a full request message, the server and client exchange 
their roles. Now, the server writes the data, namely, the response message to the socket on 
its side, and the client application reads this message on its side. When the server finishes 
writing the response message to the socket, it shuts down the send part of its socket to imply 
that the whole message has been sent to its peer.

Meanwhile, the client application is blocked in the asio::read() function and reads 
the response sent by the server until the function returns with the error code equal to 
asio::error::eof, which implies that the server has finished sending the response 
message. When the asio::read() function returns with this error code, the client knows 
that it has read the whole response message, and it can then start processing it:

system::error_code ec;
asio::read(sock, response_buf, ec);

if (ec == asio::error::eof) {
  // Whole response message has been received.
  // Here we can handle it.
}

Note that after the client has shut down its socket's send part, it can still read data from the 
socket because the receive part of the socket stays open independently from the send part.
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See also
 f The Writing to a TCP socket synchronously recipe demonstrates how to write data to a 

TCP socket synchronously

 f The Reading from a TCP socket synchronously recipe demonstrates how to read data 
from a TCP socket synchronously

 f The Implementing the HTTP client application and Implementing the HTTP server 
application recipes in Chapter 5, HTTP and SSL/TLS, demonstrate how a socket shut 
down is used in the implementation of the HTTP protocol
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3
Implementing Client 

Applications

In this chapter, we will cover the following topics:

 f Implementing a synchronous TCP client

 f Implementing a synchronous UDP client

 f Implementing an asynchronous TCP client

Introduction
A client is a part of a distributed application that communicates with another part of this 
application called a server, in order to consume services it provides. The server, on the  
other hand, is a part of distributed application that passively waits for requests arriving from 
clients. When a request arrives, the server performs the requested operation and sends a 
response—the result of the operation—back to the client.

The key characteristic of a client is that it needs a service provided by the server and it 
initiates the communication session with that server in order to consume the service.  
The key characteristic of the server is that it serves the requests coming from the clients  
by providing a requested service.

We'll consider servers in the next chapter. In this chapter, we are going to focus on client 
applications and will consider several types of them in detail.
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The classification of client applications
Client applications can be classified by the transport layer protocol they use for 
communication with the server. If the client uses a UDP protocol, it is called a UDP client. If 
it uses a TCP protocol, it is called a TCP client correspondingly. Of course, there are many 
other transport layer protocols that client applications may use for communication. Moreover, 
there are multiprotocol clients that can communicate over several protocols. However, they 
are beyond the scope of this book. In this chapter, we are going to focus on pure UDP and TCP 
clients as such, which are the most popular and are the most often used in general purpose 
software today.

The decision as to which transport layer protocol to choose for communication between the 
parts of a distributed application should be made at the early stages of the application design 
based on the application specification. Because TCP and UDP protocols are conceptually 
different, it may be quite difficult to switch from one of them to another at the later stages of 
the application development process.

Another way to classify client applications is according to whether the client is synchronous or 
asynchronous. A synchronous client application uses synchronous socket API calls that block 
the thread of execution until the requested operation is completed, or an error occurs. Thus, a 
typical synchronous TCP client would use the asio::ip::tcp::socket::write_some() 
method or the asio::write() free function to send a request to the sever and then use the 
asio::ip::tcp::socket::read_some() method or the asio::read() free function 
to receive a response. These methods and functions are blocking, which makes the client 
synchronous.

An asynchronous client application as opposed to a synchronous one uses 
asynchronous socket API calls. For example, an asynchronous TCP client may 
use the asio::ip::tcp::socket::async_write_some() method or the 
asio::async_write() free function to send a request to the server and then use the 
asio::ip::tcp::socket::async_read_some() method or the asio::async_read() 
free function to asynchronously receive a response.

Because the structure of a synchronous client significantly differs from that of an 
asynchronous one, the decision as to which approach to apply should be made early at 
the application design stage, and this decision should be based on the careful analysis 
of the application requirements. Besides, possible application evolution paths and new 
requirements that may appear in the future should be considered and taken into account.
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Synchronous versus asynchronous
As usually, each approach has its advantages and disadvantages. When a synchronous 
approach gives better results in one situation, it may be absolutely unacceptable in another.  
In the latter case, an asynchronous approach should be used. Let's compare two approaches 
to better understand when it is more beneficial to use each of them.

The main advantage of a synchronous approach is its simplicity. A synchronous client is 
significantly easier to develop, debug, and support than a functionally equal asynchronous 
one. Asynchronous clients are more complex due to the fact that asynchronous operations 
that are used by them complete in other places in code (mainly in callbacks) than they are 
initiated. Usually, this requires allocating additional data structures in the free memory 
to keep the context of the request and callback functions, and also involves thread 
synchronization and other extras that may make the application structure quite complex 
and error-prone. Most of these extras are not required in synchronous clients. Besides, the 
asynchronous approach brings in additional computational and memory overhead, which 
makes it less efficient than a synchronous one in some conditions.

However, the synchronous approach has some functional limitations, which often  
make this approach unacceptable. These limitations consist of the inability to cancel a 
synchronous operation after it has started, or to assign it a timeout so that it gets interrupted 
if it is running longer than a certain amount of time. As opposed to synchronous operations, 
asynchronous ones can be canceled at any moment after operation initiation and before the 
moment it completes.

Imagine a typical modern web browser. A request cancellation is a very important feature  
of a client application of this kind. After issuing a command to load a particular website, the 
user may change his or her mind and decide to cancel the command before the page gets 
loaded. From the user's perspective, it would be quite strange not to be able to cancel the 
command until the page gets fully loaded. Therefore, this is when a synchronous approach  
is not a good option.

Besides the difference in the complexity and functionality described above, the two 
approaches differ in efficiency when it comes to running several requests in parallel.

Imagine that we are developing a web crawler, an application that traverses the pages of 
websites and processes them in order to extract some interesting information. Given a file 
with a long list of websites (say several millions), the application should traverse all the pages 
of each of the sites listed in the file and then process each page. Naturally, one of the key 
requirements of the application is to perform the task as fast as possible. Provided with these 
requirements, which approach should we choose, synchronous or asynchronous?
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Before we answer this question, let's consider the stages of a request life cycle and their 
timings from the client application's perspective. Conceptually, the request life cycle consists 
of five stages as follows:

1. Preparing the request: This stage involves any operations required to prepare a 
request message. The duration of this step depends on the particular problem the 
application solves. In our example, this could be reading the next website address 
from the input file and constructing a string representing a request in accordance 
with an HTTP protocol.

2. Transmitting a request from the client to the server: This stage assumes the 
transmission of the request data from the client to the server over the network.  
The duration of this step does not depend on a client application. It depends on  
the properties and the current state of the network.

3. Processing the request by the server: The duration of this step depends on the 
server's properties and its current load. In our example, the server application is a 
web server and the request processing lies in constructing a requested web page, 
which may involve I/O operations such as reading files and loading data from a 
database.

4. Transmitting a response from the server to the client: Like stage 2, this stage also 
assumes the transmission of the data over the network; however, this time it is in the 
opposite direction—from the server to the client. The duration of this stage does not 
depend on the client or the server. It only depends on the properties and the state of 
the network.

5. Processing the response by the client: The duration of this stage depends on a 
particular task that the client application is intended to perform. In our example, this 
could be scanning the web page, extracting interesting information and storing it into 
a database.

Note that, for the sake of simplicity, we omitted low-level substages such as connection 
establishment and connection shutdown, which are important when using TCP protocol  
but don't add a substantial value in our conceptual model of a request life cycle.

As we can see, only in stages 1 and 5 does the client perform some effective job related to 
the request. Having initiated the transmission of the request data at the end of stage 1, the 
client has to wait during the next three stages (2, 3, and 4) of the request life cycle before it 
can receive the response and process it.

Now, with the stages of the request life cycle in mind, let's see what happens when we apply 
synchronous and asynchronous approaches to implement our sample web crawler.
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If we apply a synchronous approach, the thread of execution processing a single request 
synchronously will be sleeping during stages 2-4 of the request life cycle, and only during 
stages 1 and 5, will it perform an effective job (for simplicity, we assume that stages 1 and 5 
don't include instructions that block the thread). This means that the resource of an operating 
system, namely a thread, is used inefficiently, because there are number of times when it 
is simply doing nothing while there is still a lot of work available—millions of other pages to 
request and process. In this situation, an asynchronous approach seems to be more efficient. 
With an asynchronous approach, instead of a thread being blocked during stages 2-4 of a 
request life cycle, it can be effectively used to perform stages 1 or 5 of another request.

Thus, we direct a single thread to process the different stages of different requests (this is 
called overlapping), which results in the more efficient usage of a thread and consequently 
increases the overall performance of the application.

However, an asynchronous approach is not always more efficient than a synchronous one. As 
it has been mentioned, asynchronous operations imply additional computational overheads, 
which means that the overall duration of an asynchronous operation (from initiation till 
completion) is somewhat bigger than the equivalent synchronous one. This means that, if the 
average total duration of stages 2-4 is less than the overhead of the timing asynchronous 
approach per single request, then a synchronous approach turns out to be more efficient,  
and therefore may be considered to be the right way to go.

Assessing the total duration of stages 2-4 of the request life cycle and the overhead of the 
asynchronous approach is usually done experimentally. The duration may significantly vary, 
and it depends on the properties and the state of the network through which the requests 
and responses are transmitted and also on the properties and the load level of the server 
application that serves the request.

The sample protocol
In this chapter, we are going to consider three recipes, each of which demonstrates  
how to implement a particular type of a client application: the synchronous UDP client, 
synchronous TCP client, and asynchronous TCP client. In all the recipes, it is assumed that 
the client application communicates with the server application using the following simple 
application-level protocol.

The server application accepts a request represented as an ASCII string. The string has the 
following format:

EMULATE_LONG_COMP_OP [s]<LF>

Where [s] is a positive integer value and <LF> is ASCII a new-line symbol.

The server interprets this string as a request to perform a dummy operation that lasts for [s] 
seconds. For example, a request string may look as follows:

"EMULATE_LONG_COMP_OP 10\n"
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This means that the client sending this request wants the server to perform the dummy 
operation for 10 seconds and then send a response to it.

Like the request, the response returned by the server is represented by an ASCII string. It may 
either be OK<LF> if the operation completes successfully or ERROR<LF> if the operation fails.

Implementing a synchronous TCP client
A synchronous TCP client is a part of a distributed application that complies with the  
following statements:

 f Acts as a client in the client-server communication model

 f Communicates with the server application using a TCP protocol

 f Uses I/O and control operations (at least those I/O operations that are related 
to communication with a server) that block the thread of execution until the 
corresponding operation completes, or an error occurs

A typical synchronous TCP client works according to the following algorithm:

1. Obtain the IP-address and the protocol port number of the server application.

2. Allocate an active socket.

3. Establish a connection with the server application.

4. Exchange messages with the server.

5. Shut down the connection.

6. Deallocate the socket.

This recipe demonstrates how to implement a synchronous TCP client application with  
Boost.Asio.

How to do it…
The following code sample demonstrates a possible implementation of a synchronous TCP 
client application with Boost.Asio. The client uses the application layer protocol described in 
the introduction section of this chapter:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;
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class SyncTCPClient {
public:
  SyncTCPClient(const std::string& raw_ip_address,
    unsigned short port_num) :
    m_ep(asio::ip::address::from_string(raw_ip_address),
    port_num),
    m_sock(m_ios) {

    m_sock.open(m_ep.protocol());
  }

  void connect() {
    m_sock.connect(m_ep);
  }

  void close() {
    m_sock.shutdown(
      boost::asio::ip::tcp::socket::shutdown_both);
    m_sock.close();
  }

  std::string emulateLongComputationOp(
    unsigned int duration_sec) {

    std::string request = "EMULATE_LONG_COMP_OP "
      + std::to_string(duration_sec)
      + "\n";

    sendRequest(request);
    return receiveResponse();
  };

private:
  void sendRequest(const std::string& request) {
    asio::write(m_sock, asio::buffer(request));
  }

  std::string receiveResponse() {
    asio::streambuf buf;
    asio::read_until(m_sock, buf, '\n');
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    std::istream input(&buf);

    std::string response;
    std::getline(input, response);

    return response;
  }

private:
  asio::io_service m_ios;

  asio::ip::tcp::endpoint m_ep;
  asio::ip::tcp::socket m_sock;
};

int main()
{
  const std::string raw_ip_address = "127.0.0.1";
  const unsigned short port_num = 3333;

  try {
    SyncTCPClient client(raw_ip_address, port_num);

    // Sync connect.
    client.connect();

    std::cout << "Sending request to the server... "
      << std::endl;

    std::string response =
      client.emulateLongComputationOp(10);

    std::cout << "Response received: " << response
      << std::endl;

    // Close the connection and free resources.
    client.close();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();
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    return e.code().value();
  }

  return 0;
}

How it works…
The sample client application consists of two main components—the SyncTCPClient class 
and the application entry point function main() in which the SyncTCPClient class is used 
to communicate with the server application. Let's consider each component separately.

The SyncTCPClient class
The SyncTCPClient class is the key component in the sample. It implements and provides 
access to the communication functionality.

The class has three private members as follows:

 f asio::io_service m_ios: This is the object providing access to the operating 
system's communication services, which are used by the socket object

 f asio::ip::tcp::endpoint m_ep: This is an endpoint designating the  
server application

 f asio::ip::tcp::socket m_sock: This is the socket used for communication

Each object of the class is intended to communicate with a single server application; 
therefore, the class's constructor accepts the server IP-address and the protocol port number 
as its arguments. These values are used to instantiate the m_ep object in the constructor's 
initialization list. The socket object m_sock is instantiated and opened in the constructor too.

The three public methods comprise the interface of the SyncTCPClient class. The first 
method named connect() is quite simple; it performs the connection of the socket to the 
server. The close() method shuts the connection down and closes the socket, which leads 
to the operating system's socket and other resources associated with it to be deallocated.

The third interface method is emulateLongComputationOp(unsigned int duration_
sec). This method is where the I/O operations are performed. It begins with preparing the 
request string according to the protocol. Then, the request is passed to the class's private 
method sendRequest(const std::string& request), which sends it to the server. 
When the request is sent and the sendRequest() method returns, the receiveResponse() 
method is called to receive the response from the server. When the response is received,  
the receiveResponse() method returns the string containing the response. After this,  
the emulateLongComputationOp() method returns the response to its caller.
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Let's look at the sendRequest() and receiveResponse() methods in more detail.

The sendRequest() method has the following prototype:

void sendRequest(const std::string& request)

Its purpose is to send a string, passed to it as an argument, to the server. In order to send 
the data to the server, the asio::write() free synchronous function is used. The function 
returns when the request is sent. That's it about the sendRequest() method. Basically, all it 
does is, it fully delegates its job to the asio::write() free function.

Having sent the request, now we want to receive the response from the server. This is the 
purpose of the receiveResponse() method of the SyncTCPClient class. To perform its 
job, method uses the asio::read_until() free function. According to the application layer 
protocol, the response message sent by the server may vary in length, but must end with the 
\n symbol; therefore, we specify this symbol as a delimiter when calling the function:

asio::streambuf buf;
asio::read_until(m_sock, buf, '\n');

The function blocks the thread of execution until it encounters the \n symbol as a part of 
the message that arrived from the server. When the function returns, the stream buffer buf 
contains the response. The data is then copied from the buf buffer to the response string 
and the latter is returned to the caller. The emulateLongComputationOp() method in turn 
returns the response to its caller—the main() function.

One thing to note with regard to the SyncTCPClient class is that it contains no error 
handling-related code. That's because the class uses only those overloads of Boost.Asio 
functions and objects' methods that throw exceptions in case of failure. It is assumed that  
the user of the class is responsible for catching and handling the exceptions.

The main() entry point function
This function acts as a user of the SyncTCPClient class. Having obtained the server IP-
address and the protocol port number (this part is omitted from the sample), it instantiates 
and uses an object of the SyncTCPClient class to communicate with the server in order 
to consume its service, mainly to emulate an operation on the server that performs dummy 
calculations for 10 seconds. The code of this function is simple and self-explanatory and thus 
requires no additional comments.

See also
 f Chapter 2, I/O Operations, includes recipes providing detailed discussions on how to 

perform synchronous I/O
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Implementing a synchronous UDP client
A synchronous UDP client is a part of a distributed application that complies with the  
following statements:

 f Acts as a client in the client-server communication model

 f Communicates with the server application using UDP protocol

 f Uses I/O and control operations (at least those I/O operations that are related 
to communication with the server) that block the thread of execution until the 
corresponding operation completes, or an error occurs

A typical synchronous UDP client works according to the following algorithm:

1. Obtain an IP-address and a protocol port number of each server the client application 
is intended to communicate with.

2. Allocate a UDP socket.

3. Exchange messages with the servers.

4. Deallocate the socket.

This recipe demonstrates how to implement a synchronous UDP client application with  
Boost.Asio.

How to do it…
The following code sample demonstrates a possible implementation of a synchronous  
UDP client application with Boost.Asio. It is assumed that the client uses UDP protocol  
with the underlying IPv4 protocol for communication:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

class SyncUDPClient {
public:
  SyncUDPClient() :
    m_sock(m_ios) {

    m_sock.open(asio::ip::udp::v4());
  }
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  std::string emulateLongComputationOp(
    unsigned int duration_sec,
    const std::string& raw_ip_address,
    unsigned short port_num) {

    std::string request = "EMULATE_LONG_COMP_OP "
      + std::to_string(duration_sec)
      + "\n";

    asio::ip::udp::endpoint ep(
      asio::ip::address::from_string(raw_ip_address),
      port_num);

    sendRequest(ep, request);
    return receiveResponse(ep);
  };

private:
  void sendRequest(const asio::ip::udp::endpoint& ep,
    const std::string& request) {

    m_sock.send_to(asio::buffer(request), ep);
  }

  std::string receiveResponse(asio::ip::udp::endpoint& ep) {
    char response[6];
    std::size_t bytes_recieved =
      m_sock.receive_from(asio::buffer(response), ep);

    m_sock.shutdown(asio::ip::udp::socket::shutdown_both);
    return std::string(response, bytes_recieved);
  }

private:
  asio::io_service m_ios;

  asio::ip::udp::socket m_sock;
};

int main()
{
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  const std::string server1_raw_ip_address = "127.0.0.1";
  const unsigned short server1_port_num = 3333;

  const std::string server2_raw_ip_address = "192.168.1.10";
  const unsigned short server2_port_num = 3334;

  try {
    SyncUDPClient client;

    std::cout << "Sending request to the server #1 ... "
      << std::endl;

    std::string response =
      client.emulateLongComputationOp(10,
      server1_raw_ip_address, server1_port_num);

    std::cout << "Response from the server #1 received: "
      << response << std::endl;

    std::cout << "Sending request to the server #2... "
      << std::endl;

    response =
      client.emulateLongComputationOp(10,
      server2_raw_ip_address, server2_port_num);

    std::cout << "Response from the server #2 received: "
      << response << std::endl;
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}
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How it works…
The sample consists of two main components—the SyncUDPClient class and the 
application entry point function main() that uses the SyncUDPClient class to 
communicate with two server applications. Let's consider each component separately.

The SyncUDPClient class
The SyncUDPClient class is the key component in the sample. It implements the server 
communication functionality and provides access to it for the user.

The class has two private members as follows:

 f asio::io_service m_ios: This is the object providing access to the operating 
system's communication services, which are used by the socket object

 f asio::ip::udp::socket m_sock: This is the UDP socket used for 
communication

The socket object m_sock is instantiated and opened in the class's constructor. 
Because the client is intended to use IPv4 protocol, we pass the object returned by the 
asio::ip::udp::v4() static method to the socket's open() method to designate the 
socket to use IPv4 protocol.

Because the SyncUDPClient class implements communication over UDP protocol,  
which is a connectionless protocol, a single object of this class can be used to  
communicate with multiple servers. The interface of the class consists of a single  
method—emulateLongComputationOp(). This method can be used to communicate  
with the server just after the object of the SyncUDPClient class is instantiated.  
The following is the prototype of the method:

std::string emulateLongComputationOp(
         unsigned int duration_sec,
         const std::string& raw_ip_address,
         unsigned short port_num)

Besides the duration_sec argument that represents a request parameter, the method 
accepts the server IP-address and the protocol port number. This method may be called 
multiple times to communicate with different servers.

The method begins with preparing a request string according to the application layer protocol 
and creating an endpoint object designating the target server application. Then, the request 
string and the endpoint object are passed to the class's private method sendRequest(), 
which sends the request message to the specified server. When the request is sent and the 
sendRequest() method returns, the receiveResponse() method is called to receive a 
response from the server. 
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When the response is received, the receiveResponse() method returns the string 
containing the response. In turn, the emulateLongComputationOp() method returns 
the response to its caller. The sendRequest() method uses the socket object's send_
to() method to send the request message to a particular server. Let's have a look at the 
declaration of this method:

  template <typename ConstBufferSequence>
  std::size_t send_to(const ConstBufferSequence& buffers,
      const endpoint_type& destination)

The method accepts a buffer containing the request and an endpoint designating the server 
to which the content of the buffer should be sent as arguments and blocks until the whole 
buffer is sent, or an error occurs. Note that, if the method returns without an error, it only 
means that the request has been sent and does not mean that the request has been received 
by the server. UDP protocol doesn't guarantee message delivery and it provides no means to 
check whether the datagram has been successfully received on the server-side or got lost 
somewhere on its way to the server.

Having sent the request, now we want to receive the response from the server. This is the 
purpose of the receiveResponse() method of the SyncUDPClient class. This method 
begins with allocating a buffer that will hold the response message. We choose the size of 
the buffer such that it can fit the largest message that the server may send according to 
the application layer protocol. This message is an ERROR\n string that consists of six ASCII 
symbols, which is therefore 6 bytes long; hence is the size of our buffer - 6 bytes. Because the 
buffer is small enough, we allocate it on the stack.

To read the response data arriving from the server, we use the socket object's receive_
from() method. Here is the prototype of the method:

  template <typename MutableBufferSequence>
  std::size_t receive_from(const MutableBufferSequence& buffers,
      endpoint_type& sender_endpoint) 

This method copies a datagram that came from the server designated by the  
sender_endpoint object to the buffer specified by the buffers argument.

There are two things to note about socket object's receive_from() method. The first thing 
is that this method is synchronous and it blocks the thread of execution until the datagram 
arrives from the specified server. If the datagram never arrives (for example, gets lost 
somewhere on its way to the client), the method will never unblock and the whole application 
will hang. The second thing is that if the size of the datagram that arrives from the server is 
larger than the size of the supplied buffer, the method will fail.

After the response is received, the std::string object is created, initialized with a response 
string, and returned to the caller—the emulateLongComputationOp() method. This in turn 
returns the response to its caller—the main() function.
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The SyncUDPClient class does not contain error handling-related code. That's is because it 
uses only those overloads of Boost.Asio functions and objects' methods that throw exceptions 
in case of failure. It is assumed that the user of the class is responsible for catching and 
handling the exceptions.

The main() entry point function
In this function, we use the SyncUDPClient class in order to communicate with two server 
applications. Firstly, we obtain the IP-addresses and the port numbers of the target server 
applications. Then, we instantiate the object of the SyncUDPClient class and call the 
object's emulateLongComputationOp() method twice to synchronously consume the 
same service from two different servers.

See also
 f Chapter 2, I/O Operations, includes recipes that provide detailed discussions on how 

to perform synchronous I/O

Implementing an asynchronous TCP client
As it has already been mentioned in the introduction section of this chapter, the simplest 
asynchronous client is structurally more complex than equivalent synchronous one.  
When we add a feature such as request canceling to the asynchronous client, it becomes 
even more complex.

In this recipe, we'll consider an asynchronous TCP client application supporting the 
asynchronous execution of the requests and request canceling functionality. Here is the  
list of requirements the application will fulfill:

 f Input from the user should be processed in a separate thread—the user interface 
thread. This thread should never be blocked for a noticeable amount of time.

 f The user should be able to issue multiple requests to different servers.

 f The user should be able to issue a new request before the previously issued  
requests complete.

 f The user should be able to cancel the previously issued requests before  
they complete.
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How to do it…
As our application needs to support request canceling, we begin with specifying settings that 
enable request canceling on Windows:

#include <boost/predef.h> // Tools to identify the OS.

// We need this to enable cancelling of I/O operations on
// Windows XP, Windows Server 2003 and earlier.
// Refer to "http://www.boost.org/doc/libs/1_58_0/
// doc/html/boost_asio/reference/basic_stream_socket/
// cancel/overload1.html" for details.
#ifdef BOOST_OS_WINDOWS
#define _WIN32_WINNT 0x0501

#if _WIN32_WINNT <= 0x0502 // Windows Server 2003 or earlier.
  #define BOOST_ASIO_DISABLE_IOCP
  #define BOOST_ASIO_ENABLE_CANCELIO  
#endif
#endif

Then, we include the necessary headers and specify the using directive for our convenience:

#include <boost/asio.hpp>

#include <thread>
#include <mutex>
#include <memory>
#include <iostream>

using namespace boost;

We continue with defining a data type representing a pointer to a callback function.  
Because our client application is going to be asynchronous, we need a notion of callback  
as a request completion notification mechanism. Later, it will become clear as to why we  
need it and how it is used:

// Function pointer type that points to the callback
// function which is called when a request is complete.
typedef void(*Callback) (unsigned int request_id,
  const std::string& response,
  const system::error_code& ec);
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Next, we define a data structure whose purpose is to keep the data related to a particular 
request while it is being executed. Let's name it Session:

// Structure represents a context of a single request.
struct Session {
  Session(asio::io_service& ios,
  const std::string& raw_ip_address,
  unsigned short port_num,
  const std::string& request,
  unsigned int id,
  Callback callback) :
  m_sock(ios),
  m_ep(asio::ip::address::from_string(raw_ip_address),
  port_num),
  m_request(request),
  m_id(id),
  m_callback(callback),
  m_was_cancelled(false) {}

  asio::ip::tcp::socket m_sock; // Socket used for communication
  asio::ip::tcp::endpoint m_ep; // Remote endpoint.
  std::string m_request;        // Request string.

  // streambuf where the response will be stored.
  asio::streambuf m_response_buf;
  std::string m_response; // Response represented as a string.

  // Contains the description of an error if one occurs during
  // the request life cycle.
  system::error_code m_ec;

  unsigned int m_id; // Unique ID assigned to the request.

  // Pointer to the function to be called when the request
  // completes.
  Callback m_callback;

  bool m_was_cancelled;
  std::mutex m_cancel_guard;
};

The purpose of all the fields that the Session data structure contains will become clear later 
as we go.
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Next, we define a class that provides the asynchronous communication functionality.  
Let's name it AsyncTCPClient:

class AsyncTCPClient : public boost::noncopyable {
class AsyncTCPClient : public boost::noncopyable {
public:
   AsyncTCPClient(){
      m_work.reset(new boost::asio::io_service::work(m_ios));

      m_thread.reset(new std::thread([this](){
         m_ios.run();
      }));
   }

   void emulateLongComputationOp(
      unsigned int duration_sec,
      const std::string& raw_ip_address,
      unsigned short port_num,
      Callback callback,
      unsigned int request_id) {

      // Preparing the request string.
      std::string request = "EMULATE_LONG_CALC_OP "
         + std::to_string(duration_sec)
         + "\n";

      std::shared_ptr<Session> session =
         std::shared_ptr<Session>(new Session(m_ios,
         raw_ip_address,
         port_num,
         request,
         request_id,
         callback));

      session->m_sock.open(session->m_ep.protocol());

      // Add new session to the list of active sessions so
      // that we can access it if the user decides to cancel
      // the corresponding request before it completes.
      // Because active sessions list can be accessed from 
      // multiple threads, we guard it with a mutex to avoid 
      // data corruption.
      std::unique_lock<std::mutex>
         lock(m_active_sessions_guard);
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      m_active_sessions[request_id] = session;
      lock.unlock();

      session->m_sock.async_connect(session->m_ep, 
         [this, session](const system::error_code& ec) 
         {
         if (ec != 0) {
            session->m_ec = ec;
            onRequestComplete(session);
            return;
         }

         std::unique_lock<std::mutex>
            cancel_lock(session->m_cancel_guard);

         if (session->m_was_cancelled) {
            onRequestComplete(session);
            return;
         }

                asio::async_write(session->m_sock, 
                             asio::buffer(session->m_request),
         [this, session](const boost::system::error_code& ec,
                            std::size_t bytes_transferred) 
         {
         if (ec != 0) {
            session->m_ec = ec;
            onRequestComplete(session);
            return;
         }

         std::unique_lock<std::mutex>
            cancel_lock(session->m_cancel_guard);

         if (session->m_was_cancelled) {
            onRequestComplete(session);
            return;
         }

                asio::async_read_until(session->m_sock,
                                  session->m_response_buf, 
                                  '\n', 
         [this, session](const boost::system::error_code& ec,
              std::size_t bytes_transferred) 
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         {
         if (ec != 0) {
            session->m_ec = ec;
         } else {
            std::istream strm(&session->m_response_buf);
            std::getline(strm, session->m_response);
         }

         onRequestComplete(session);
      });});});
   };

   // Cancels the request.  
   void cancelRequest(unsigned int request_id) {
      std::unique_lock<std::mutex>
         lock(m_active_sessions_guard);

      auto it = m_active_sessions.find(request_id);
      if (it != m_active_sessions.end()) {
         std::unique_lock<std::mutex>
            cancel_lock(it->second->m_cancel_guard);

         it->second->m_was_cancelled = true;
         it->second->m_sock.cancel();
      }
   }

   void close() {
      // Destroy work object. This allows the I/O thread to
      // exits the event loop when there are no more pending
      // asynchronous operations. 
      m_work.reset(NULL);

      // Wait for the I/O thread to exit.
      m_thread->join();
   }

private:
   void onRequestComplete(std::shared_ptr<Session> session) {
      // Shutting down the connection. This method may
      // fail in case socket is not connected. We don’t care 
      // about the error code if this function fails.
      boost::system::error_code ignored_ec;
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      session->m_sock.shutdown(
         asio::ip::tcp::socket::shutdown_both,
         ignored_ec);

      // Remove session form the map of active sessions.
      std::unique_lock<std::mutex>
         lock(m_active_sessions_guard);

      auto it = m_active_sessions.find(session->m_id);
      if (it != m_active_sessions.end())
         m_active_sessions.erase(it);

      lock.unlock();

      boost::system::error_code ec;

      if (session->m_ec == 0 && session->m_was_cancelled)
         ec = asio::error::operation_aborted;
      else
         ec = session->m_ec;

      // Call the callback provided by the user.
      session->m_callback(session->m_id, 
         session->m_response, ec);
   };

private:
   asio::io_service m_ios;
   std::map<int, std::shared_ptr<Session>> m_active_sessions;
   std::mutex m_active_sessions_guard;
   std::unique_ptr<boost::asio::io_service::work> m_work;
   std::unique_ptr<std::thread> m_thread;
};
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This class is the key component in our sample, providing most of the functionality of the 
application. This functionality is accessible to the user of the class through its public interface 
that contains three public methods:

 f void emulateLongComputationOp(unsigned int duration_sec, const 
std::string& raw_ip_address, unsigned short port_num, Callback 
callback, unsigned int request_id): This method initiates a request to  
the server

 f void cancelRequest(unsigned int request_id): This method cancels the 
previously initiated request designated by the request_id argument

 f void close(): This method blocks the calling thread until all the currently running 
requests complete and deinitializes the client. When this method returns, the 
corresponding instance of the AsyncTCPClient class can't be used anymore.

Now, we define a function that will serve as a callback, which we'll pass to the AsyncTCPCli
ent::emulateLongComputationOp() method. In our case, this function is quite simple. It 
outputs the result of the request execution and the response message to the standard output 
stream if the request is completed successfully:

void handler(unsigned int request_id,
         const std::string& response, 
                const system::error_code& ec) 
{
  if (ec == 0) {
    std::cout << "Request #" << request_id
      << " has completed. Response: "
      << response << std::endl;
  } else if (ec == asio::error::operation_aborted) {
    std::cout << "Request #" << request_id
      << " has been cancelled by the user." 
            << std::endl;
  } else {
    std::cout << "Request #" << request_id
      << " failed! Error code = " << ec.value()
      << ". Error message = " << ec.message() 
             << std::endl;
  }

  return;
}



Implementing Client Applications

118

The handler() function's signature corresponds to the function pointer type Callback 
defined earlier.

Now that we have all the ingredients, we define an entry point of the application—the 
main() function—which demonstrates how to use the components defined above in order 
to communicate with the server. In our sample function, main() emulates the behavior of a 
human user by initiating three requests and canceling one of them:

int main()
{
  try {
    AsyncTCPClient client;

    // Here we emulate the user's behavior.

    // User initiates a request with id 1.
    client.emulateLongComputationOp(10, "127.0.0.1", 3333,
      handler, 1);
    // Then does nothing for 5 seconds.
    std::this_thread::sleep_for(std::chrono::seconds(5));
    // Then initiates another request with id 2.
    client.emulateLongComputationOp(11, "127.0.0.1", 3334,
      handler, 2);
    // Then decides to cancel the request with id 1.
    client.cancelRequest(1);
    // Does nothing for another 6 seconds.
    std::this_thread::sleep_for(std::chrono::seconds(6));
    // Initiates one more request assigning ID3 to it.
    client.emulateLongComputationOp(12, "127.0.0.1", 3335,
      handler, 3);
    // Does nothing for another 15 seconds.
    std::this_thread::sleep_for(std::chrono::seconds(15));
    // Decides to exit the application.
    client.close();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
};
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How it works…
Our sample client application uses two threads of execution. The first one—UI thread—is 
responsible for processing a user input and initiating requests. The responsibility of the second 
thread—I/O thread—is to run the event loop and call the asynchronous operation's callback 
routines. Such configuration allows us to make our application's user interface responsive.

Starting the application – the main() entry point function
The main() function is invoked in the context of the UI thread. This function emulates the 
behavior of the user who initiates and cancels requests. Firstly, it creates an instance of the 
AsyncTCPClient class and then calls its emulateLongComputationOp() method three 
times to initiate three asynchronous requests, each time specifying a different target server. 
The first request (the one assigned ID 1) is canceled by calling the cancelRequest()
method several seconds after the request has been initiated.

Request completion – the handler() callback function
For all three requests initiated in the main() function handler() is specified as a callback. 
This function is called when the request is finished regardless of the reason as to why it 
finished—be it a successful completion or an error. Also, this function is called when the 
request is canceled by the user. The function accepts three arguments as follows:

 f unsigned int request_id: This contains the unique identifier of the request. 
This is the same identifier that was assigned to the request when it was initiated.

 f std::string& response: This contains the response data. This value is 
considered valid only if the request is completed successfully and is not canceled.

 f system::error_code& ec: If an error occurs during a request life cycle, this 
object contains the error information. If the request was canceled, it contains the 
asio::error::operation_aborted value.

The handler() function is quite simple in our sample. Based on the values of the 
parameters passed to it, it outputs information about the finished request.

The AsyncTCPClient class – initializing
As it has already been mentioned, all the functionality related to communication with the 
server application is hidden in the AsyncTCPClient class. This class has a nonempty 
constructor that accepts no arguments and does two things. Firstly, it instantiates an object 
of the asio::io_service::work class passing an instance of the asio::io_service 
class named m_ios to its constructor. Then, it spawns a thread that calls the run() method 
of the m_ios object. The object of the asio::io_service::work class keeps threads 
running event loop from exiting this loop when there are no pending asynchronous operations. 
The spawned thread plays the role of I/O thread in our application; in the context of this 
thread, the callbacks assigned asynchronous operations will be invoked.
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The AsyncTCPClient class – initiating a request
The emulateLongComputationOp() method is intended to initiate an asynchronous 
request. It accepts five arguments. The first one named duration_sec represents the 
request parameter according to the application layer protocol. The raw_ip_address and 
port_num specify the server to which the request should be sent. The next argument is a 
pointer to a callback function, which will be called when the request is complete. We'll turn 
back to the discussion of the callback later in this section. The last argument request_id is 
the unique identifier of the request. This identifier is associated with the request and is used 
to refer to it later, for example, when there is a need to cancel it.

The emulateLongComputationOp() method begins with preparing a request string and 
allocating an instance of the Session structure that keeps the data associated with the 
request including a socket object that is used to communicate with the server.

Then, the socket is opened and the pointer to the Session object is added to the  
m_active_sessions map. This map contains pointers to the Session objects associated 
with all active requests, that is, those requests that have been initiated but have not finished 
yet. When the request completes, before the corresponding callback is called, the pointer to 
the Session object associated with this request is removed from the map.

The request_id argument is used as a key of the corresponding Session object added 
to the map. We need to cache the Session objects in order to have access to them in case 
the user decides to cancel the previously initiated request. If we would not need to support 
canceling of a request, we could avoid using the m_active_sessions map.

We synchronize the access to the m_active_sessions map with a m_active_session_
guard mutex. Synchronization is necessary because the map can be accessed from multiple 
threads. Items are added to it in UI thread, and removed in an I/O thread that calls a callback 
when the corresponding request is finished.

Now, when the pointer to the corresponding Session object is cached, we need to connect 
the socket to the server, which we do by calling the socket's async_connect() method:

session->m_sock.async_connect(session->m_ep,
  [this, session](const system::error_code& ec)
  { 
         // ...
  });

An endpoint object designating the server to which we want to connect and a callback 
function to be called when the connection is complete or an error occurs, are passed 
as arguments to this method. In our sample we use lambda function as a callback 
function. The call to the socket's async_connect() method is the last statement in 
the emulateLongComputationOp() method. When async_connect() returns, 
emulateLongComputationOp() returns too, which means that the request has  
been initiated.
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Let's have a closer look at the lambda function that we pass to async_connect() as a 
callback. Here is its code:

[this, session](const system::error_code&ec)
{
  if (ec != 0) {
    session->m_ec = ec;
    onRequestComplete(session);
    return;
  }

  std::unique_lock<std::mutex>
    cancel_lock(session->m_cancel_guard);

  if (session->m_was_cancelled) {
     onRequestComplete(session);
     return;
  }

  asio::async_write(session->m_sock,
  asio::buffer(session->m_request),
        [this, session](const boost::system::error_code& ec,
              std::size_t bytes_transferred)
              {
                    //...
        });
}

The callback begins with checking the error code passed to it as the ec argument, the value 
of which when different from zero means that the corresponding asynchronous operation 
has failed. In case of failure, we store the ec value in the corresponding Session object, call 
the class's onRequestComplete() private method passing the Session object to it as an 
argument, and then return.

If the ec object designates success, we lock the m_cancel_guard mutex (the member 
of the request descriptor object) and check whether the request has not been canceled 
yet. More details about the canceling request are provided later in this section, where the 
cancelRequest() method is considered.
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If we see that the request has not been canceled, we initiate the next asynchronous  
operation calling the Boost.Asio free function async_write() to send the request data to 
the server. Again, we pass to it a lambda function as a callback. This callback is very similar 
to the one passed to the anync_connect() method when the asynchronous connection 
operation was initiated. We first check the error code and then if it indicates success, we 
check whether or not the request has been canceled. Also, if it has not, we initiate the next 
asynchronous operation—async_read_until()—in order to receive a response from  
the server:

[this, session](const boost::system::error_code& ec,
         std::size_t bytes_transferred){
  if (ec != 0) {
    session->m_ec = ec;
    onRequestComplete(session);
    return;
  }

  std::unique_lock<std::mutex>
    cancel_lock(session->m_cancel_guard);

  if (session->m_was_cancelled) {
    onRequestComplete(session);
    return;
  }

  asio::async_read_until(session->m_sock,
        session->m_response_buf, '\n', 
     [this, session](const boost::system::error_code& ec,
              std::size_t b'ytes_transferred) 
        {
      // ...
        });
}

Again, we pass a lambda function as a callback argument to the async_read_until() free 
function. This callback function is quite simple:

[this, session](const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
  if (ec != 0) {
    session->m_ec = ec;
  } else {
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    std::istream strm(&session->m_response_buf);
    std::getline(strm, session->m_response);
  }

  onRequestComplete(session);
}

It checks the error code and in the case of success, it stores the received response data in 
the corresponding Session object. Then, the AsyncTCPClient class's private method 
onRequestComplete() is called and the Session object is passed to it as an argument.

The onRequestComplete() method is called whenever the request completes with  
any result. It is called when the request completes successfully, when the request fails  
at any stage of its life cycle, or when it is canceled by the user. The purpose of this  
method is to perform a cleanup and then to call a callback provided by the caller  
of the emulateLongComputationOp() method, when initiating this request.

The onRequestComplete() method begins with shutting down the socket. Note that here we 
use the overload of the socket's shutdown() method, which doesn't throw exceptions. We don't 
care if the shutting down of the connection fails as this is not a critical operation in our case. 
Then, we remove the corresponding entry from the m_active_sessions map as the request 
is finished and hence it is not active anymore. Also, as the last step, the user supplied callback 
is called. After the callback function returns, the request life cycle is finished.

The AsyncTCPClient class – canceling the request
Now, let's take a look at the cancelRequst() method of the AsyncTCPClient class. This 
method accepts an identifier of the request to be canceled as an argument. It begins with 
looking for the Session object corresponding to the specified request in the m_active_
sessions map. If one is found, it calls the cancel() method on the socket object stored 
in this Session object. This leads to the interruption of the currently running asynchronous 
operation associated with this socket object.

However, there is a chance that the cancelRequest() method will be called at the 
moment when one asynchronous operation has already been completed and the next one 
has not been initiated yet. For example, imagine that the I/O thread is now running the 
callback of the async_connect() operation associated with a particular socket. At this 
moment, no asynchronous operation associated with this socket is in progress (because 
the next asynchronous operation async_write() has not been initiated yet); therefore, 
calling cancel() on this socket will have no effect. That's why we use an additional flag 
Session::m_was_cancelled designating, as its name suggests, whether the request has 
been canceled (or to be more precise, whether the cancelRequest() method has been 
called by the user). In the callback of the asynchronous operation, we look at the value of 
this flag before initiating the next asynchronous operation. If we see that the flag is set (which 
means that the request was canceled), we don't initiate the next asynchronous operation, but 
instead we interrupt the request execution and call the onRequestComplete() method.
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We use the Session::m_cancel_guard mutex in the cancelRequest() method and 
in the callbacks of the asynchronous operations such as async_connect() and async_
write() to enforce the following order of operations: request can be canceled either before 
the value of the Session::m_was_cancelled flag is tested in the callback, or after the 
next asynchronous operation is initiated. This order guarantees the proper canceling of a 
request whenever a user calls the cancelRequest() method.

The AsyncTCPClient class – closing the client
After the client has been used and is not needed anymore, it should be properly closed. The 
close() method of the AsyncTCPClient class allows us to do that. Firstly, this method 
destroys the m_work object that allows the I/O thread to exit the event message loop when all 
the asynchronous operations are completed. Then, it joins the I/O thread to wait until it exits.

After the close() method returns, the corresponding object of the AsyncTCPClient class 
cannot be used anymore.

There's more…
The AsyncTCPClient class in the presented sample implements an asynchronous single-
threaded TCP client. It uses a single thread that runs the event loop and processes the 
requests. Usually, when the request rate is low, the size of the response is not large and 
the request handler does not perform the complex and time-consuming processing of the 
response (stage 5 of the request life cycle); one thread is enough.

However, when we want the client to make millions of requests and process them as fast as 
possible, we may want to turn our client into a multithreaded one, where multiple threads 
may run several requests truly simultaneously. Of course, it assumes that the computer 
running the client is a multicore or a multiprocessor computer. The application running more 
threads than the number of cores or processors installed in the computer may slow down the 
application due to the effect of the thread switching overhead.

Implementing a multithreaded TCP client application
In order to turn our single-treaded client application into a multithreaded one, we need 
to make several changes in it. Firstly, we need to replace the m_thread member of the 
AnyncTCPClient class that represents a single I/O thread, with a list of pointers to the 
std::thread objects, which will represent a collection of I/O threads:

std::list<std::unique_ptr<std::thread>> m_threads;
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Next, we need to change the class's constructor so that it accepts an argument representing 
the number of I/O threads to be created. Besides, the constructor should spawn the specified 
number of I/O threads and add them all to the pool of threads running the event loop:

AsyncTCPClient(unsigned char num_of_threads){
  m_work.reset(new boost::asio::io_service::work(m_ios));

  for (unsigned char i = 1; i <= num_of_threads; i++) {
         std::unique_ptr<std::thread> th(
               new std::thread([this](){
        m_ios.run();
      }));

      m_threads.push_back(std::move(th));
    }
  }

Like in a single-threaded version of the client, each thread calls the run() method of 
the m_ios object. As a result, all threads are added to the thread pool, controlled by the 
m_ios object. All threads from the pool will be used to call the corresponding asynchronous 
operation completion callbacks. This means that on a multicore or multiprocessor computer, 
several callbacks may be running truly simultaneously in different threads, each on a separate 
processor; whereas, in a single-threaded version of the client, they would be executed serially.

After each thread is created, the pointer to it is put to the m_threads list so that we have the 
access to the thread objects later.

Also, the last change is in the close() method. Here, we need to join each thread in the list. 
This is how the method looks after the change:

void close() {
  // Destroy work object. This allows the I/O threads to
  // exit the event loop when there are no more pending
  // asynchronous operations. 
  m_work.reset(NULL);

  // Waiting for the I/O threads to exit.
  for (auto& thread : m_threads) {
    thread->join();
  }
}
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Having destroyed the work object, we iterate through the list of I/O threads and join each of 
them to make sure they all have exited.

The multithreaded TCP client application is ready. Now, when we create an object of 
multithreaded AsyncTCPClient class, the number specifying how many threads should 
be used to process the requests should be passed to the constructor of the class. All other 
aspects of usage of the class are identical to those of a single-threaded one.

See also
 f Chapter 2, I/O Operations, includes recipes that provide detailed discussions  

on how to perform asynchronous I/O with TCP socket and how to cancel 
asynchronous operations.

 f The Using timers recipe from Chapter 6, Other Topics, demonstrates how to use 
timers provided by Boost.Asio. Timers can be used to implement an asynchronous 
operation timeout mechanism.
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4
Implementing Server  

Applications

In this chapter, we will cover the following topics:

 f Implementing a synchronous iterative TCP server

 f Implementing a synchronous parallel TCP server

 f Implementing an asynchronous TCP server

Introduction
A server is a part of a distributed application that provides a service or services that are 
consumed by other parts of this application—clients. Clients communicate with the server  
in order to consume services provided by it.

Usually, a server application plays a passive role in the client-server communication  
process. During start-up, a server application attaches to a particular well-known port 
(meaning, it is known to the potential clients or at least it can be obtained by the clients at 
runtime from some well-known registry) on the host machine. After this, it passively waits for 
incoming requests arriving to that port from the clients. When the request arrives, the server 
processes it (serves) by performing actions according to the specification of the service  
it provides.
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Depending on the services that particular server provides, the request processing may 
mean a different thing. An HTTP server, for example, would usually read the content of a file 
specified in the request message and send it back to the client. A proxy server would simply 
redirect a client's request to a different server for the actual processing (or maybe for another 
round of redirection). Other more specific servers may provide services that perform complex 
computations on the data provided by the client in the request and return results of such 
computations back to the client.

Not all servers play a passive role. Some server applications may send messages to the 
clients without waiting for the clients to first send a request. Usually, such servers act as 
notifiers, and they notify clients of some interesting events. In this case, clients may not need 
to send any data to the server at all. Instead, they passively wait for notifications from the 
server and having received one, they react accordingly. Such a communication model is called 
push-style communication. This model is gaining popularity in modern web applications, 
providing additional flexibility.

So, the first way to classify a server application is by the function (or functions) they perform or 
a service (or services) they provide to their clients.

Another obvious classification dimension is the transport layer protocol used by the server to 
communicate with the clients.

TCP protocol is very popular today and many general purpose server applications use it for 
communication. Other, more specific servers may use UDP protocol. Hybrid server applications 
that provide their services through both TCP and UDP protocols at the same time fall under 
the third category and are called multiprotocol servers. In this chapter, we will consider 
several types of TCP servers.

One more characteristic of a server is a manner in which it serves clients. An iterative  
server serves clients in one-by-one fashion, meaning that it does not start serving the next 
client before it completes serving the one it is currently serving. A parallel server can serve 
multiple clients in parallel. On a single-processor computer, a parallel server interleaves 
different stages of communication with several clients running them on a single processor.  
For example, having connected to one client and while waiting for the request message from 
it, the server can switch to connecting the second client, or read the request from the third 
one; after this, it can switch back to the first client to continue serving it. Such parallelism is 
called pseudo parallelism, as a processor is merely switching between several clients, but 
does not serve them truly simultaneously, which is impossible with a single processor.

On multiprocessor computers, the true parallelism is possible, when a server serves more 
than one client at the same time using different hardware threads for each client.
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Iterative servers are relatively simple to implement and can be used when the request rate 
is low enough so that the server has time to finish processing one request before the next 
one arrives. It is clear that iterative servers are not scalable; adding more processors to the 
computer running such a server will not increase the server's throughput. Parallel servers, on 
the other hand, can handle higher request rates; if properly implemented, they are scalable. 
A truly parallel server running on a multiprocessor computer can handle higher request rates 
than the same server running on a single processor computer.

Another way to classify server applications, from an implementation's point of view, is 
according to whether the server is synchronous or asynchronous. A synchronous server uses 
synchronous socket API calls that block the thread of execution until the requested operation 
is completed, or else an error occurs. Thus, a typical synchronous TCP server would use 
methods such as asio::ip::tcp::acceptor::accept() to accept the client connection 
request, asio::ip::tcp::socket::read_some() to receive the request message from 
the client, and then asio::ip::tcp::socket::write_some() to send the response 
message back to the client. All three methods are blocking. They block the thread of execution 
until the requested operation is completed, or an error occurs, which makes the server using 
these operations synchronous.

An asynchronous server application, as opposed to the synchronous one, uses 
asynchronous socket API calls. For example, an asynchronous TCP server may use the 
asio::ip::tcp::acceptor::async_accept() method to asynchronously accept the 
client connection request, the asio::ip::tcp::socket::async_read_some() method 
or the asio::async_read() free function to asynchronously receive the request message 
from the client, and then the asio::ip::tcp::socket::async_write_some() method 
or the asio::async_write() free function to asynchronously send a response message 
back to the client.

Because the structure of a synchronous server application significantly differs from that of an 
asynchronous one, the decision as to which approach to apply should be made early at the 
server application design stage, and this decision should be based on the careful analysis 
of the application requirements. Besides, the possible application evolution paths and new 
requirements that may appear in the future should be considered and taken into account.

As usually, each approach has its advantages and disadvantages. When a synchronous 
approach yields better results in one situation, it may be absolutely unacceptable in another; 
in this case, an asynchronous approach might be the right choice. Let's compare two 
approaches to better understand the strengths and weaknesses of each of them.



Implementing Server Applications

130

The main advantage of a synchronous approach as compared to an asynchronous one is  
its simplicity. A synchronous server is significantly easier to implement, debug, and support 
than a functionally equal asynchronous one. Asynchronous servers are more complex due  
to the fact that asynchronous operations used by them complete in other places in  
code than they are initiated. Usually, this requires allocating additional data structures in  
the free memory to keep the context of the request, implementing callback functions, thread 
synchronization, and other extras that may make the application structure quite complex 
and error-prone. Most of these extras are not required in synchronous servers. Besides, an 
asynchronous approach brings in additional computational and memory overheads, which 
may make it less efficient than a synchronous one in some situations.

However, a synchronous approach has some functional limitations, which often makes it 
unacceptable. These limitations consist of the inability to cancel a synchronous operation 
after it has started, or to assign it a timeout so that it gets interrupted if it is running for too 
long. As opposed to synchronous operations, asynchronous ones can be canceled at any 
moment after the operation has been initiated.

The fact that synchronous operations cannot be canceled significantly limits the area of 
the application of synchronous servers. Publicly available servers that use synchronous 
operations are vulnerable to the attacks of a culprit. If such a server is single-threaded, 
a single malicious client is enough to block the server, not allowing other clients to 
communicate with it. Malicious client used by a culprit connects to the server and does not 
send any data to it, while the latter is blocked in one of the synchronous reading functions or 
methods, which does not allow it to serve other clients.

Such servers would usually be used in safe and protected environments in private networks, 
or as an internal part of an application running on a single computer using such a server for 
interprocess communication. Another possible application area of synchronous servers is, of 
course, the implementation of throwaway prototypes.

Besides the difference in the structural complexity and functionality described above, the two 
approaches differ in the efficiency and scalability when it comes to serving large numbers 
of clients sending requests at high rates. Servers using asynchronous operations are more 
efficient and scalable than synchronous servers especially when they run on multiprocessor 
computers with operating systems natively supporting an asynchronous network I/O.

The sample protocol
In this chapter, we are going to consider three recipes describing how to implement the 
synchronous iterative TCP server, synchronous parallel TCP server, and asynchronous TCP 
server. In all the recipes, it is assumed that the server communicates with clients using the 
following intentionally trivialized (for the sake of clarity) application layer protocol.
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A server application accepts request messages represented as ASCII strings containing a 
sequence of symbols ending with a new-line ASCII symbol. All the symbols coming after the 
new-line symbol are ignored by the server.

Having received a request, the server performs some dummy operations and replies with a 
constant message as follows:

"Response\n"

Such a trivial protocol allows us to concentrate on the implementation of the server and not 
the service provided by it.

Implementing a synchronous iterative TCP 
server

A synchronous iterative TCP server is a part of a distributed application that satisfies the 
following criteria:

 f Acts as a server in the client-server communication model

 f Communicates with client applications over TCP protocol

 f Uses I/O and control operations that block the thread of execution until the 
corresponding operation completes, or an error occurs

 f Handles clients in a serial, one-by-one fashion

A typical synchronous iterative TCP server works according to the following algorithm:

1. Allocate an acceptor socket and bind it to a particular TCP port.

2. Run a loop until the server is stopped:

1. Wait for the connection request from a client.

2. Accept the client's connection request when one arrives.

3. Wait for the request message from the client.

4. Read the request message.

5. Process the request.

6. Send the response message to the client.

7. Close the connection with the client and deallocate the socket.

This recipe demonstrates how to implement a synchronous iterative TCP server application 
with Boost.Asio.
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How to do it…
We begin implementing our server application by defining a class responsible for handling 
a single client by reading the request message, processing it, and then sending back the 
response message. This class represents a single service provided by the server application 
and, therefore, we will give it a name Service:

#include <boost/asio.hpp>

#include <thread>
#include <atomic>
#include <memory>
#include <iostream>

using namespace boost;

class Service {
public:
  Service(){}

  void HandleClient(asio::ip::tcp::socket& sock) {
    try {
      asio::streambuf request;
      asio::read_until(sock, request, '\n');

      // Emulate request processing.
      inti = 0;
      while (i != 1000000)
        i++;
        std::this_thread::sleep_for(
std::chrono::milliseconds(500));

      // Sending response.
      std::string response = "Response\n";
      asio::write(sock, asio::buffer(response));
}
    catch (system::system_error&e) {
      std::cout  << "Error occured! Error code = " 
<<e.code() << ". Message: "
          <<e.what();
    }
  }
};
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To keep things simple, in our sample server application, we implement a dummy service, 
which only emulates the execution of certain operations. The request processing emulation 
consists of performing many increment operations to emulate operations that intensively 
consume CPU and then putting the thread of control to sleep for some time to emulate such 
operations as reading a file or communicating with a peripheral device synchronously.

The Service class is quite simple and contains only one 
method. However, classes representing services in real-world 
applications would usually be more complex and richer in 
functionality, though the main idea would stay the same.

Next, we define another class that represents a high-level acceptor concept (as compared to 
the low-level concept represented by the asio::ip::tcp::acceptor class). This class is 
responsible for accepting connection requests arriving from clients and instantiating objects 
of the Service class, which will provide the service to the connected clients. Let's name this 
class correspondingly—Acceptor:

class Acceptor {
public:
  Acceptor(asio::io_service&ios, unsigned short port_num) :
    m_ios(ios),
    m_acceptor(m_ios,
        asio::ip::tcp::endpoint(
              asio::ip::address_v4::any(),
              port_num))
  {
    m_acceptor.listen();
  }

  void Accept() {
    asio::ip::tcp::socket sock(m_ios);

    m_acceptor.accept(sock);

    Service svc;
    svc.HandleClient(sock);
  }

private:
  asio::io_service&m_ios;
  asio::ip::tcp::acceptor m_acceptor;
};
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This class owns an object of the asio::ip::tcp::acceptor class named m_acceptor, 
which is used to synchronously accept incoming connection requests.

Also, we define a class that represents the server itself. The class is named  
correspondingly—Server:

class Server {
public:
  Server() : m_stop(false) {}

  void Start(unsigned short port_num) {
    m_thread.reset(new std::thread([this, port_num]() {
      Run(port_num);
    }));
  }

  void Stop() {
    m_stop.store(true);
    m_thread->join();
  }

private:
  void Run(unsigned short port_num) {
    Acceptor acc(m_ios, port_num);

    while (!m_stop.load()) {
      acc.Accept();
    }
  }

  std::unique_ptr<std::thread>m_thread;
  std::atomic<bool>m_stop;
  asio::io_servicem_ios;
};

This class provides an interface comprised by two methods—Start() and Stop() that are 
used to start and stop the server correspondingly. The loop runs in a separate tread spawned 
by the Start() method. The Start() method is nonblocking, while the Stop() method 
blocks the caller thread until the server is stopped.

Thorough inspection of the Server class reveals one serious drawback of the implementation 
of the server—the Stop() method may never return under some circumstances. The 
discussion of this problem and the ways to resolve it is provided later in this recipe.
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Eventually, we implement the application entry point function main() that demonstrates how 
to use the Server class:

int main()
{
  unsigned short port_num = 3333;

  try {
    Server srv;
    srv.Start(port_num);

    std::this_thread::sleep_for(std::chrono::seconds(60));

    srv.Stop();
  }
  catch (system::system_error&e) {
        std::cout  << "Error occured! Error code = " 
                   <<e.code() << ". Message: "
                   <<e.what();
  }

  return 0;
}

How it works…
The sample server application consists of four components—the Server, Acceptor, and 
Service classes and the application entry point function main(). Let's consider how each  
of these components work.

The Service class
The Service class is the key functional component in the whole application. While other 
components are infrastructural in their purpose, this class implements the actual function  
(or service) provided by the server to the clients.

This class is simple and consists of a single HandleClient() method. This method accepts 
an object representing a socket connected to the client as its input argument and handles 
that particular client.

In our sample, such handling is trivial. Firstly, the request message is synchronously read from 
the socket until a new line ASCII symbol \n is encountered. Then, the request is processed. In 
our case, we emulate processing by running a dummy loop performing one million increment 
operations and then putting the thread to sleep for half a second. After this, the response 
message is prepared and synchronously sent back to the client.
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The exceptions that may be thrown by Boost.Asio I/O functions and methods are caught and 
handled in the HandleClient() method and are not propagated to the method caller so 
that if the handling of one client fails, the server continues working.

Depending on the needs of a particular application, the Service class can be extended and 
enriched with a functionality to provide the needed service.

The Acceptor class
The Acceptor class is a part of the server application infrastructure. When constructed, it 
instantiates an acceptor socket object m_acceptor and calls its listen() method to start 
listening for connection requests from clients.

This class exposes a single public method named Accept(). This method when called, 
instantiates an object of the asio::ip::tcp::socket class named sock, representing 
an active socket, and tries to accept a connection request. If there are pending connection 
requests available, the connection request is processed and the active socket sock is 
connected to the new client. Otherwise, this method blocks until a new connection  
request arrives.

Then, an instance of the Service object is created and its HandleClient() method 
is called. The sock object connected to the client is passed to this method. The 
HandleClient() method blocks until communication with the client and request processing 
completes, or an error occurs. When the HandleClient() method returns, the Accept() 
method of the Acceptor class returns too. Now, the acceptor is ready to accept the next 
connection request.

One execution of the class's Accept()method performs the full handling cycle of one client.

The Server class
The Server class, as its name suggests, represents a server that can be controlled through 
class's interface methods Start()and Stop().

The Start() method initiates the start-up of the server. It spawns a new thread, which 
starts its execution from the Server class's Run() private method and returns. The Run() 
method accepts a single argument named port_num specifying the number of protocol port 
on which the acceptor socket should listen for incoming connection requests. When invoked, 
the method first instantiates an object of the Acceptor class and then starts a loop in which 
the Accept() method of the Acceptor object is called. The loop terminates when the value 
of the m_stop atomic variable becomes true, which happens when the Stop() method is 
invoked on the corresponding instance of the Server class.
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The Stop() method synchronously stops the server. It does not return until the loop started 
in the Run() method is interrupted and the thread spawned by the Start() method 
finishes its execution. To interrupt the loop, the value of the atomic variable m_stop is set 
to true. After this, the Stop() method calls the join() method on the m_thread object 
representing the thread running the loop in the Run() method to wait until it exits the loop 
and finishes its execution.

The presented implementation has a significant drawback consisting in the fact that the 
server may not be stopped immediately. More than that, there is a possibility that the server 
will not be stopped at all and the Stop() method will block its caller forever. The root cause 
of the problem is that the server has a hard dependency on the behavior of the clients.

If the Stop() method is called and the value of the atomic variable m_stop is set to true 
just before the loop termination condition in the Run() method is checked, the server is 
stopped almost immediately and no problem appears. However, if the Stop() method is 
called while the server's thread is blocked in the acc.Accept() method waiting for the next 
connection request from the client, or in one of the synchronous I/O operations inside the 
Service class waiting for the request message from the connected client, or for the client to 
receive the response message, the server cannot be stopped until these blocking operations 
are completed. Hence, for example, if at the moment, when the Stop() method is called, 
there are no pending connection requests, the server will not be stopped until a new client 
connects and gets handled, which in general case may never happen and will lead to the 
server being blocked forever.

Later, in this section, we will consider the possible ways to tackle this drawback.

The main() entry point function
This function demonstrates the usage of the server. It creates an instance of the Server 
class named srv and calls its Start() method to start the server. Because the server is 
represented as an active object running in its own thread of control, the Start() method 
returns immediately and the thread running method main() continues execution. To let 
the server run for some time, the main thread is put to sleep for 60 seconds. After the main 
thread wakes up, it calls the Stop() method on the srv object to stop the server. When the 
Stop() method returns, the main() function returns too and our sample application exits.

Of course, in the real application, the server would be stopped as a reaction to a user  
input or any other relevant event, rather than after dummy 60 seconds, after the server's 
start-up run out.
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Eliminating the drawbacks
As it has already been mentioned, the presented implementation has two drawbacks that 
significantly limit its applicability. The first problem is that it may be impossible to stop the 
server if the Stop() method is called while the server thread is blocked waiting for the 
incoming connection request, no connection requests arrive. The second problem is that the 
server can be easily hung by a single malicious (or buggy) client, making it unavailable to 
other clients. To hang the server, the client application can simply connect to the server and 
never send any request to it, which will make the server application hang in the blocking input 
operation forever.

The root cause of both the issues is the usage of blocking operations in the server (which is 
natural for synchronous servers). A reasonable and simple solution to both these issues would 
be to assign a timeout to the blocking operations, which would guarantee that the server 
would unblock periodically to check whether the stop command has been issued and also to 
forcefully discard clients that do not send requests for a long period of time. However, Boost.
Asio does not provide a way to cancel synchronous operations, or to assign timeouts to them. 
Therefore, we should try to find other ways to make our synchronous server more responsive 
and stable.

Let's consider ways to tackle each of the two drawbacks.

Stopping a server in reasonable amount of time
As the only legitimate way to make the accept()synchronous method of an acceptor socket 
unblock when there are no pending connection requests is to send a dummy connection 
request to the port on which the acceptor is listening, we can do the following trick to solve 
our problem.

In the Server class's Stop() method, after setting the value of the m_stop atomic variable 
to true, we can create a dummy active socket, connect it to this same server, and send some 
dummy request. This will guarantee that the server thread will leave the accept() method of 
the acceptor socket and will eventually check the value of the m_stop atomic variable to find 
out that its value is equal to true, which will lead to termination of the loop and completion of 
the Acceptor::Accept() method.

In the described method, it is assumed that the server stops itself by sending a message to 
itself (actually a message is sent from an I/O thread to the worker thread). Another approach 
would be to have a special client (separate application) that would connect and send a special 
service message (for example, stop\n) to the server, which will be interpreted by the server 
as a signal to stop. In this case, the server would be controlled externally (from a different 
application) and the Server class would not need to have the Stop() method.
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Dealing with the server's vulnerability
Unfortunately, the nature of blocking the I/O operation without the timeout assigned to it is 
such that it can be used to easily hang the iterative server that uses such operations and 
make it inaccessible to other clients.

Obviously, to protect the server from this vulnerability, we need to redesign it so that it never 
gets blocked by I/O operations. One way to achieve this is to use nonblocking sockets (which 
will turn our server into reactive) or use asynchronous I/O operations. Both the options mean 
that our server stops being synchronous. We will consider some of these solutions in other 
recipes of this chapter.

Analyzing the results
Vulnerabilities that are inherent in the synchronous iterative servers implemented with  
Boost.Asio described above do not allow using them in public networks, where there is a  
risk of misuse of the server by a culprit. Usually, synchronous servers would be used in  
closed and protected environments where clients are carefully designed so that they do  
not hang the server.

Another limitation of the iterative synchronous server is that they are not scalable and cannot 
take advantage of a multiprocessor hardware. However, their advantage—simplicity—is the 
reason why this type of a server is a good choice in many cases.

See also
 f Chapter 2, I/O Operations, includes recipes providing detailed discussions on how to 

perform synchronous I/O.

Implementing a synchronous parallel TCP 
server

A synchronous parallel TCP server is a part of a distributed application that satisfies the 
following criteria:

 f Acts as a server in the client-server communication model

 f Communicates with client applications over TCP protocol

 f Uses I/O and control operations that block the thread of execution until the 
corresponding operation completes, or an error occurs

 f May handle more than one client simultaneously
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A typical synchronous parallel TCP server works according to the following algorithm:

1. Allocate an acceptor socket and bind it to a particular TCP port.

2. Run a loop until the server is stopped:

 � Wait for the incoming connection request from a client

 � Accept the client's connection request

 � Spawn a thread of control and in the context of this thread:

 � Wait for the request message from the client

 � Read the request message

 � Process the request

 � Send a response message to the client

 � Close the connection with the client and deallocate the socket

This recipe demonstrates how to implement a synchronous parallel TCP server application 
with Boost.Asio.

How to do it…
We begin implementing our server application by defining the class responsible for handling 
a single client by reading the request message, processing it, and then sending back the 
response message. This class represents a single service provided by the server application 
and, therefore, we will name it Service:

#include <boost/asio.hpp>

#include <thread>
#include <atomic>
#include <memory>
#include <iostream>

using namespace boost;

class Service {
public:
   Service(){}

   void StartHandligClient(
         std::shared_ptr<asio::ip::tcp::socket> sock) {
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      std::thread th(([this, sock]() {
         HandleClient(sock);
      }));

      th.detach();
   }

private: 
void HandleClient(std::shared_ptr<asio::ip::tcp::socket> sock) {
      try {
         asio::streambuf request;
         asio::read_until(*sock.get(), request, '\n');

         // Emulate request processing.
         int i = 0;
         while (i != 1000000)
            i++;

            std::this_thread::sleep_for(
std::chrono::milliseconds(500));

         // Sending response.
         std::string response = "Response\n";
         asio::write(*sock.get(), asio::buffer(response));
      } 
      catch (system::system_error &e) {
         std::cout    << "Error occured! Error code = " 
<< e.code() << ". Message: "
               << e.what();
      }

      // Clean-up.
      delete this;
   }
};

To keep things simple, in our sample server application, we implement a dummy service, 
which only emulates the execution of certain operations. The request processing emulation 
consists of performing many increment operations to emulate operations that intensively 
consume CPU and then putting the thread of control to sleep for some time to emulate I/O 
operations such as reading a file or communicating with a peripheral device synchronously.
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The Service class is quite simple and contains only one method. 
However, classes representing services in real-world applications 
would usually be more complex and richer in functionality, though 
the main idea would stay the same.

Next, we define another class that represents a high-level acceptor concept (as compared to 
the low-level concept represented by the asio::ip::tcp::acceptor class). This class is 
responsible for accepting the connection requests arriving from clients and instantiating the 
objects of the Service class, which will provide the service to connected clients. Let's name 
it Acceptor:

class Acceptor {
public:
   Acceptor(asio::io_service& ios, unsigned short port_num) :
      m_ios(ios),
      m_acceptor(m_ios,
          asio::ip::tcp::endpoint(
asio::ip::address_v4::any(), 
port_num))
   {
      m_acceptor.listen();
   }

   void Accept() {
      std::shared_ptr<asio::ip::tcp::socket> 
sock(new asio::ip::tcp::socket(m_ios));

      m_acceptor.accept(*sock.get());

      (new Service)->StartHandligClient(sock);
   }

private:
   asio::io_service& m_ios;
   asio::ip::tcp::acceptor m_acceptor;
};

This class owns an object of the asio::ip::tcp::acceptor class named m_acceptor, 
which is used to synchronously accept incoming connection requests.
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Also, we define a class that represents the server itself. The class is named  
correspondingly—Server:

class Server {
public:
  Server() : m_stop(false) {}

  void Start(unsigned short port_num) {
    m_thread.reset(new std::thread([this, port_num]() {
      Run(port_num);
    }));
  }

  void Stop() {
    m_stop.store(true);
    m_thread->join();
  }

private:
  void Run(unsigned short port_num) {
    Acceptor acc(m_ios, port_num);

    while (!m_stop.load()) {
      acc.Accept();
    }
  }

  std::unique_ptr<std::thread>m_thread;
  std::atomic<bool>m_stop;
  asio::io_servicem_ios;
};

This class provides an interface comprised of two methods—Start() and Stop() that 
are used to start and stop the server correspondingly. The loop runs in a separate thread 
spawned by the Start() method. The Start() method is nonblocking, while the Stop() 
method is. It blocks the caller thread until the server is stopped.

Thorough inspection of the Server class reveals one serious drawback of the implementation 
of the server—the Stop() method may block forever. The discussion of this problem and ways 
to resolve it is provided below.
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Eventually, we implement the application entry point function main() that demonstrates how 
to use the Server class:

int main()
{
   unsigned short port_num = 3333;

   try {
      Server srv;
      srv.Start(port_num);

      std::this_thread::sleep_for(std::chrono::seconds(60));

      srv.Stop();
   }
   catch (system::system_error &e) {
      std::cout    << "Error occured! Error code = " 
<< e.code() << ". Message: "
            << e.what();
   }

   return 0;
}

How it works…
The sample server application consists of four components—the Server, Acceptor, and 
Service classes and the application entry point function main(). Let's consider how each  
of these components work.

The Service class
The Service class is the key functional component in the whole application. While other 
components constitute the infrastructure of the server, this class implements the actual 
function (or service) provided by the server to the clients.

This class has a single method in its interface called StartHandlingClient().  
This method accepts a pointer to an object representing a TCP socket connected to  
the client as its input argument and starts handling that particular client.
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This method spawns a thread of control, which starts its execution from the class's 
HandleClient() private method, where the actual synchronous handling is performed. 
Having spawned the thread, the StartHandlingClient() method "lets it go" by 
detaching the thread from the std::thread object representing it. After this, the 
StartHandlingClient() method returns.

The HandleClient() private method, as its name suggests, handles the client. In our 
sample, such handling is trivial. Firstly, the request message is synchronously read from the 
socket until a new line ASCII symbol \n is encountered. Then, the request is processed. In 
our case, we emulate processing by running a dummy loop performing one million increment 
operations and then putting the thread to sleep for half a second. After this, the response 
message is prepared and sent back to the client.

When the response message is sent, the object of the Service class associated with the 
HandleClient() method, which is currently running, is deleted by the delete operator. Of 
course, the design of the class assumes that its instances will be allocated in free memory by 
a new operator rather than on the stack.

Depending on the needs of a particular application, the Service class can be extended and 
enriched with the functionality to provide the needed service.

The Acceptor class
The Acceptor class is a part of the server application infrastructure. When constructed, it 
instantiates an acceptor socket object m_acceptor and calls its listen() method to start 
listening for connection requests from clients.

This class exposes a single Accept() public method. This method when called, instantiates 
an object of the asio::ip::tcp::socket class named sock, representing an active 
socket, and tries to accept a connection request. If there are pending connection requests 
available, the connection request is processed and the active socket sock is connected to  
the new client. Otherwise, this method blocks until a new connection request arrives.

Then, an instance of the Service object is allocated in free memory and its 
StartHandlingClient() method is called. The sock object is passed to this method 
as an input argument. The StartHandlingClient() method spawns a thread in 
the context of which the client will be handled and returns immediately. When the 
StartHandlingClient() method returns, the Accept() method of the Acceptor  
class returns too. Now, the acceptor is ready to accept the next connection request.

Note that Acceptor does not take the ownership of the object of the Service class. 
Instead, the object of the Service class will destroy itself when it completes its job.
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The Server class
The Server class, as its name suggests, represents a server that can be controlled through 
the class's interface Start()and Stop() methods.

The Start() method initiates the start-up of the server. It spawns a new thread that begins 
its execution from the Server class's Run() private method and returns. The Run() method 
accepts a single argument port_num specifying the number of the protocol port on which 
the acceptor socket should listen for incoming connection requests. When invoked, the 
method first instantiates an object of the Acceptor class and then starts a loop in which the 
Accept() method of the Acceptor object is called. The loop terminates when the value 
of the m_stop atomic variable becomes true, which happens when the Stop() method is 
invoked on the corresponding instance of the Server class.

The Stop() method synchronously stops the server. It does not return until a loop that 
started in the Run() method is interrupted and the thread that is spawned by the Start() 
method finishes its execution. To interrupt the loop, the value of the atomic variable m_stop 
is set to true. After this, the Stop() method calls the join() method on the m_thread 
object representing the thread running the loop in the Run() method in order to wait until it 
finishes its execution.

The presented implementation has a significant drawback consisting of the fact that the 
server may not be stopped immediately. More than that, there is a possibility that the server 
will not be stopped at all and the Stop() method will block its caller forever. The root cause 
of the problem is that the server has a hard dependency on the behavior of the clients.

If the Stop() method is called and sets the value of atomic variable m_stop variable to 
true just before the loop termination condition in the Run() method is checked, the server 
is stopped almost immediately and no problem occurs. However, if the Stop() method is 
called while the server's thread is blocked in the acc.Accept() method waiting for the 
next connection request from the client—or in one of synchronous I/O operations inside 
the Service class is waiting for the request message from the connected client or for the 
client to receive the response message—the server cannot be stopped until these blocking 
operations complete. Hence, for example, if at the moment when the Stop() method is 
called, there are no pending connection requests, the server will not be stopped until a new 
client connects and gets handled, which in general case may never happen and may lead to 
the server being blocked forever.

Later, in this section, we will consider possible ways to tackle this drawback.
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The main() entry point function
This function demonstrates the usage of the server. It creates an instance of the Server 
class named srv and calls its method Start() to start the server. Because the server is 
represented as an active object running in its own thread of control, the Start() method 
returns immediately and the thread running the main() method continues the execution. To 
allow the server to run for some time, the main thread is put to sleep for 60 seconds. After the 
main thread wakes up, it calls the Stop() method on the srv object to stop the server. When 
the Stop() method returns, the main() function returns too and our sample application exits.

Of course, in the real application, the server would be stopped as a reaction to the user  
input or any other relevant event, rather than after the dummy 60 seconds after the server's 
start-up run out.

Eliminating the drawbacks
The drawbacks inherent in synchronous parallel server application implemented with Boost.
Asio library are similar to those of synchronous iterative server application considered in 
previous recipe. Please refer to the Implementing synchronous iterative TCP server recipe  
for the discussion of the drawbacks and the ways to eliminate them.

See also
 f Recipe Implementing synchronous iterative TCP server provides more details on the 

drawbacks inherent in both synchronous iterative and synchronous parallel servers 
and the possible ways to eliminate them

 f Chapter 2, I/O Operations, includes recipes providing detailed discussions on how to 
perform synchronous I/O

Implementing an asynchronous TCP server
An asynchronous TCP server is a part of a distributed application that satisfies the  
following criteria:

 f Acts as a server in the client-server communication model

 f Communicates with client applications over TCP protocol

 f Uses the asynchronous I/O and control operations

 f May handle multiple clients simultaneously
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A typical asynchronous TCP server works according to the following algorithm:

1. Allocate an acceptor socket and bind it to a particular TCP port.

2. Initiate the asynchronous accept operation.

3. Spawn one or more threads of control and add them to the pool of threads that run 
the Boost.Asio event loop.

4. When the asynchronous accept operation completes, initiate a new one to accept the 
next connection request.

5. Initiate the asynchronous reading operation to read the request from the  
connected client.

6. When the asynchronous reading operation completes, process the request and 
prepare the response message.

7. Initiate the asynchronous writing operation to send the response message to  
the client.

8. When the asynchronous writing operation completes, close the connection and 
deallocate the socket.

Note that the steps starting from the fourth step in the preceding algorithm may be  
performed in arbitrary order depending on the relative timing of the concrete asynchronous 
operations in a concrete application. Due to the asynchronous model of the server, sequential 
order of execution of the steps may not hold even when the server is running on a single-
processor computer.

This recipe demonstrates how to implement an asynchronous TCP server application  
with Boost.Asio.

How to do it…
We begin implementing our server application by defining a class responsible for handling 
a single client by reading the request message, processing it, and then sending back the 
response message. This class represents a single service provided by the server application. 
Let's name it Service:

#include <boost/asio.hpp>

#include <thread>
#include <atomic>
#include <memory>
#include <iostream>

using namespace boost;
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class Service {
public:
   Service(std::shared_ptr<asio::ip::tcp::socket> sock) :
      m_sock(sock)
   {}

   void StartHandling() {

      asio::async_read_until(*m_sock.get(), 
            m_request, 
            '\n', 
            [this](
                        const boost::system::error_code& ec,
                        std::size_t bytes_transferred) 
                        {                  
                              onRequestReceived(ec,
                               bytes_transferred);
               });
   }

private:
   void onRequestReceived(const boost::system::error_code& ec,
                std::size_t bytes_transferred) {
      if (ec != 0) {
         std::cout << "Error occured! Error code = "
            << ec.value()
            << ". Message: " << ec.message();

         onFinish();
                return;
      }
      
// Process the request.
      m_response = ProcessRequest(m_request);

      // Initiate asynchronous write operation.
      asio::async_write(*m_sock.get(), 
            asio::buffer(m_response),
            [this](
                            const boost::system::error_code& ec,
                            std::size_t bytes_transferred) 
                            {
                  onResponseSent(ec,
                                  bytes_transferred);
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               });
   }

   void onResponseSent(const boost::system::error_code& ec,
                      std::size_t bytes_transferred) {
      if (ec != 0) {
         std::cout << "Error occured! Error code = "
            << ec.value()
            << ". Message: " << ec.message();
      }

      onFinish();
   }

   // Here we perform the cleanup.
   void onFinish() {
      delete this;
   }

   std::string ProcessRequest(asio::streambuf& request) {

      // In this method we parse the request, process it
      // and prepare the request.

      // Emulate CPU-consuming operations.
      int i = 0;
      while (i != 1000000)
         i++;

      // Emulate operations that block the thread
// (e.g. synch I/O operations).
         std::this_thread::sleep_for(
                      std::chrono::milliseconds(100));

      // Prepare and return the response message. 
      std::string response = "Response\n";
      return response;
   }

private:
   std::shared_ptr<asio::ip::tcp::socket> m_sock;
   std::string m_response;
   asio::streambuf m_request;
};
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To keep things simple, in our sample server application, we implement a dummy service which 
only emulates the execution of certain operations. The request processing emulation consists 
of performing many increment operations to emulate operations that intensively consume 
CPU and then putting the thread of control to sleep for some time to emulate I/O operations 
such as reading a file or communicating with a peripheral device synchronously.

Each instance of the Service class is intended to handle one connected client by reading 
the request message, processing it, and then sending the response message back.

Next, we define another class, which represents a high-level acceptor concept (as compared 
to the low-level concept represented by the asio::ip::tcp::acceptor class). This class 
is responsible for accepting the connection requests arriving from clients and instantiating the 
objects of the Service class, which will provide the service to connected clients. Let's name 
it Acceptor:

class Acceptor {
public:
  Acceptor(asio::io_service&ios, unsigned short port_num) :
    m_ios(ios),
    m_acceptor(m_ios,
      asio::ip::tcp::endpoint(
                  asio::ip::address_v4::any(), 
                  port_num)),
    m_isStopped(false)
  {}

  // Start accepting incoming connection requests.
  void Start() {
    m_acceptor.listen();
    InitAccept();
  }
  
  // Stop accepting incoming connection requests.
  void Stop() {
    m_isStopped.store(true);
  }

private:
  void InitAccept() {
    std::shared_ptr<asio::ip::tcp::socket>
              sock(new asio::ip::tcp::socket(m_ios));

    m_acceptor.async_accept(*sock.get(),
      [this, sock](
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                   const boost::system::error_code& error) 
           {
        onAccept(error, sock);
      });
  }

  void onAccept(const boost::system::error_code&ec,
               std::shared_ptr<asio::ip::tcp::socket> sock) 
  {
    if (ec == 0) {
      (new Service(sock))->StartHandling();
    }
    else {
      std::cout<< "Error occured! Error code = "
        <<ec.value()
        << ". Message: " <<ec.message();
    }

    // Init next async accept operation if
    // acceptor has not been stopped yet.
    if (!m_isStopped.load()) {
      InitAccept();
    }
    else {
      // Stop accepting incoming connections
      // and free allocated resources.
      m_acceptor.close();
    }
  }

private:
  asio::io_service&m_ios;
  asio::ip::tcp::acceptor m_acceptor;
  std::atomic<bool>m_isStopped;
}; 

This class owns an object of the asio::ip::tcp::acceptor class named m_acceptor, 
which is used to asynchronously accept the incoming connection requests.
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Also, we define a class that represents the server itself. The class is named  
correspondingly—Server:

class Server {
public:
   Server() {
      m_work.reset(new asio::io_service::work(m_ios));
   }

   // Start the server.
   void Start(unsigned short port_num, 
unsigned int thread_pool_size) {
      
      assert(thread_pool_size > 0);

      // Create and start Acceptor.
      acc.reset(new Acceptor(m_ios, port_num));
      acc->Start();

      // Create specified number of threads and 
      // add them to the pool.
      for (unsigned int i = 0; i < thread_pool_size; i++) {
         std::unique_ptr<std::thread> th(
                   new std::thread([this]()
                   {
                          m_ios.run();
                   }));

         m_thread_pool.push_back(std::move(th));
      }
   }

   // Stop the server.
   void Stop() {
      acc->Stop();
      m_ios.stop();

      for (auto& th : m_thread_pool) {
         th->join();
      }
   }
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private:
   asio::io_servicem_ios;
   std::unique_ptr<asio::io_service::work>m_work;
   std::unique_ptr<Acceptor>acc;
   std::vector<std::unique_ptr<std::thread>>m_thread_pool;
};

This class provides an interface consisting of two methods—Start() and Stop(). The 
Start() method accepts a protocol port number on which the server should listen for 
the incoming connection requests and the number of threads to add to the pool as input 
arguments and starts the server. The Stop() method stops the server. The Start() method 
is nonblocking, while the Stop() method is. It blocks the caller thread until the server is 
stopped and all the threads running the event loop exit.

Eventually, we implement the application entry point function main() that demonstrates how 
to use an object of the Server class:

const unsigned intDEFAULT_THREAD_POOL_SIZE = 2;

int main()
{
  unsigned short port_num = 3333;

  try {
    Server srv;

    unsigned intthread_pool_size =
      std::thread::hardware_concurrency() * 2;
    
      if (thread_pool_size == 0)
      thread_pool_size = DEFAULT_THREAD_POOL_SIZE;

    srv.Start(port_num, thread_pool_size);

    std::this_thread::sleep_for(std::chrono::seconds(60));

    srv.Stop();
  }
  catch (system::system_error&e) {
    std::cout  << "Error occured! Error code = " 
               <<e.code() << ". Message: "
               <<e.what();
  }

  return 0;
}
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How it works…
The sample server application consists of four components—the Service, Acceptor, and 
Service classes and an application entry point function main(). Let's consider how each of 
these components work.

The Service class
The Service class is the key functional component in the application. While other 
components constitute an infrastructure of the server, this class implements the actual 
function (or service) provided by the server to the clients.

One instance of this class is intended to handle a single connected client by reading the 
request, processing it, and then sending back the response message.

The class's constructor accepts a shared pointer to an object representing a socket connected 
to a particular client as an argument and caches this pointer. This socket will be used later to 
communicate with the client application.

The public interface of the Service class consists of a single method StartHandling(). 
This method starts handling the client by initiating the asynchronous reading operation to 
read the request message from the client specifying the onRequestReceived() method 
as a callback. Having initiated the asynchronous reading operation, the StartHandling() 
method returns.

When the request reading completes, or an error occurs, the callback method 
onRequestReceived() is called. This method first checks whether the reading succeeded 
by testing the ec argument that contains the operation completion status code. In case the 
reading finished with an error, the corresponding message is output to the standard output 
stream and then the onFinish() method is called. After this, the onRequestReceieved() 
method returns, which leads to client-handling process interruption.

If the request message has been read successfully, the ProcessRequest() method is 
called to perform the requested operations and prepare the response message. When the 
ProcessRequest() method completes and returns the string containing the response 
message, the asynchronous writing operation is initiated to send this response message  
back to the client. The onResponseSent() method is specified as a callback.

When the writing operation completes (or an error occurs), the onResponseSent()method 
is called. This method first checks whether the operation succeeded. If the operation failed, 
the corresponding message is output to the standard output stream. Next, the onFinish()
method is called to perform the cleanup. When the onFinish()method returns, the full cycle 
of client handling is considered completed.
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The ProcessRequest() method is the heart of the class because it implements the service. 
In our server application, we have a dummy service that runs a dummy loop performing one 
million increment operations and then puts the thread to sleep for 100 milliseconds. After 
this, the dummy response message is generated and returned to the caller.

Depending on the needs of a particular application, the Service class and particularly its 
ProcessRequest() method can be extended and enriched with a functionality to provide 
the needed service.

The Service class is designed so that its objects delete themselves when their job is 
completed. Deletion is performed in the class's onFinish() private method, which is  
called in the end of the client handling cycle whether it is successful or erroneous:

void onFinish() {
  delete this;
}

The Acceptor class
The Acceptor class is a part of the server application's infrastructure. Its constructor accepts 
a port number on which it will listen for the incoming connection requests as its input argument. 
The object of this class contains an instance of the asio::ip::tcp::acceptor class as its 
member named m_acceptor, which is constructed in the Acceptor class's constructor.

The Acceptor class exposes two public methods—Start() and Stop(). The Start() 
method is intended to instruct an object of the Acceptor class to start listening and 
accepting incoming connection requests. It puts the m_acceptor acceptor socket 
into listening mode and then calls the class's InitAccept() private method. The 
InitAccept() method, in turn, constructs an active socket object and initiates the 
asynchronous accept operation, calling the async_accept() method on the acceptor  
socket object and passing the object representing an active socket to it as an argument.  
The onAccept() method of the Acceptor class is specified as a callback.

When the connection request is accepted or an error occurs, the callback method 
onAccept() is called. This method first checks whether any error occurred while the 
asynchronous operation was executed by checking the value of its input argument ec. If 
the operation completed successfully, an instance of the Service class is created and its 
StartHandling() method is called, which starts handling the connected client. Otherwise, 
in case of error, the corresponding message is output to the standard output stream.

Next, the value of the m_isStopped atomic variable is checked to see whether the stop 
command has been issued on the Acceptor object. If it has (which means that the 
Stop() method has been called on the Acceptor object), a new asynchronous accept 
operation is not initiated and the low-level acceptor object is closed. At this point, Acceptor 
stops listening and accepting incoming connection requests from clients. Otherwise, the 
InitAccept() method is called to initiate a new asynchronous accept operation to accept 
the next incoming connection request.
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As it has already been mentioned, the Stop() method instructs the Acceptor object not to 
initiate the next asynchronous accept operation when the currently running one completes. 
However, the currently running accept operation is not canceled by this method.

The Server class
The Server class, as its name suggests, represents a server itself. The class's public 
interface consists of two methods: Start() and Stop().

The Start() method starts the server up. It accepts two arguments. The first argument 
named port_num specifies the number of the protocol port on which the server should listen 
for incoming connections. The second argument named thread_pool_size specifies 
the number of threads to add to the pool of threads running the even loop and deliver 
asynchronous operation completion events. This argument is very important and should be 
chosen with care as it directly influences the performance of the server.

The Start() method begins by instantiating an object of the Acceptor class that will be 
used to accept incoming connections and then starting it up by calling its Start() method. 
After this, it spawns a set of worker threads, each of which is added to the pool, by calling the 
run() method of the asio::io_service object. Besides, all the std::thread objects 
are cached in the m_thread_pool member vector so that the corresponding threads can be 
joined later when the server is stopped.

The Stop()method first stops the Acceptor object acc, calling its Stop()method. Then, 
it calls the stop() method on the asio::io_service object m_ios, which makes all the 
threads that previously called m_ios.run() to join the pool to exit as soon as possible, 
discarding all pending asynchronous operations. After this, the Stop() method waits for all 
threads in the pool to exit by iterating through all the std::thread objects cached in the 
m_thread_pool vector and joining each of them.

When all threads exit, the Stop() method returns.

The main() entry point function
This function demonstrates the usage of the server. Firstly, it instantiates an object of the 
Server class named srv. Because the Start() method of the Server class requires 
a number of threads constituting a pool to be passed to it, before starting the server, the 
optimal size of the pool is calculated. The general formula often used in parallel applications 
to find the optimal number of threads is the number of processors the computer has 
multiplied by 2. We use the std::thread::hardware_concurrency() static method 
to obtain the number of processors. However, because this method may fail to do its job 
returning 0, we fall back to default value represented by the constant DEFAULT_THREAD_
POOL_SIZE, which is equal to 2 in our case.
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When the thread pool size is calculated, the Start() method is called to start the server.  
The Start() method does not block. When it returns, the thread running the main() 
method continues the execution. To allow the server to run for some time, the main thread is 
put to sleep for 60 seconds. When the main thread wakes up, it calls the Stop() method on 
the srv object to stop the server. When the Stop() method returns, the main() function 
returns too and our application exits.

Of course, in the real application, the server would be stopped as a reaction to some relevant 
event such as the user input, rather than when some dummy period of time elapses.

See also
 f Chapter 2, I/O Operations, includes recipes providing detailed discussions on how to 

perform synchronous I/O.

 f The Using timers recipe from Chapter 6, Other Topics, demonstrates how to use 
timers provided by Boost.Asio. Timers can be used to implement an asynchronous 
operation timeout mechanism.
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5
HTTP and SSL/TLS

In this chapter, we will cover the following topics:

 f Implementing the HTTP client application

 f Implementing the HTTP server application

 f Adding SSL/TLS support to client applications

 f Adding SSL/TLS support to server applications

Introduction
This chapter covers two major topics. The first one is HTTP protocol implementation.  
The second is the usage of SSL/TLS protocol. Let's briefly examine each of them.

The HTTP protocol is an application layer protocol operating on the top of TCP protocol. It is 
widely used on the Internet, allowing client applications to request particular resources from 
the servers, and servers to transmit the requested resources back to the clients. Besides, 
HTTP allows clients to upload data and send commands to the server.

The HTTP protocol assumes several models or methods of communication, each designed for 
a specific purpose. The simplest method called GET assumes the following flow of events:

1. The HTTP client application (for example, a web browser) generates a request 
message containing information about a particular resource (residing on the server) 
to be requested and sends it to the HTTP server application (for example, a web 
server) using TCP as a transport level protocol.

2. The HTTP server application, having received a request from the client, parses it, 
extracts the requested resource from the storage (for example, from a file system or  
a database), and sends it back to the client as a part of a HTTP response message.

The format of both the request and response messages is defined by HTTP protocol.
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Several other methods are defined by HTTP protocol, allowing client application to actively 
send data or upload resources to the server, delete resources located on the server, and 
perform other operations. In the recipes of this chapter, we will consider implementation of 
the GET method. Because HTTP protocol methods are similar in principle, implementation of 
one of them gives a good hint about how to implement others.

Another topic covered in this chapter is SSL and TLS protocols. Secure Socket Layer (SSL)
and Transport Layer Security (TLS) protocols operate on the top of TCP protocol and are 
aimed at achieving two main goals as follows:

 f Providing a way to authenticate each communication participant using  
digital certificate

 f Securing data being transmitted over the underlying TCP protocol

The SSL and TLS protocols are widespread, especially in the Web. Most web servers to which 
its potential clients may send sensitive data (passwords, credit card numbers, personal data, 
and so on) support SSL/TLS-enabled communication. In this case, the so called HTTPS (HTTP 
over SSL) protocol is used to allow the client to authenticate the server (sometimes servers 
may want to authenticate the client, though this is rarely the case) and to secure transmitted 
data by encrypting it, making this data useless for the culprit even if intercepted.

Boost.Asio does not contain the implementation of SSL/TLS protocols. 
Instead, it relies on the OpenSSL library, Boost.Asio provides a set of 
classes, functions, and data structures that facilitate the usage of 
functionality provided by OpenSSL, making the code of the application 
more uniformed and object-oriented.

In this chapter, we will not consider the details of the OpenSSL library or SSL/TLS protocols. 
These topics are not in the scope of this book. Instead, we will touch upon specific tools 
provided by the Boost.Asio that rely on OpenSSL library and allow to implement support of 
SSL/TLS protocol in a network application.

The two recipes demonstrate how to build client and server applications that secure 
their communication using SSL/TLS protocols. To make SSL/TLS-related aspects of the 
applications more vivid and clear, all other aspects of considered applications were made as 
simple as possible. Both client and server applications are synchronous and based on recipes 
found in other chapters of this book. This allows us to compare a basic TCP client or server 
application with their advanced versions supporting SSL/TLS and to better understand what it 
takes to add SSL/TLS support to a distributed application.



Chapter 5

161

Implementing the HTTP client application
HTTP clients constitute important class of distributed software and are represented by many 
applications. Web browsers are prominent representatives of this class. They use HTTP 
protocols to request web pages from web servers. However, today HTTP protocol is used not 
only in the web. Many distributed applications use this protocol to exchange custom data of 
any kind. Often, when designing a distributed application, choosing HTTP as a communication 
protocol is a much better idea than developing custom one.

In this recipe, we will consider an implementation of HTTP client using Boost.Asio that satisfies 
the following basic requirements:

 f Supports the HTTP GET request method

 f Executes requests asynchronously

 f Supports request canceling

Let's move on to the implementation.

How to do it…
Because one of the requirements of our client application is to support canceling requests 
that have been initiated but have not been completed yet, we need to make sure that 
canceling is enabled on all target platforms. Therefore, we begin our client application by 
configuring Boost.Asio library so that request canceling is enabled. More details on issues 
related to asynchronous operation canceling are provided in the Cancelling asynchronous 
operations recipe in Chapter 2, I/O Operations:

#include <boost/predef.h> // Tools to identify the OS.

// We need this to enable cancelling of I/O operations on
// Windows XP, Windows Server 2003 and earlier.
// Refer to "http://www.boost.org/doc/libs/1_58_0/
// doc/html/boost_asio/reference/basic_stream_socket/
// cancel/overload1.html" for details.
#ifdef BOOST_OS_WINDOWS
#define _WIN32_WINNT 0x0501

#if _WIN32_WINNT <= 0x0502 // Windows Server 2003 or earlier.
#define BOOST_ASIO_DISABLE_IOCP
#define BOOST_ASIO_ENABLE_CANCELIO  
#endif
#endif
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Next, we include Boost.Asio library headers and also headers of some components of 
standard C++ libraries that we will need to implement our application:

#include <boost/asio.hpp>

#include <thread>
#include <mutex>
#include <memory>
#include <iostream>

using namespace boost;

Now, before we can jump to implementing classes and functions constituting our client 
application, we have to make one more preparation related to error representation  
and handling.

When implementing the HTTP client application, we need to deal with three classes of errors. 
The first class is represented by numerous errors that may occur when executing Boost.Asio 
functions and classes' methods. For example, if we call the write_some() method on an 
object representing a socket that has not been opened, the method will return operating 
system dependent error code (either by throwing an exception or by the means of an out 
argument depending on the method overload used), designating the fact that an invalid 
operation has been executed on a non-opened socket.

The second class includes both erroneous and non-erroneous statuses defined by HTTP 
protocol. For example, the status code 200 returned by the server as a response to particular 
request made by the client, designates the fact that a client's request has been fulfilled 
successfully. On the other hand, the status code 500 designates that while performing the 
requested operation, an error occurred on the server that led to the request not being fulfilled.

The third class includes errors related to the HTTP protocol itself. In case a server sends a 
message, as a response to correct the request made by a client and this message is not a 
properly structured HTTP response, the client application should have means to represent  
this fact in terms of error code.

Error code for the first class of errors are defined in the sources of Boost.Asio libraries. 
Status codes of the second class are defined by HTTP protocol. The third class is not defined 
anywhere and we should define corresponding error codes by ourselves in our application.

We define a single error code that represents quite a general error designating the fact that 
the message received from the server is not a correct HTTP response message and therefore,  
the client cannot parse it. Let's name this error code as invalid_response:

namespace http_errors {
  enum http_error_codes
  {
    invalid_response = 1
  };
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Then, we define a class representing an error category, which includes the invalid_
response error code defined above. Let's name this category as http_errors_category:

  class http_errors_category
    : public boost::system::error_category
  {
  public:
    const char* name() const BOOST_SYSTEM_NOEXCEPT 
    { return "http_errors"; }

    std::string message(int e) const {
      switch (e) {
      case invalid_response:
        return "Server response cannot be parsed.";
        break;
      default:
        return "Unknown error.";
        break;
      }
    }
  };

Then, we define a static object of this class, a function returning an instance of the object, 
and the overload for the make_error_code() function accepting error codes of our custom 
type http_error_codes:

const boost::system::error_category&
get_http_errors_category()
{
    static http_errors_category cat;
    return cat;
  }

  boost::system::error_code
    make_error_code(http_error_codes e)
  {
    return boost::system::error_code(
      static_cast<int>(e), get_http_errors_category());
  }
} // namespace http_errors
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The last step we need to perform before we can use our new error code in our application is 
to allow Boost library to know that the members of the http_error_codes enumeration 
should be treated as error codes. To do this, we include the following structure definition into 
the boost::system namespace:

namespace boost {
  namespace system {
    template<>
struct is_error_code_enum
<http_errors::http_error_codes>
{
      BOOST_STATIC_CONSTANT(bool, value = true);
    };
  } // namespace system
} // namespace boost

Because our HTTP client application is going to be asynchronous, the user of the client when 
initiating a request, will need to provide a pointer to a callback function, which will be invoked 
when the request completes. We need to define a type representing a pointer to such a 
callback function.

A callback function when called, would need to be passed arguments that clearly designate 
three things:

 f Which request has completed

 f What is the response

 f Whether the request completed successfully and if not, the error code designating 
the error that occurred

Note that, later, we will define the HTTPRequest and HTTPResponse classes representing 
the HTTP request and HTTP response correspondingly, but now we use forward declarations. 
Here is how the callback function pointer type declaration looks:

class HTTPClient;
class HTTPRequest;
class HTTPResponse;

typedef void(*Callback) (const HTTPRequest& request,
  const HTTPResponse& response,
  const system::error_code& ec);
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The HTTPResponse class
Now, we can define a class representing a HTTP response message sent to the client as a 
response to the request:

class HTTPResponse {
  friend class HTTPRequest;
  HTTPResponse() : 
    m_response_stream(&m_response_buf)
  {}
public:

  unsigned int get_status_code() const {
    return m_status_code;
  }

  const std::string& get_status_message() const {
    return m_status_message;
  }

  const std::map<std::string, std::string>& get_headers() {
    return m_headers;
  }
  
  const std::istream& get_response() const {
    return m_response_stream;
  }

private:
  asio::streambuf& get_response_buf() {
    return m_response_buf;
  }

  void set_status_code(unsigned int status_code) {
    m_status_code = status_code;
  }

  void set_status_message(const std::string& status_message) {
    m_status_message = status_message;
  }

  void add_header(const std::string& name, 
  const std::string& value) 
  {
    m_headers[name] = value;
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  }

private:
  unsigned int m_status_code; // HTTP status code.
  std::string m_status_message; // HTTP status message.
  
  // Response headers.
  std::map<std::string, std::string> m_headers;
  asio::streambuf m_response_buf;
  std::istream m_response_stream;
};

The HTTPResponse class is quite simple. Its private data members represent parts of HTTP 
response such as the response status code and status message, and response headers 
and body. Its public interface contains methods that return the values of corresponding data 
members, while private methods allow setting those values.

The HTTPRequest class representing a HTTP request, which will be defined next, is declared 
as a friend to HTTPResponse. We will see how the objects of the HTTPRequest class use 
the private methods of the HTTPResponse class to set values of its data members when a 
response message arrives.

The HTTPRequest class
Next, we define a class representing a HTTP request containing functionality that constructs 
the HTTP request message based on information provided by the class user, sends it to the 
server, and then receives and parses the HTTP response message.

This class is at the center of our application because it contains most of its functionalities.

Later, we will define the HTTPClient class representing an HTTP client, responsibilities 
of which will be limited to maintaining a single instance of the asio::io_service class 
common to all the HTTPRequest objects and acting as a factory of the HTTPRequest 
objects. Therefore, we declare the HTTPClient class as a friend to the HTTPRequest  
class and make the HTTPRequest class' constructor private:

class HTTPRequest {
  friend class HTTPClient;

  static const unsigned int DEFAULT_PORT = 80;

  HTTPRequest(asio::io_service& ios, unsigned int id) :
    m_port(DEFAULT_PORT),
    m_id(id),
    m_callback(nullptr),
    m_sock(ios),
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    m_resolver(ios),
    m_was_cancelled(false),
    m_ios(ios)  
{}

The constructor accepts two arguments: a reference to an object of the asio::io_service 
class and an unsigned integer named id. The latter contains a unique identifier of a request, 
which is assigned by the user of the class and allows distinguishing request objects one  
from another.

Then, we define methods constituting the public interface of the class:

public:
  void set_host(const std::string& host) {
    m_host = host;
  }

  void set_port(unsigned int port) {
    m_port = port;
  }

  void set_uri(const std::string& uri) {
    m_uri = uri;
  }

  void set_callback(Callback callback) {
    m_callback = callback;
  }

  std::string get_host() const {
    return m_host;
  }

  unsigned int get_port() const {
    return m_port;
  }

  const std::string& get_uri() const {
    return m_uri;
  }

  unsigned int get_id() const {
    return m_id;
  }
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  void execute() {
    // Ensure that precorditions hold.
    assert(m_port > 0);
    assert(m_host.length() > 0);
    assert(m_uri.length() > 0);
    assert(m_callback != nullptr);

    // Prepare the resolving query.
    asio::ip::tcp::resolver::query resolver_query(m_host,
      std::to_string(m_port), 
      asio::ip::tcp::resolver::query::numeric_service);

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }
    
    // Resolve the host name.
    m_resolver.async_resolve(resolver_query,
      [this](const boost::system::error_code& ec,
      asio::ip::tcp::resolver::iterator iterator)
    {
      on_host_name_resolved(ec, iterator);
    });
  }

  void cancel() {
    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);
    
    m_was_cancelled = true;
    
    m_resolver.cancel();
    
    if (m_sock.is_open()) {
      m_sock.cancel();
    }  
}
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The public interface includes methods that allow the class' user to set and get HTTP request 
parameters such as the DNS name of the host running the server, protocol port number, and 
URI of the requested resource. Besides, there is a method that allows setting a pointer to a 
callback function that will be called when the request completes.

The execute() method initiates the execution of the request. Also, the cancel() method 
allows canceling the initiated request before it completes. We will consider how these 
methods work in the next section of the recipe.

Now, we define a set of private methods that contain most of the implementation details. 
Firstly, we define a method that is used as a callback for an asynchronous DNS name 
resolution operation:

private:
  void on_host_name_resolved(
    const boost::system::error_code& ec,
    asio::ip::tcp::resolver::iterator iterator) 
{
    if (ec != 0) {
      on_finish(ec);
      return;
    }

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }

    // Connect to the host.
    asio::async_connect(m_sock,
      iterator,
      [this](const boost::system::error_code& ec,
      asio::ip::tcp::resolver::iterator iterator)
    {
      on_connection_established(ec, iterator);
    });

  }



HTTP and SSL/TLS

170

Then, we define a method used as a callback for an asynchronous connection operation, 
which is initiated in the on_host_name_resolved() method just defined:

  void on_connection_established(
    const boost::system::error_code& ec,
    asio::ip::tcp::resolver::iterator iterator) 
{
    if (ec != 0) {
      on_finish(ec);
      return;
    }

    // Compose the request message.
    m_request_buf += "GET " + m_uri + " HTTP/1.1\r\n";

    // Add mandatory header.
    m_request_buf += "Host: " + m_host + "\r\n";

    m_request_buf += "\r\n";

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }

    // Send the request message.
    asio::async_write(m_sock,
      asio::buffer(m_request_buf),
      [this](const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_request_sent(ec, bytes_transferred);
    });
  }
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The next method we define—on_request_sent()—is a callback, which is called after the 
request message is sent to the server:

  void on_request_sent(const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
    if (ec != 0) {
      on_finish(ec);
      return;
    }

    m_sock.shutdown(asio::ip::tcp::socket::shutdown_send);

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }

    // Read the status line.
    asio::async_read_until(m_sock,
      m_response.get_response_buf(),
      "\r\n",
      [this](const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_status_line_received(ec, bytes_transferred);
    });
  }

Then, we need another callback method, which is called when the first portion of the response 
message, namely, status line, is received from the server:

  void on_status_line_received(
    const boost::system::error_code& ec,
    std::size_t bytes_transferred)
  {
    if (ec != 0) {
      on_finish(ec);
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      return;
    }

    // Parse the status line.
    std::string http_version;
    std::string str_status_code;
    std::string status_message;

    std::istream response_stream(
    &m_response.get_response_buf());
    response_stream >> http_version;

    if (http_version != "HTTP/1.1"){
      // Response is incorrect.
      on_finish(http_errors::invalid_response);
      return;
    }

    response_stream >> str_status_code;

    // Convert status code to integer.
    unsigned int status_code = 200;

    try {
      status_code = std::stoul(str_status_code);
    }
    catch (std::logic_error&) {
      // Response is incorrect.
      on_finish(http_errors::invalid_response);
      return;
    }

    std::getline(response_stream, status_message, '\r');
    // Remove symbol '\n' from the buffer.
    response_stream.get();

    m_response.set_status_code(status_code);
    m_response.set_status_message(status_message);

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
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      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }

    // At this point the status line is successfully
    // received and parsed.
    // Now read the response headers.
    asio::async_read_until(m_sock,
      m_response.get_response_buf(),
      "\r\n\r\n",
      [this](
      const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_headers_received(ec,
        bytes_transferred);
    });
  }

Now, we define a method that serves as a callback, which is called when the next portion of 
the response message—the response headers block—arrives from the server. We will name it 
as on_headers_received():

  void on_headers_received(const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
    if (ec != 0) {
      on_finish(ec);
      return;
    }

    // Parse and store headers.
    std::string header, header_name, header_value;
    std::istream response_stream(
    &m_response.get_response_buf());

    while (true) {
      std::getline(response_stream, header, '\r');

      // Remove \n symbol from the stream.
      response_stream.get();
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      if (header == "")
        break;

      size_t separator_pos = header.find(':');
      if (separator_pos != std::string::npos) {
        header_name = header.substr(0,
        separator_pos);

        if (separator_pos < header.length() - 1)
          header_value =
          header.substr(separator_pos + 1);
        else
          header_value = "";

        m_response.add_header(header_name,
        header_value);
      }
    }

    std::unique_lock<std::mutex>
      cancel_lock(m_cancel_mux);

    if (m_was_cancelled) {
      cancel_lock.unlock();
      on_finish(boost::system::error_code(
      asio::error::operation_aborted));
      return;
    }

    // Now we want to read the response body.
    asio::async_read(m_sock,
      m_response.get_response_buf(),
      [this](
      const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_response_body_received(ec,
        bytes_transferred);
    });

    return;
  }
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Besides, we need a method that will handle the last part of the response—the response body. 
The following method is used as a callback, which is called after the response body arrives 
from the server:

void on_response_body_received(
const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
    if (ec == asio::error::eof)
      on_finish(boost::system::error_code());
    else
      on_finish(ec);  
}

Finally, we define the on_finish() method that serves as a final point of all execution paths 
(including erroneous) that start in the execute() method. This method is called when the 
request completes (either successfully or not) and its purpose is to call the callback provided 
by the HTTPRequest class' user to notify it about the completion of the request:

  void on_finish(const boost::system::error_code& ec) 
{
    if (ec != 0) {
      std::cout << "Error occured! Error code = "
        << ec.value()
        << ". Message: " << ec.message();
    }

    m_callback(*this, m_response, ec);

    return;
  }

We will need some data fields associated with each instance of the HTTPRequest class. 
Here, we declare the class' corresponding data members:

private:
  // Request parameters. 
  std::string m_host;
  unsigned int m_port;
  std::string m_uri;

  // Object unique identifier. 
  unsigned int m_id;
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  // Callback to be called when request completes. 
  Callback m_callback;

  // Buffer containing the request line.
  std::string m_request_buf;

  asio::ip::tcp::socket m_sock;  
  asio::ip::tcp::resolver m_resolver;

  HTTPResponse m_response;

  bool m_was_cancelled;
  std::mutex m_cancel_mux;

  asio::io_service& m_ios;

The last thing to add is the closing bracket to designate the end of the HTTPRequest  
class definition:

};

The HTTPClient class
The last class that we need in our application is the one that would be responsible for the 
following three functions:

 f To establish a threading policy

 f To spawn and destroy threads in a pool of threads running the Boost.Asio event loop 
and delivering asynchronous operations' completion events

 f To act as a factory of the HTTPRequest objects

We will name this class as HTTPClient:

class HTTPClient {
public:
  HTTPClient(){
    m_work.reset(new boost::asio::io_service::work(m_ios));

    m_thread.reset(new std::thread([this](){
      m_ios.run();
    }));
  }

  std::shared_ptr<HTTPRequest>
  create_request(unsigned int id) 
  {
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    return std::shared_ptr<HTTPRequest>(
    new HTTPRequest(m_ios, id));
  }

  void close() {
    // Destroy the work object. 
    m_work.reset(NULL);

    // Waiting for the I/O thread to exit.
    m_thread->join();
  }

private:
  asio::io_service m_ios;
  std::unique_ptr<boost::asio::io_service::work> m_work;
  std::unique_ptr<std::thread> m_thread;
};

The callback and the main() entry point function
At this point, we have the basic HTTP client that comprises three classes and several 
supplementary data types. Now we will define two functions that are not parts of the client, 
but demonstrate how to use it to communicate with the server using the HTTP protocol. The 
first function will be used as a callback, which will be called when the request completes. Its 
signature must correspond to the function pointer type Callback defined earlier. Let's name 
our callback function as handler():

void handler(const HTTPRequest& request,
  const HTTPResponse& response,
  const system::error_code& ec)
{
  if (ec == 0) {
    std::cout << "Request #" << request.get_id()
      << " has completed. Response: "
      << response.get_response().rdbuf();
  }
  else if (ec == asio::error::operation_aborted) {
    std::cout << "Request #" << request.get_id()
      << " has been cancelled by the user." 
      << std::endl;
  }
  else {
    std::cout << "Request #" << request.get_id()
      << " failed! Error code = " << ec.value()
      << ". Error message = " << ec.message() 
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    << std::endl;
  }

  return;
}

The second and the last function we need to define is the main() application entry point 
function that uses the HTTP client to send HTTP requests to the server:

int main()
{
  try {
    HTTPClient client;

    std::shared_ptr<HTTPRequest> request_one =
      client.create_request(1);

    request_one->set_host("localhost");
    request_one->set_uri("/index.html");
    request_one->set_port(3333);
    request_one->set_callback(handler);

    request_one->execute();

    std::shared_ptr<HTTPRequest> request_two =
      client.create_request(1);

    request_two->set_host("localhost");
    request_two->set_uri("/example.html");
    request_two->set_port(3333);
    request_two->set_callback(handler);

    request_two->execute();

    request_two->cancel();

    // Do nothing for 15 seconds, letting the
    // request complete.
    std::this_thread::sleep_for(std::chrono::seconds(15));

    // Closing the client and exiting the application.
    client.close();
  }



Chapter 5

179

  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
};

How it works…
Now let's consider how our HTTP client works. The application consists of five components, 
among which are the three classes such as HTTPClient, HTTPRequest, and 
HTTPResponse, and two functions such as the handler() callback function and  
the main() application entry point function. Let's consider how each component  
works separately.

The HTTPClient class
A class' constructor begins with creating an instance of the asio::io_service::work 
object in order to make sure that threads running the event loop do not exit this loop when 
there are no pending asynchronous operations. Then, a thread of control is spawned and 
added to the pool by calling the run() method on the m_ios object. This is where the 
HTTPClient class performs its first and part of the second functions, namely, establishing 
threading policy and adding threads to the pool.

The third function of the HTTPClient class—to act as a factory of the object representing 
HTTP requests—is performed in its create_request() public method. This method 
creates an instance of the HTTPRequest class in the free memory and returns a shared 
pointer object pointing to it. As its input argument, the method accepts an integer value that 
represents the unique identifier to be assigned to the newly created request object. This 
identifier is used to distinguish between different request objects.

The close() method from the class' public interface destroys the asio::io_
service::work object, allowing threads to exit the event loop just as soon as all  
pending operations complete. The method blocks until all threads exit.
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The HTTPRequest class
Let's begin considering the HTTPRequest class' behavior by inspecting its data members  
and their purpose. The HTTPRequest class contains 12 data members, among which are  
the following:

 f Request parameters:
  std::string m_host;
  unsigned int m_port;
  std::string m_uri;

 f A unique identifier of the request:
  unsigned int m_id;

 f A pointer to the callback function provided by the class' user to be called when a 
request completes:
  Callback m_callback;

 f A string buffer used to store the HTTP request message:
  std::string m_request_buf;

 f A socket object used to communicate with the server:
  asio::ip::tcp::socket m_sock;

 f A resolver object used to resolve the DNS name of the server host provided by  
the user:
  asio::ip::tcp::resolver m_resolver;

 f An instance of the HTTPResponse class that represents the response received from 
the server:
  HTTPResponse m_response;

 f A boolean flag and a mutex object supporting the request canceling functionality 
(which will be explained later):
  bool m_was_cancelled;
  std::mutex m_cancel_mux;

 f Also, a reference to an instance of the asio::io_service class required by 
resolver and socket objects. The single instance of the asio::io_service  
class is maintained by an object of the HTTPClient class:

  asio::io_service& m_ios;
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An instance of the HTTPRequest object represents a single HTTP GET request. The class 
is designed so that in order to send a request, two steps need to be performed. Firstly, the 
parameters of the request and the callback function to be called when the request completes 
are set by calling the corresponding setter methods on the object. Then, as a second step, the 
execute() method is invoked to initiate the request execution. When the request completes,  
the callback function is called.

The set_host(), set_port(), set_uri(), and set_callback() setter methods allow 
setting a server host DNS name and port number, URI of the requested resource, and a 
callback function to be called when the request completes. Each of these methods accepts 
one argument and stores its value in the corresponding HTTPRequest object's data member.

The get_host(), get_port(), and get_uri() getter methods return values set by 
corresponding setter methods. The get_id() getter method returns a request object's 
unique identifier, which is passed to the object's constructor on instantiation.

The execute() method begins the execution of a request by initiating a sequence of 
asynchronous operations. Each asynchronous operation performs one step of request 
execution procedure.

Because a server host in the request object is represented with a DNS name (rather than 
with an IP address), before sending the request message to the server, the specified DNS 
name must be resolved and transformed into an IP address. Therefore, the first step in the 
request execution is DNS name resolution. The execute() method begins with preparing the 
resolving query and then calls the resolver object's async_resolve() method, specifying 
the HTTPRequest class' on_host_name_resolve() private method as an operation 
completion callback.

When the server host DNS name is resolved, the on_host_name_resolved() method is 
called. This method is passed two arguments: the first of which is an error code, designating 
the status of the operation, and the second one is the iterator that can be used to iterate 
through a list of endpoints resulting from a resolution process.

The on_host_name_resolved() method initiates the next asynchronous operation in a 
sequence, namely socket connection, by calling asio::async_connect() free function 
passing socket object m_sock and iterator parameter to it so that it connects the socket to 
the first valid endpoint. The on_connection_established() method is specified as an 
asynchronous connection operation completion callback.

When an asynchronous connection operation completes, the on_connection_
established() method is invoked. The first argument passed to it is named ec that 
designates the operation completion status. If its value is equal to zero, it means that 
the socket was successfully connected to one of the endpoints. The on_connection_
established() method constructs the HTTP GET request message using request 
parameters stored in the corresponding data members of the HTTPRequest object. Then, the 
asio::async_write() free function is called to asynchronously send a constructed HTTP 
request message to the server. The class' private method on_request_sent() is specified 
as a callback to be called when the asio::async_write() operation completes.
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After a request is sent, and if it is sent successfully, the client application has to let the server 
know that the full request is sent and the client is not going to send anything else by shutting 
down the send part of the socket. Then, the client has to wait for the response message from 
the server. And this is what the on_request_sent() method does. Firstly, it calls the socket 
object's shutdown() method, specifying that the send part should be closed by the passing 
value asio::ip::tcp::socket::shutdown_send to the method as an argument. Then, 
it calls the asio::async_read_until() free function to receive a response from the 
server.

Because the response may be potentially very big and we do not know its size beforehand, 
we do not want to read it all at once. We first want to read the HTTP response status line 
only; then, having analyzed it, either continue reading the rest of the response (if we think 
we need it) or discard it. Therefore, we pass the \r\n symbols sequence, designating the 
end of the HTTP response status line as a delimiter argument to the asio::async_read_
until() method. The on_status_line_received() method is specified as an operation 
completion callback.

When the status line is received, the on_status_line_received() method is invoked. 
This method performs parsing of the status line, extracting values designating the HTTP 
protocol version, response status code, and response status message from it. Each value is 
analyzed for correctness. We expect the HTTP version to be 1.1, otherwise the response is 
considered incorrect and the request execution is interrupted. The status code should be an 
integer value. If the string-to-integer conversion fails, the response is considered incorrect 
and its further processing is interrupted too. If the response status line is correct, the request 
execution continues. The extracted status code and status message are stored in the  
m_response member object, and the next asynchronous operation in the request execution 
operation sequence is initiated. Now, we want to read the response headers block.

According to the HTTP protocol, the response headers block ends with the \r\n\r\n symbols 
sequence. Therefore, in order to read it, we call the asio::async_read_until() free 
function one more time, specifying the string \r\n\r\n as a delimiter. The on_headers_
received() method is specified as a callback.

When the response headers block is received, the on_headers_received() method is 
invoked. In this method, the response headers block is parsed and broken into separate 
name-value pairs and stored in the m_response member object as a part of the response.

Having received and parsed the headers, we want to read the last part of the response—the 
response body. To do this, an asynchronous reading operation is initiated by calling the 
asio::async_read() free function. The on_response_body_received() method is 
specified as a callback.
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Eventually, the on_response_body_received() method is invoked notifying us of the 
fact that the whole response message has been received. Because the HTTP server may 
shutdown the send part of its socket just after it sends the last part of the response message, 
on the client side, the last reading operation may complete with an error code equal to the 
asio::error::eof value. This should not be treated as an actual error, but rather as a 
normal event. Therefore, if the on_response_body_received() method is called with the 
ec argument equal to asio::error::eof, we pass the default constructed object of the 
boost::system::error_code class to the on_finish() method in order to designate 
that the request execution is completed successfully. Otherwise, the on_finish() method is 
called with an argument representing the original error code. The on_finish() method in its 
turn calls the callback provided by the client of the HTTPRequest class object.

When the callback returns, request processing is considered finished.

The HTTPResponse class
The HTTPResponse class does not provide much functionality. It is more like a plain data 
structure containing data members representing different parts of a response, with getter and 
setter methods defined, allowing getting and setting corresponding data member values.

All setter methods are private and only the objects of the HTTPRequest class has access 
to them (recall that the HTTPRequest class is declared as the HTTPResponse class' 
friend). Each object of the HTTPRequest class has a data member that is an instance of 
the HTTPResponse class. The object of the HTTPRequest class sets values of its member 
object of HTTPResponse class as it receives and parses the response received from a  
HTTP server.

Callback and the main() entry point functions
These functions demonstrate how to use the HTTPClient and HTTPRequest classes 
in order to send the GET HTTP requests to the HTTP server and then how to use the 
HTTPResponse class to obtain the response.

The main() function first creates an instance of the HTTPClient class and then uses it to 
create two instances of the HTTPRequest class, each representing a separate GET HTTP 
request. Both request objects are provided with request parameters and then executed. 
However, just after the second request has been executed, the first one is canceled by 
invoking its cancel() method.

The handler() function, which is used as a completion callback for both request objects 
created in the main() function, is invoked when each request completes regardless of 
whether it succeeded, failed, or was canceled. The handler() function analyses the 
error code and the request and response objects passed to it as arguments and output 
corresponding messages to the standard output stream.
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See also
 f The Implementing asynchronous TCP client recipe from Chapter 3, Implementing 

Client Applications, provides more information on how to implement an asynchronous 
TCP client.

 f The Using timers recipe from Chapter 6, Other Topics, demonstrates how to use 
timers provided by Boost.Asio. Timers can be used to implement an asynchronous 
operation timeout mechanism.

Implementing the HTTP server application
Nowadays, there are plenty of HTTP server applications available in the market. However, 
sometimes there is a need to implement a custom one. This could be a small and simple 
server, supporting a specific subset of HTTP protocol possibly with custom extensions, or 
maybe not an HTTP server but a server supporting a communication protocol, which is  
similar to HTTP or is based on it.

In this recipe, we will consider the implementation of basic HTTP server application using 
Boost.Asio. Here is the set of requirements that our application must satisfy:

 f It should support the HTTP 1.1 protocol

 f It should support the GET method

 f It should be able to process multiple requests in parallel, that is, it should be an 
asynchronous parallel server

In fact, we have already considered the implementation of the server application that partially 
fulfils specified requirements. In Chapter 4, Implementing Server Applications, the recipe 
named Implementing an asynchronous TCP server demonstrates how to implement an 
asynchronous parallel TCP server, which communicates with clients according to a dummy 
application layer protocol. All the communication functionality and protocol details are 
encapsulated in a single class named Service. All other classes and functions defined 
in that recipe are infrastructural in their purpose and isolated from the protocol details. 
Therefore, the current recipe will be based on the one from Chapter 4, Implementing Server 
Applications, and here we will only consider the implementation of the Service class as all 
other components stay the same.

Note that, in this recipe, we do not consider the security aspect of the 
application. Make sure the server is protected before making it available 
to the public, where though operating correctly and in accordance with 
HTTP protocol, it could be compromised by the culprits due to security 
breaches.

Now let's move on to the implementation of the HTTP server application.
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Getting ready…
Because the application demonstrated in this recipe is based on other applications 
demonstrated in the recipe named Implementing asynchronous TCP server from Chapter 4, 
Implementing Server Applications, it is necessary to get acquainted with that recipe before 
proceeding with this one.

How to do it…
We begin our application by including header files containing declarations and definitions of 
data types and functions that we will use:

#include <boost/asio.hpp>
#include <boost/filesystem.hpp>

#include <fstream>
#include <atomic>
#include <thread>
#include <iostream>

using namespace boost;

Next, we start defining the Service class that provides the implementation of the HTTP 
protocol. Firstly, we declare a static constant table containing HTTP status codes and status 
messages. The definition of the table will be given after the Service class' definition:

class Service {
  static const std::map<unsigned int, std::string>
http_status_table;

The class' constructor accepts a single parameter—shared pointer pointing to an instance of a 
socket connected to a client. Here's the definition of the constructor:

public:
  Service(std::shared_ptr<boost::asio::ip::tcp::socket> sock) :
    m_sock(sock),
    m_request(4096),
    m_response_status_code(200), // Assume success.
    m_resource_size_bytes(0)
  {};
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Next, we define a single method constituting the Service class' public interface. This method 
initiates an asynchronous communication session with the client connected to the socket, 
pointer to which was passed to the Service class' constructor:

  void start_handling() {
    asio::async_read_until(*m_sock.get(),
      m_request,
      "\r\n",
      [this](
      const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_request_line_received(ec,
        bytes_transferred);
    });
  }

Then, we define a set of private methods that perform receiving and processing of the  
request sent by the client, parse and execute the request, and send the response back.  
Firstly, we define a method that processes the HTTP request line:

private:
  void on_request_line_received(
    const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
    if (ec != 0) {
      std::cout << "Error occured! Error code = "
        << ec.value()
        << ". Message: " << ec.message();

      if (ec == asio::error::not_found) {
        // No delimiter has been found in the
        // request message.

        m_response_status_code = 413;
        send_response();

        return;
      }
      else {
        // In case of any other error –
        // close the socket and clean up.
        on_finish();
        return;
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      }
    }

    // Parse the request line.
    std::string request_line;
    std::istream request_stream(&m_request);
    std::getline(request_stream, request_line, '\r');
    // Remove symbol '\n' from the buffer.
    request_stream.get();

    // Parse the request line.
    std::string request_method;
    std::istringstream request_line_stream(request_line);
    request_line_stream >> request_method;

    // We only support GET method.
    if (request_method.compare("GET") != 0) {
      // Unsupported method.
      m_response_status_code = 501;
      send_response();

      return;
    }

    request_line_stream >> m_requested_resource;

    std::string request_http_version;
    request_line_stream >> request_http_version;

    if (request_http_version.compare("HTTP/1.1") != 0) {
      // Unsupported HTTP version or bad request.
      m_response_status_code = 505;
      send_response();

      return;
    }

    // At this point the request line is successfully
    // received and parsed. Now read the request headers.
    asio::async_read_until(*m_sock.get(),
      m_request,
      "\r\n\r\n",
      [this](
      const boost::system::error_code& ec,
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      std::size_t bytes_transferred)
    {
      on_headers_received(ec,
        bytes_transferred);
    });

    return;
  }

Next, we define a method intended to process and store the request headers block, 
containing the request headers:

  void on_headers_received(const boost::system::error_code& ec,
    std::size_t bytes_transferred)  
  {
    if (ec != 0) {
      std::cout << "Error occured! Error code = "
        << ec.value()
        << ". Message: " << ec.message();

      if (ec == asio::error::not_found) {
        // No delimiter has been fonud in the
        // request message.

        m_response_status_code = 413;
        send_response();
        return;
      }
      else {
        // In case of any other error - close the
        // socket and clean up.
        on_finish();
        return;
      }
    }

    // Parse and store headers.
    std::istream request_stream(&m_request);
    std::string header_name, header_value;

    while (!request_stream.eof()) {
      std::getline(request_stream, header_name, ':');
      if (!request_stream.eof()) {
        std::getline(request_stream, 
        header_value, 
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      '\r');

        // Remove symbol \n from the stream.
        request_stream.get();
        m_request_headers[header_name] =
        header_value;
      }
    }

    // Now we have all we need to process the request.
    process_request();
    send_response();

    return;
  }

Besides, we need a method that can perform the actions needed to fulfill the request sent 
by the client. We define the process_request() method, whose purpose is to read the 
contents of the requested resource from the file system and store it in the buffer, ready to be 
sent back to the client:

  void process_request() {
    // Read file.
    std::string resource_file_path =
    std::string("D:\\http_root") +
    m_requested_resource;

    if (!boost::filesystem::exists(resource_file_path)) {
      // Resource not found.
      m_response_status_code = 404;

      return;
    }

    std::ifstream resource_fstream(
    resource_file_path, 
    std::ifstream::binary);

    if (!resource_fstream.is_open()) {
      // Could not open file. 
      // Something bad has happened.
      m_response_status_code = 500;
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      return;
    }

    // Find out file size.
    resource_fstream.seekg(0, std::ifstream::end);
    m_resource_size_bytes =
    static_cast<std::size_t>(
    resource_fstream.tellg());

    m_resource_buffer.reset(
    new char[m_resource_size_bytes]);

    resource_fstream.seekg(std::ifstream::beg);
    resource_fstream.read(m_resource_buffer.get(),
    m_resource_size_bytes);

    m_response_headers += std::string("content-length") +
      ": " +
      std::to_string(m_resource_size_bytes) +
      "\r\n";
  }

Finally, we define a method that composes a response message and send it to the client:

  void send_response()  {
    m_sock->shutdown(
    asio::ip::tcp::socket::shutdown_receive);

    auto status_line =
      http_status_table.at(m_response_status_code);

    m_response_status_line = std::string("HTTP/1.1 ") +
      status_line +
      "\r\n";

    m_response_headers += "\r\n";

    std::vector<asio::const_buffer> response_buffers;
    response_buffers.push_back(
    asio::buffer(m_response_status_line));
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    if (m_response_headers.length() > 0) {
      response_buffers.push_back(
      asio::buffer(m_response_headers));
    }

    if (m_resource_size_bytes > 0) {
      response_buffers.push_back(
      asio::buffer(m_resource_buffer.get(),
      m_resource_size_bytes));
    }

    // Initiate asynchronous write operation.
    asio::async_write(*m_sock.get(),
      response_buffers,
      [this](
      const boost::system::error_code& ec,
      std::size_t bytes_transferred)
    {
      on_response_sent(ec,
        bytes_transferred);
    });
  }

When the response sending is complete, we need to shut down the socket to let the client 
know that a full response has been sent and no more data will be sent by the server.  
We define the on_response_sent() method for this purpose:

  void on_response_sent(const boost::system::error_code& ec,
    std::size_t bytes_transferred) 
{
    if (ec != 0) {
      std::cout << "Error occured! Error code = "
        << ec.value()
        << ". Message: " << ec.message();
    }

    m_sock->shutdown(asio::ip::tcp::socket::shutdown_both);

    on_finish();
  }
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The last method we need to define is the one that performs cleanup and deletes an instance 
of the Service object, when the communication session is finished and the object is not 
needed anymore is not needed anymore:

  // Here we perform the cleanup.
  void on_finish() {
    delete this;
  }

Of course, we will need some data members in our class. We declare the following  
data members:

private:
  std::shared_ptr<boost::asio::ip::tcp::socket> m_sock;
  boost::asio::streambuf m_request;
  std::map<std::string, std::string> m_request_headers;
  std::string m_requested_resource;

  std::unique_ptr<char[]> m_resource_buffer;  
  unsigned int m_response_status_code;
  std::size_t m_resource_size_bytes;
  std::string m_response_headers;
  std::string m_response_status_line;
};

The last thing we need to do to complete the definition of the class representing a service is 
to define the http_status_table static member declared before and fill it with data—HTTP 
status code and corresponding status messages:

const std::map<unsigned int, std::string>
  Service::http_status_table = 
{
  { 200, "200 OK" },
  { 404, "404 Not Found" },
  { 413, "413 Request Entity Too Large" },
  { 500, "500 Server Error" },
  { 501, "501 Not Implemented" },
  { 505, "505 HTTP Version Not Supported" }
};

Our Service class is now ready.
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How it works…
Let's begin with considering the Service class' data members and then switch to its 
functionality. The Service class contains the following non-static data members:

 f std::shared_ptr<boost::asio::ip::tcp::socket> m_sock: This is a 
shared pointer to a TCP socket object connected to the client

 f boost::asio::streambuf m_request: This is a buffer into which the request 
message is read

 f std::map<std::string, std::string> m_request_headers: This is a map 
where request headers are put when the HTTP request headers block is parsed

 f std::string m_requested_resource: This is the URI of the resource requested 
by the client

 f std::unique_ptr<char[]> m_resource_buffer: This is a buffer where the 
contents of a requested resource is stored before being sent to the client as a part of 
the response message

 f unsigned int m_response_status_code: This is the HTTP response  
status code

 f std::size_t m_resource_size_bytes: This is the size of the contents of the 
requested resource

 f std::string m_response_headers: This is a string containing a properly 
formatted response headers block

 f std::string m_response_status_line: This contains a response status line

Now that we know the purpose of the Service class' data members, let's trace how it 
works. Here, we will only consider how the Service class works. The description of all 
other components of the server application and how they work is given in the recipe named 
Implementing an asynchronous TCP server in Chapter 4, Implementing Server Applications.

When a client sends a TCP connection request and this request is accepted on the server (this 
happens in the Acceptor class, which is not considered in this recipe), an instance of the 
Service class is created and its constructor is passed a shared pointer pointing to the TCP 
socket object, connected to that client. The pointer to the socket is stored in the Service 
object's data member m_sock.

Besides, during the construction of the Service object, the m_request stream buffer 
member is initialized with the value of 4096, which sets the maximum size of the buffer in 
bytes. Limiting the size of the request buffer is a security measure, which helps to protect 
the server from malicious clients that may try to send very long dummy request messages 
exhausting all memory at the disposal of the server application. For the correct request,  
a buffer of 4096 bytes in size is more than enough.
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After an instance of the Service class has been constructed, its start_handling() 
method is called by the Acceptor class. From this method, the sequence of asynchronous 
method invocations begins, which performs request receiving, processing, and response 
sending. The start_handling() method immediately initiates an asynchronous reading 
operation calling the asio::async_read_until() function in order to receive the HTTP 
request line sent by the client. The on_request_line_received() method is specified as 
a callback.

When the on_request_line_received() method is invoked, we first check the error code 
specifying the operation completion status. If the status code is not equal to zero, we consider 
two options. The first option—when the error code is equal to the asio::error::not_
found value—means that more bytes have been received from the client than the size of the 
buffer and the delimiter of the HTTP request line (the \r\n symbol sequence) has not been 
encountered. This case is described by the HTTP status code 413. We set the value of the  
m_response_status_code member variable to 413 and call the send_response() 
method that initiates the operation that sends a response designating the error back to the 
client. We will consider the send_response() method later in this section. At this point,  
the request processing is finished.

If the error code neither designates success nor is equal to asio::error::not_found, it 
means that some other error has occurred from which we cannot recover, therefore, we just 
output the information about the error and do not reply to the client at all. The on_finish() 
method is called to perform the cleanup, and the communication with the client is interrupted.

Finally, if receiving of the HTTP request line succeeds, it is parsed to extract the HTTP request 
method, the URI identifying the requested resource and the HTTP protocol version. Because 
our sample server only supports the GET method, if the method specified in the request line is 
different from GET, further request processing is interrupted and the response containing the 
error code 501 is sent to the client to inform it that the method specified in the request is not 
supported by the server.

Likewise, the HTTP protocol version specified by the client in the HTTP request line is checked 
to be the one supported by the server. Because our server application supports only version 
1.1, if the version specified by the client is different, the response with the HTTP status code 
505 is sent to the client and the request processing is interrupted.

A URI string extracted from the HTTP request line is stored in the m_requested_resource 
data member and will be used later.

When the HTTP request line is received and parsed, we continue reading the request message 
in order to read the request headers block. To do this, the asio::async_read_until() 
function is called. Because the request headers block ends with the \r\n\r\n symbol 
sequence, this symbol sequence is passed to the function as a delimiter argument. The  
on_headers_received() method is specified as an operation completion callback.
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The on_headers_received() method performs error checking similar to the one that is 
performed in the on_request_line_received() method. In case of an error, request 
processing interrupts. In the case of success, the HTTP request headers block is parsed and 
broken into separate name-value pairs, which are then stored in the m_request_headers 
member map. After the headers block has been parsed, the process_request() and 
send_response() methods are called consequently.

The purpose of the process_request() method is to read the file specified in the request 
as the URI and put its content to the buffer, from which the contents will be sent to the client 
as a part of the response message. If the specified file is not found in the server root directory, 
the HTTP status code 404 (page not found) code is sent to the client as a part of the response 
message and the request processing interrupts.

However, if the requested file is found, its size is first calculated and then the buffer of  
the corresponding size is allocated in the free memory and the file contents are read in  
that buffer.

After this, an HTTP header named content-length specifying the size of the response body is 
added to the m_response_headers string data member. This data member represents the 
response headers block and its value will later be used as a part of the response message.

At this point, all ingredients required to construct the HTTP response message are available 
and we can move on to preparing and sending the response to the client. This is done in the 
send_response() method.

The send_response() method starts with shutting down the receive side of the socket 
letting the client know that the server will not read any data from it anymore. Then, it extracts 
the response status message corresponding to the status code stored in the m_response_
status_code member variable from the http_status_table static table.

Next, the HTTP response status line is constructed and the headers block is appended with 
the delimiting symbol sequence \r\n according to the HTTP protocol. At this point, all the 
components of the response message—the response status line, response headers block, 
and response body—are ready to be sent to the client. The components are combined in the 
form of a vector of buffers, each represented with an instance of the asio::const_buffer 
class and containing one component of the response message. A vector of buffers embodies 
a composite buffer consisting of three parts. When this composite buffer is constructed, it is 
passed to the asio::async_write() function to be sent to the client. The Service class' 
on_response_sent() method is specified as a callback.

When the response message is sent and the on_response_sent() callback method is 
invoked, it first checks the error code and outputs the log message if the operation fails; then, 
it shuts down the socket and calls the on_finish() method. The on_finish() method in 
its turn deletes the instance of the Service object in the context of which it is called.

At this point, client handling is finished.
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See also
 f The Implementing an asynchronous TCP server recipe from Chapter 4, Implementing 

Server Applications, provides more information on how to implement the 
asynchronous TCP server used as a base for this recipe.

 f The Using timers recipe from Chapter 6, Other Topics, demonstrates how to use 
timers provided by Boost.Asio. Timers can be used to implement an asynchronous 
operation timeout mechanism.

Adding SSL/TLS support to client 
applications

Client applications usually use SSL/TLS protocol to send sensitive data such as passwords, 
credit card numbers, personal data. SSL/TLS protocol allows clients to authenticate the server 
and encrypt the data. The authentication of the server allows the client to make sure that the 
data will be sent to the expected addressee (and not to a malicious one). Data encryption 
guarantees that even if the transmitted data is intercepted somewhere on its way to the 
server, the interceptor will not be able to use it.

This recipe demonstrates how to implement a synchronous TCP client application supporting 
SSL/TLS protocol using the Boost.Asio and OpenSSL libraries. The TCP client application 
demonstrated in the recipe named Implementing synchronous TCP client from Chapter 3, 
Implementing Client Applications, is taken as a base for this recipe, and some code changes 
and additions are made to it in order to add support for SSL/TLS protocol. The code that 
differs from that of the base implementation of the synchronous TCP client is highlighted so 
that the code directly related to SSL/TLS support is better distinguished from the rest of  
the code.

Getting ready…
Before setting out to this recipe, OpenSSL library must be installed and the project must be 
linked against it. Procedures related to the installation of the library or linking the project 
against it are beyond the scope of this book. Refer to the OpenSSL library documentation  
for more information.

Besides, because this recipe is based on another recipe named Implementing a synchronous 
TCP Client from Chapter 3, Implementing Client Applications, it is highly advised to get 
acquainted with it before proceeding to this one.
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How to do it…
The following code sample demonstrates the possible implementation of a synchronous TCP 
client application supporting SSL/TLS protocol to authenticate the server and encrypt the 
data being transmitted.

We begin our application by adding the include and using directives:

#include <boost/asio.hpp>
#include <boost/asio/ssl.hpp>
#include <iostream>

using namespace boost;

The <boost/asio/ssl.hpp> header contains types and functions providing integration 
with OpenSSL library.

Next, we define a class that plays the role of the synchronous SSL/TLS-enabled TCP client:

class SyncSSLClient {
public:
  SyncSSLClient(const std::string& raw_ip_address,
    unsigned short port_num) :
    m_ep(asio::ip::address::from_string(raw_ip_address),
    port_num),
    m_ssl_context(asio::ssl::context::sslv3_client),    
    m_ssl_stream(m_ios, m_ssl_context)
  {
    // Set verification mode and designate that 
    // we want to perform verification.
    m_ssl_stream.set_verify_mode(asio::ssl::verify_peer);

    // Set verification callback. 
    m_ssl_stream.set_verify_callback([this](
      bool preverified,
      asio::ssl::verify_context& context)->bool{
      return on_peer_verify(preverified, context);
    });  
  }

  void connect() {
    // Connect the TCP socket.
    m_ssl_stream.lowest_layer().connect(m_ep);
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    // Perform the SSL handshake.
    m_ssl_stream.handshake(asio::ssl::stream_base::client);
  }

  void close() {
    // We ignore any errors that might occur
    // during shutdown as we anyway can't
    // do anything about them.
    boost::system::error_code ec;

    m_ssl_stream.shutdown(ec); // Shutdown SSL.

    // Shut down the socket.
    m_ssl_stream.lowest_layer().shutdown(
      boost::asio::ip::tcp::socket::shutdown_both, ec);

    m_ssl_stream.lowest_layer().close(ec);
  }

  std::string emulate_long_computation_op(
    unsigned int duration_sec) {

    std::string request = "EMULATE_LONG_COMP_OP "
      + std::to_string(duration_sec)
      + "\n";

    send_request(request);
    return receive_response();
  };

private:
  bool on_peer_verify(bool preverified,
    asio::ssl::verify_context& context) 
  {
    // Here the certificate should be verified and the
    // verification result should be returned.
    return true;
  }

  void send_request(const std::string& request) {
    asio::write(m_ssl_stream, asio::buffer(request));
  }
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  std::string receive_response() {
    asio::streambuf buf;
    asio::read_until(m_ssl_stream, buf, '\n');

    std::string response;
    std::istream input(&buf);
    std::getline(input, response);

    return response;
  }

private:
  asio::io_service m_ios;
  asio::ip::tcp::endpoint m_ep;

  asio::ssl::context m_ssl_context;
  asio::ssl::stream<asio::ip::tcp::socket>m_ssl_stream;
};

Now we implement the main() application entry point function that uses the 
SyncSSLClient class to authenticate the server and securely communicate with  
it using SSL/TLS protocol:

int main()
{
  const std::string raw_ip_address = "127.0.0.1";
  const unsigned short port_num = 3333;

  try {
    SyncSSLClient client(raw_ip_address, port_num);

    // Sync connect.
    client.connect();

    std::cout << "Sending request to the server... "
      << std::endl;

    std::string response =
      client.emulate_long_computation_op(10);

    std::cout << "Response received: " << response
      << std::endl;
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    // Close the connection and free resources.
    client.close();
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}

How it works…
The sample client application consists of two main components: the SyncSSLClient 
class and a main() application entry point function that uses the SyncSSLClient class 
to communicate with the server application over SSL/TLS protocol. Let's consider how each 
component works separately.

The SyncSSLClient class
The SyncSSLClient class is the key component in our application. It implements the 
communication functionality.

The class has four private data members as follows:

 f asio::io_service m_ios: This is an object providing access to the operating 
system's communication services that are used by the socket object.

 f asio::ip::tcp::endpoint m_ep: This is an endpoint designating the  
server application.

 f asio::ssl::context m_ssl_context: This is an object representing SSL 
context; basically, this is a wrapper around the SSL_CTX data structure defined  
by OpenSSL library. This object contains global settings and parameters used by 
other objects and functions involved in the process of communication using  
SSL/TLS protocol.

 f asio::ssl::stream<asio::ip::tcp::socket> m_ssl_stream: This 
represents a stream that wraps a TCP socket object and implements all SSL/TLS 
communication operations.

Each object of the class is intended to communicate with a single server. Therefore, the 
class' constructor accepts an IP address and a protocol port number designating the server 
application as its input arguments. These values are used to instantiate the m_ep data 
member in the constructor's initialization list.
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Next, the m_ssl_context and m_ssl_stream members of the SyncSSLClient class are 
instantiated. We pass the asio::ssl::context::sslv23_client value to the m_ssl_
context object's constructor to designate that the context will be used by the application 
playing a role of a client only and that we want to support multiple secure protocols including 
multiple versions of SSL and TLS. This value defined by Boost.Asio corresponds to a value 
representing a connection method returned by the SSLv23_client_method() function 
defined by OpenSSL library.

The SSL stream object m_ssl_stream is set up in the SyncSSLClient class' constructor. 
Firstly, the peer verification mode is set to asio::ssl::verify_peer, which means that 
we want to perform peer verification during a handshake. Then, we set a verification callback 
method that will be called when certificates arrive from the server. The callback is invoked 
once for each certificate in the certificates chain sent by the server.

The class' on_peer_verify() method that is set as a peer verification callback is a dummy 
in our application. The certificate verification process lies beyond the scope of this book. 
Therefore, the function simply always returns the true constant, meaning that the certificate 
verification succeeded without performing the actual verification.

The three public methods comprise the interface of the SyncSSLClient class. The method 
named connect() performs two operations. Firstly, the TCP socket is connected to the 
server. The socket underlying the SSL stream is returned by the method of the SSL stream 
object lowest_layer(). Then, the connect() method is called on the socket with m_ep 
being passed as an argument designating the endpoint to be connected to:

// Connect the TCP socket.
m_ssl_stream.lowest_layer().connect(m_ep);

After the TCP connection is established, the handshake() method is called on the SSL 
stream object, which leads to the initiation of the handshake process. This method is 
synchronous and does not return until the handshake completes or an error occurs:

// Perform the SSL handshake.
m_ssl_stream.handshake(asio::ssl::stream_base::client);

After the handshake() method returns, both TCP and SSL (or TLS, depending on which 
protocol was agreed upon during the handshake process) connections are established and 
the effective communication can be performed.

The close() method shuts down the SSL connection by calling the shutdown() method 
on the SSL stream object. The shutdown() method is synchronous and blocks until the SSL 
connection is shut down or an error occurs. After this method returns, the corresponding SSL 
stream object cannot be used to transmit the data anymore.
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The third interface method is emulate_long_computation_op(unsigned int 
duration_sec). This method is where the I/O operations are performed. It begins with 
preparing the request string according to the application layer protocol. Then, the request is 
passed to the class' send_request(const std::string& request) private method, 
which sends it to the server. When the request is sent and the send_request() method 
returns, the receive_response() method is called to receive the response from the  
server. When the response is received, the receive_response() method returns the  
string containing the response. After this, the emulate_long_computation_op()  
method returns the response message to its caller.

Note that the emulate_long_computation_op(), send_request(), and receive_
response() methods are almost identical to the corresponding methods defined in 
the SyncTCPClient class, which is a part of the synchronous TCP client application 
demonstrated in Chapter 3, Implementing Client Applications, which we used as a base for 
SyncSSLClient class. The only difference is that in SyncSSLClient, an SSL stream object 
is passed to the corresponding Boost.Asio I/O functions, while in the SyncTCPClient class, 
a socket object is passed to those functions. Other aspects of the mentioned methods  
are identical.

The main() entry point function
This function acts as a user of the SyncSSLClient class. Having obtained the server IP 
address and protocol port number, it instantiates and uses the object of the SyncSSLClient 
class to authenticate and securely communicate with the server in order to consume its 
service, namely, to emulate an operation on the server by performing dummy calculations 
for 10 seconds. The code of this function is simple and self-explanatory; thus, requires no 
additional comments.

See also
 f The Implementing a synchronous TCP client recipe from Chapter 3, Implementing 

Client Applications, provides more information on how to implement a synchronous 
TCP client used as a base for this recipe.

Adding SSL/TLS support to server 
applications

SSL/TLS protocol support is usually added to the server application when the services it 
provides assumes transmission of sensitive data such as passwords, credit card numbers, 
personal data, and so on, by the client to the server. In this case, adding SSL/TLS protocol 
support to the server allows clients to authenticate the server and establish a secure channel 
to make sure that the sensitive data is protected while being transmitted.
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Sometimes, a server application may want to use SSL/TLS protocol to authenticate the  
client; however, this is rarely the case and usually other methods are used to ensure the 
authenticity of the client (for example, username and password are specified when logging 
into a mail server).

This recipe demonstrates how to implement a synchronous iterative TCP server application 
supporting SSL/TLS protocol using the Boost.Asio and OpenSSL libraries. The synchronous 
iterative TCP server application demonstrated in the recipe named Implementing a 
synchronous iterative TCP server from Chapter 4, Implementing Server Applications, is taken 
as a base for this recipe and some code changes and additions are made to it in order to add 
support for SSL/TLS protocol. The code that differs from that of the base implementation of 
the synchronous iterative TCP server is highlighted so that the code directly related to SSL/
TLS support is better distinguished from the rest of the code.

Getting ready…
Before setting out to this recipe, OpenSSL library must be installed and the project must be 
linked against it. Procedures related to the installation of the library or linking the project 
against it are beyond the scope of this book. Refer to the official OpenSSL documentation for 
more information.

Besides, because this recipe is based on another recipe named Implementing a synchronous 
iterative TCP server, from Chapter 4, Implementing Server Applications, it is highly advised to 
get acquainted with it before proceeding to this one.

How to do it…
The following code sample demonstrates the possible implementation of a synchronous TCP 
server application supporting SSL/TLS protocol to allow client applications to authenticate the 
server and protect the data being transmitted.

We begin our application by including Boost.Asio library headers and headers of some 
components of standard C++ libraries that we will need to implement in our application:

#include <boost/asio.hpp>
#include <boost/asio/ssl.hpp>

#include <thread>
#include <atomic>
#include <iostream>

using namespace boost;

The <boost/asio/ssl.hpp> header contains types and functions providing integration 
with OpenSSL library.
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Next, we define a class responsible for handling a single client by reading the request 
message, processing it, and then sending back the response message. This class represents 
a single service provided by the server application and is named correspondingly—Service:

class Service {
public:
  Service(){}

  void handle_client(
  asio::ssl::stream<asio::ip::tcp::socket>& ssl_stream) 
  {
    try {
      // Blocks until the handshake completes.
      ssl_stream.handshake(
        asio::ssl::stream_base::server);

      asio::streambuf request;
      asio::read_until(ssl_stream, request, '\n');

      // Emulate request processing.
      int i = 0;
      while (i != 1000000)
        i++;
      std::this_thread::sleep_for(
        std::chrono::milliseconds(500));

      // Sending response.
      std::string response = "Response\n";
      asio::write(ssl_stream, asio::buffer(response));
    }
    catch (system::system_error &e) {
      std::cout << "Error occured! Error code = "
        << e.code() << ". Message: "
        << e.what();
    }
  }
};
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Next, we define another class that represents a high-level acceptor concept (as compared to 
the low-level acceptor represented by the asio::ip::tcp::acceptor class). This class is 
responsible for accepting connection requests arriving from clients and instantiating objects 
of the Service class, which will provide the service to connected clients. This class is called 
Acceptor:

class Acceptor {
public:
  Acceptor(asio::io_service& ios, unsigned short port_num) :
    m_ios(ios),
    m_acceptor(m_ios,
    asio::ip::tcp::endpoint(
    asio::ip::address_v4::any(),
    port_num)),
    m_ssl_context(asio::ssl::context::sslv23_server)
  {
    // Setting up the context.
    m_ssl_context.set_options(
      boost::asio::ssl::context::default_workarounds
      | boost::asio::ssl::context::no_sslv2
      | boost::asio::ssl::context::single_dh_use);

    m_ssl_context.set_password_callback(
      [this](std::size_t max_length,
      asio::ssl::context::password_purpose purpose)
      -> std::string 
        {return get_password(max_length, purpose);}
    );

    m_ssl_context.use_certificate_chain_file("server.crt");
    m_ssl_context.use_private_key_file("server.key",
      boost::asio::ssl::context::pem);
    m_ssl_context.use_tmp_dh_file("dhparams.pem");

    // Start listening for incoming connection requests.
    m_acceptor.listen();
  }

  void accept() {
    asio::ssl::stream<asio::ip::tcp::socket>
    ssl_stream(m_ios, m_ssl_context);
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    m_acceptor.accept(ssl_stream.lowest_layer());

    Service svc;
    svc.handle_client(ssl_stream);
  }

private:
  std::string get_password(std::size_t max_length,
    asio::ssl::context::password_purpose purpose) const
  {
    return "pass";
  }

private:
  asio::io_service& m_ios;
  asio::ip::tcp::acceptor m_acceptor;

  asio::ssl::context m_ssl_context;
};

Now we define a class that represents the server itself. The class is named  
correspondingly—Server:

class Server {
public:
  Server() : m_stop(false) {}

  void start(unsigned short port_num) {
    m_thread.reset(new std::thread([this, port_num]() {
      run(port_num);
    }));
  }

  void stop() {
    m_stop.store(true);
    m_thread->join();
  }

private:
  void run(unsigned short port_num) {
    Acceptor acc(m_ios, port_num);

    while (!m_stop.load()) {
      acc.accept();
    }
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  }

  std::unique_ptr<std::thread> m_thread;
  std::atomic<bool> m_stop;
  asio::io_service m_ios;
};

Eventually, we implement the main() application entry point function that demonstrates 
how to use the Server class. This function is identical to the one defined in the recipe from 
Chapter 4, Implementing Server Applications, that we took as a base for this recipe:

int main()
{
  unsigned short port_num = 3333;

  try {
    Server srv;
    srv.start(port_num);

    std::this_thread::sleep_for(std::chrono::seconds(60));

    srv.stop();
  }
  catch (system::system_error &e) {
    std::cout   << "Error occured! Error code = " 
    << e.code() << ". Message: "
        << e.what();
  }

  return 0;
}

Note that the last two components of the server application, namely, the Server class and 
the main() application entry point function are identical to the corresponding components 
defined in the recipe from Chapter 4, Implementing Server Applications, that we took as a 
base for this recipe.

How it works…
The sample server application consists of four components: the Service, Acceptor, and 
Server classes and the main(), application entry point function, which demonstrates how 
to use the Server class. Because the source code and the purpose of the Server class and 
the main() entry point function are identical to those of the corresponding components 
defined in the recipe from Chapter 4, Implementing Server Applications, that we took as a 
base for this recipe, we will not discuss them here. We will only consider the Service and 
Acceptor classes that were updated to provide support for SSL/TLS protocol.
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The Service class
The Service class is the key functional component in the application. While other 
components are infrastructural in their purpose, this class implements the actual  
function (or service) required by the clients.

The Service class is quite simple and consists of a single method handle_client().  
As its input argument, this method accepts a reference to an object representing an SSL 
stream that wraps a TCP socket connected to a particular client.

The method begins with performing an SSL/TLS handshake by invoking the handshake() 
method on the ssl_stream object. This method is synchronous and does not return until the 
handshake completes or an error occurs.

After the handshake has completed, a request message is synchronously read from the SSL 
stream until a new line ASCII symbol \n is encountered. Then, the request is processed. In our 
sample application, request processing is trivial and dummy and consists in running a loop 
performing one million increment operations and then putting the thread to sleep for half a 
second. After this, the response message is prepared and sent back to the client.

Exceptions that may be thrown by the Boost.Asio functions and methods are caught and 
handled in the handle_client() method and are not propagated to the method's caller  
so that, if handling of one client fails, the server continues working.

Note that the handle_client() method is very similar to the corresponding method defined 
in the recipe Implementing a synchronous iterative TCP server, from Chapter 4, Implementing 
Server Applications, that we took as a base for this recipe. The difference consists in the fact 
that in this recipe, the handle_client() method operates on an object representing an 
SSL stream as opposed to an object representing a TCP socket being operated on in the base 
implementation of the method. Besides, an additional operation—an SSL/TLS handshake—is 
performed in the method defined in this recipe.

The Acceptor class
The Acceptor class is a part of the server application infrastructure. Each object of this 
class owns an instance of the asio::ssl::context class named m_ssl_context. This 
member represents an SSL context. Basically, the asio::ssl::contex class is a wrapper 
around the SSL_CTX data structure defined by OpenSSL library. Objects of this class contain 
global settings and parameters used by other objects and functions involved in the process of 
communication using SSL/TLS protocol.

The m_ssl_context object, when instantiated, is passed a 
asio::ssl::context::sslv23_server value to its constructor to designate that the SSL 
context will be used by the application playing a role of a server only and that multiple secure 
protocols should be supported, including multiple versions of SSL and TLS. This value defined 
by Boost.Asio corresponds to a value representing a connection method returned by the 
SSLv23_server_method() function defined by OpenSSL library.
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The SSL context is configured in the Acceptor class' constructor. The context options, 
password callback and files containing digital certificates, and private keys and Diffie-Hellman 
protocol parameters, are specified there.

After SSL context has been configured, the listen() method is called on the acceptor object 
in the Acceptor class' constructor to start listening for connection requests from the clients.

The Acceptor class exposes a single accept() public method. This method, when called, 
first instantiates an object of the asio::ssl::stream<asio::ip::tcp::socket>  
class named ssl_stream, representing an SSL/TLS communication channel with the 
underlying TCP socket. Then, the accept() method is called on the m_acceptor acceptor 
object to accept a connection. The TCP socket object owned by ssl_stream, returned by 
its lowest_layer() method, is passed to the accept() method as an input argument. 
When a new connection is established, an instance of the Service class is created and its 
handle_client() method is called, which performs communication with the client and 
request handling.

See also
 f The Implementing synchronous iterative TCP server recipe from Chapter 4, 

Implementing Server Applications, provides more information on how to  
implement a synchronous TCP server used as a base for this recipe.
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6
Other Topics

In this chapter, we will cover the following recipes:

 f Using composite buffers for scatter/gather operations

 f Using timers

 f Getting and setting socket options

 f Performing a stream-based I/O

Introduction
This final chapter includes four recipes that stand somewhat apart from those in previous 
chapters that demonstrate the core Boost.Asio concepts, covering the majority of typical 
use cases. However, it does not mean that recipes demonstrated in this chapter are less 
important. On the contrary, they are very important and even critical to specific cases. 
However, they will be required less often in typical distributed applications.

Though most applications will not require scatter/gather I/O operations and composite 
buffers, for some, which keep different parts of messages in separate buffers, such facilities 
may turn out to be very usable and convenient.

The Boost.Asio timer is a powerful instrument that allows measuring time intervals. Often, this 
is used to set deadlines for the operations that may last unpredictably long and to interrupt 
those operations if they do not complete after running for a certain period of time. For many 
distributed applications, such an instrument is critical, taking into account the fact that Boost.
Asio does not provide a way to specify a timeout for potentially long-running operations. In 
addition to this, timers provided by Boost.Asio can be used to solve other tasks that are not 
related to network communication.
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Tools that allow getting and setting socket options are quite important as well. When 
developing a simple network application, the developer may be fully satisfied with the socket 
equipped with default values of the options that are automatically set during instantiation of 
the socket object. However, in more sophisticated cases, it may be absolutely necessary to 
reconfigure the socket by customizing the values of its options.

Boost.Asio classes that wrap the socket and provide a stream-like interface to it allow us to 
create simple and elegant distributed applications. And simplicity is known to be one of the 
key characteristics of a good software.

Now, let's move on to a detailed consideration of the mentioned topics.

Using composite buffers for scatter/gather 
operations

The Using fixed-length I/O buffers recipe in Chapter 2, I/O Operations, introduces simple I/O 
buffers, but only slightly touches upon scatter/gather operations and composite buffers. In 
this recipe, we are going to consider this topic in more detail.

A composite buffer is basically a complex buffer that consists of two or more simple buffers 
(contiguous blocks of memory) distributed over the process' address space. Such buffers 
become especially handy in two situations.

The first situation is when the application needs a buffer either to store the message before 
sending it to the remote application or to receive the message sent by the remote application. 
The problem is that the size of the message is so big that allocating a single contiguous buffer 
that is sufficient to store it may fail due to the process' address space fragmentation. In this 
case, allocating multiple smaller buffers, whose sizes when summed would be enough to 
store the data, and combining them in a single composite buffer is a good solution to  
the problem.

Another situation is actually the first one inverted. Due to specificity of the design of the 
application, the message to be sent to the remote application is broken into several parts and 
stored in different buffers, or if the message to be received from the remote application needs 
to be broken into several parts, each of which should be stored in a separate buffer for further 
processing. In both the cases, combining several buffers into one composite buffer and then 
using scatter send or gather receive operations would be a good approach to the problem.

In this recipe, we will see how to create composite buffers and use them in scatter/gather  
I/O operations.
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Getting ready…
To understand the content presented in this recipe, it is desirable to be familiar with the 
content of the Using fixed-length I/O buffers recipe in Chapter 2, I/O Operations, that provides 
a general overview of Boost.Asio's fixed length I/O buffers. Therefore, it is recommended to 
get acquainted with the Using fixed-length I/O buffers recipe before proceeding with this one.

How to do it…
Let's consider two algorithms and corresponding code samples that describe how to create 
and prepare a composite buffer that is to be used with Boost.Asio I/O operations. The first 
algorithm deals with the composite buffer intended for use in gather output operations and 
the second one for scatter input operations.

Preparing a composite buffer for gather output operations
The following is the algorithm and corresponding code sample that describe how to prepare 
the composite buffer that is to be used with the socket's method that performs output 
operations such as asio::ip::tcp::socket::send() or a free function such as 
asio::write():

1. Allocate as many memory buffers as needed to perform the task at hand. Note that 
this step does not involve any functionality or data types from Boost.Asio.

2. Fill the buffers with data to be output.

3. Create an instance of a class that satisfies the ConstBufferSequence  
or MultipleBufferSequence concept's requirements, representing a  
composite buffer.

4. Add simple buffers to the composite buffer. Each simple buffer should be represented 
as an instance of the asio::const_buffer or asio::mutable_buffer classes.

5. The composite buffer is ready to be used with Boost.Asio output functions.

Let's say we want to send a string Hello my friend! to the remote application, but our 
message was broken into three parts and each part was stored in a separate buffer. What 
we can do is represent our three buffers as a composite buffer, and then, use it in the output 
operation. This is how we will do it in the following code:

#include <boost/asio.hpp>

using namespace boost;

int main()
{
  // Steps 1 and 2. Create and fill simple buffers.
  const char* part1 = "Hello ";
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  const char* part2 = "my ";
  const char* part3 = "friend!";

  // Step 3. Create an object representing a composite buffer.
  std::vector<asio::const_buffer> composite_buffer;

  // Step 4. Add simple buffers to the composite buffer.
  composite_buffer.push_back(asio::const_buffer(part1, 6));
  composite_buffer.push_back(asio::const_buffer(part2, 3));
  composite_buffer.push_back(asio::const_buffer(part3, 7));

  // Step 5. Now composite_buffer can be used with Boost.Asio
  // output operations as if it was a simple buffer represented
  // by contiguous block of memory.

  return 0;
}

Preparing a composite buffer for an input operation
The following is the algorithm and corresponding code sample that describe how to prepare 
the composite buffer that is to be used with the socket's method that performs an input 
operation such as asio::ip::tcp::socket::receive() or a free function such as 
asio::read():

1. Allocate as many memory buffers as required to perform the task at hand. The sum 
of the sizes of the buffers must be equal to or greater than the size of the expected 
message to be received in these buffers. Note that this step does not involve any 
functionalities or data types from Boost.Asio.

2. Create an instance of a class that satisfies the MutableBufferSequence concept's 
requirements that represents a composite buffer.

3. Add simple buffers to the composite buffer. Each simple buffer should be represented 
as an instance of the asio::mutable_buffer class.

4. The composite buffer is ready to be used with Boost.Asio input operations.

Let's imagine a hypothetical situation, where we want to receive 16 bytes long messages from 
the server. However, we do not have a buffer that can fit the entire message. Instead, we have 
three buffers: 6, 3, and 7 bytes long. To create a buffer in which we can receive 16 bytes of 
data, we can join our three small buffers into a composite one. This is how we do it in the 
following code:

#include <boost/asio.hpp>

using namespace boost;
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int main()
{
  // Step 1. Allocate simple buffers.
  char part1[6];
  char part2[3];
  char part3[7];

  // Step 2. Create an object representing a composite buffer.
  std::vector<asio::mutable_buffer> composite_buffer;

  // Step 3. Add simple buffers to the composite buffer object.
  composite_buffer.push_back(asio::mutable_buffer(part1,
  sizeof(part1)));
  composite_buffer.push_back(asio::mutable_buffer(part2,
  sizeof(part2)));
  composite_buffer.push_back(asio::mutable_buffer(part3,
  sizeof(part3)));

  // Now composite_buffer can be used with Boost.Asio 
  // input operation as if it was a simple buffer 
  // represented by contiguous block of memory.

  return 0;
}

How it works…
Let's see how the first sample works. It starts with allocating three read-only buffers that are 
filled with parts of the message string Hello my friend!.

In the next step, an instance of the std::vector<asio::const_buffer> class is created, 
which is the embodiment of the composite buffer. The instance is given the corresponding 
name, composite_buffer. Because the  std::vector<asio::const_buffer> class 
satisfies the requirements of ConstBufferSequence, its objects can be used as composite 
buffers and can be passed to Boost.Asio gather output functions and methods as arguments 
that represent the data source.

In step 4, each of our three buffers is represented as an instance of the asio::const_
buffer class and added to the composite buffer. Because all Boost.Asio output functions 
and methods that work with fixed-sized buffers are designed to work with composite buffers 
as well, our composite_buffer object can be used with them like a simple buffer.
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The second sample works quite similar to the first one. The only difference is that because the 
composite buffer created in this sample is intended to be used as a data destination (rather 
than a data source as it is in the first sample), the three simple buffers added to it are created 
as writable ones and are represented as instances of the asio::mutable_buffer class 
when added to the composite buffer.

Another thing to note about the second sample is that because the composite buffer created 
in this sample is composed of mutable buffers, it can be used in both gather output and 
scatter input operations. In this particular sample, the initial buffers (part1, part2, and 
part3) are not filled with any data and they contain garbage; and therefore, using them in 
output operations is senseless unless they are filled with meaningful data.

See also
 f The Using fixed-length I/O buffers recipe in Chapter 2, I/O Operations, provides more 

information on fixed size simple buffers

 f The Using extensible stream-oriented I/O buffers recipe in Chapter 2, I/O Operations, 
demonstrates how to use classes provided by Boost.Asio, representing different types 
of buffers—extensible buffers

Using timers
Timing is a very important aspect of software systems in general and distributed applications 
in particular. Therefore a hardware timer—a device used to measure time intervals—is 
essential component of any computer and all modern operating systems provide interface 
allowing applications to use it.

There are two typical use cases related to the timer. The first one assumes that the 
application wants to know the current time and asks the operating system to find it out.  
The second use case is when the application asks the operating system to notify it (usually,  
by means of invoking a callback) when a certain amount of time elapses.

The second use case is particularly important when it comes to developing distributed 
applications with Boost.Asio because a timer is the only way to implement the timeout 
mechanism for asynchronous operations.

The Boost.Asio library includes several classes that implement timers, which we will consider 
in this recipe.
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How to do it…
The Boost.Asio library provides two template classes that implement timers. One of them is 
asio::basic_deadline_timer<>, which was the only one available before Boost.Asio 
1.49 version was released. In version 1.49, the second timer asio::basic_waitable_
timer<> class template was introduced.

The asio::basic_deadline_timer<> class template was designed to be compatible with 
the Boost.Chrono library and internally relies on the functionality it provides. This template 
class is somewhat outdated and provides a limited functionality. Therefore, we will not 
consider it in this recipe.

On the contrary, a newer asio::basic_waitable_timer<> class template, which is 
compatible with the C++11 chrono library is more flexible and provides more functionalities. 
Boost.Asio includes three typedefs for classes that are generically derived from the 
asio::basic_waitable_timer<> template class:

typedef basic_waitable_timer< std::chrono::system_clock >
   system_timer;
typedef basic_waitable_timer< std::chrono::steady_clock > 
   steady_timer;
typedef basic_waitable_timer< std::chrono::high_resolution_clock >
   high_resolution_timer;

The asio::system_timer class is based on the std::chrono::system_clock class, 
which represents a system-wide real-time clock. This clock (and so is the timer) is influenced 
by external changes of the current system time. Therefore, the asio::system_timer class 
is a good choice when we need to set up a timer that will notify us when a certain absolute 
time point is reached (for instance, 13h:15m:45s), taking into account the system clock shifts 
made after the timer was set up. However, this timer is not good at measuring time intervals 
(for instance, 35 seconds from now) because the system clock shifts may result in the timer 
expiring sooner or later than the actual interval elapses.

The asio::steady_timer class is based on the std::chrono::steady_clock class, 
which represents a steady clock that is not influenced by the system clock changes. It means 
that asio::steady_timer is a good choice to measure intervals.

The last timer asio::high_resolution_timer class is based on the 
std::chrono::high_resolution_clock class, which represents a high-resolution 
system clock. It can be used in cases when high precision in time measurement is required.

In distributed applications implemented with the Boost.Asio library, timers are usually used 
to implement timeout periods for asynchronous operations. Just after the asynchronous 
operation starts (for example, asio::async_read()), the application will start a timer 
set up to expire after a certain period of time, a timeout period. When the timer expires, the 
application checks whether the asynchronous operation has completed and if it has not, the 
operation is considered timed out and is canceled.



Other Topics

218

Because a steady timer is not influenced by the system clock shifts, it is the best fit to 
implement the timeout mechanism.

Note that on some platforms, steady clocks are not available and the 
corresponding class that represents a std::chrono::steady_clock 
exhibits behavior that is identical to that of std::chrono::stystem_
clock, which means that just like the latter, it is influenced by the changes 
of the system clock. It is advised to refer to the documentation of the platform 
and corresponding C++ standard library implementation to find out whether 
the steady clock is actually steady.

Let's consider a somewhat unrealistic but representative sample application that 
demonstrates how to create, start, and cancel Boost.Asio timers. In our sample, we  
will create and start two steady timers one by one. When the first timer expires, we  
will cancel the second one, before it has a chance to expire.

We begin our sample application with including the necessary Boost.Asio headers and the 
using directive:

#include <boost/asio/steady_timer.hpp>
#include <iostream>

using namespace boost;

Next, we define the only component in our application: the main() entry point function:

int main()
{

Like almost any nontrivial Boost.Asio application, we need an instance of the  
asio::io_service class:

  asio::io_service ios;

Then, we create and start the first t1 timer, which is set up to expire in 2 seconds:

  asio::steady_timer t1(ios);
  t1.expires_from_now(std::chrono::seconds(2));

Then, we create and start the second t2 timer, which is set up to expire in 5 seconds.  
It should definitely expire later than the first timer:

  asio::steady_timer t2(ios);
  t2.expires_from_now(std::chrono::seconds(5));
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Now, we define and set a callback function that is to be called when the first timer expires:

   t1.async_wait([&t2](boost::system::error_code ec) {
      if (ec == 0) {
         std::cout << "Timer #2 has expired!" << std::endl;
      }
      else if (ec == asio::error::operation_aborted) {
         std::cout << "Timer #2 has been cancelled!" 
                     << std::endl;
      }
      else {
         std::cout << "Error occured! Error code = "
            << ec.value()
            << ". Message: " << ec.message() 
                      << std::endl;
      }

      t2.cancel();
   });

Then, we define and set another callback function that is to be called when the  
second timer expires:

   t2.async_wait([](boost::system::error_code ec) {
      if (ec == 0) {
         std::cout << "Timer #2 has expired!" << std::endl;
      }
      else if (ec == asio::error::operation_aborted) {
         std::cout << "Timer #2 has been cancelled!" 
<< std::endl;
      }
      else {
         std::cout << "Error occured! Error code = "
            << ec.value()
            << ". Message: " << ec.message() 
<< std::endl;
      }
   });

In the last step, we call the run() method on the instance of the asio::io_service class:

  ios.run();

  return 0;
}

Now, our sample application is ready.
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How it works…
Now, let's track the application's execution path to better understand how it works.

The main() function begins with creating an instance of the asio::io_service class. 
We need it because just like sockets, acceptors, resolvers, and other components defined by 
the Boost.Asio library, which use operating system services, timers require an instance of the 
asio::io_service class as well.

In the next step, the first timer named t1 is instantiated and then the expires_from_now() 
method is called on it. This method switches the timer to a non-expired state and starts it. It 
accepts an argument that represents the duration of the time interval, after which the timer 
should expire. In our sample, we pass an argument that represents the duration of 2 seconds, 
which means that in 2 seconds, from the moment when the timer starts, it will expire and all 
those who are waiting for this timer's expiration event will be notified.

Next, the second timer named t2 is created, which is then started and set up to expire  
in 5 seconds.

When both the timers are started, we asynchronously wait for the timers' expiration events. In 
other words, we register callbacks on each of the two timers, which will be invoked when the 
corresponding timers expire. To do this, we call the timer's async_wait() method and pass 
the pointer to the callback function as an argument. The async_wait() method expects its 
argument to be a pointer to the function that has the following signature:

void callback(
  const boost::system::error_code& ec);

The callback function accepts a single ec argument, which designates the wait completion  
status. In our sample application, we use lambda functions as expiration callbacks for  
both the timers.

When both timer expiration callbacks are set, the run() method is called on the ios object. 
The method blocks until both the timers expire. The thread, in the context of which the 
method run() is invoked, will be used to invoke the expiration callbacks.

When the first timer expires, the corresponding callback function is invoked. It checks the wait 
completion status and outputs corresponding messages to the standard output stream. And 
then it cancels the second timer by calling the cancel() method on the t2 object.

The canceling of the second timer leads to the expiration callback being called with the 
status code, notifying that the timer was canceled before expiration. The expiration callback 
of the second timer checks the expiration status and outputs corresponding messages to the 
standard output stream and returns.
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When both callbacks are completed, the run() method returns and the execution of  
the main() function runs to the end. This is when the execution of the application  
is completed.

Getting and setting socket options
The socket's properties and its behavior can be configured by changing the values of its 
various options. When the socket object is instantiated, its options have default values. 
In many cases, the socket configured by default is a perfect fit, whereas in others, it may 
be needed to fine tune the socket by changing values of its options so that it meets the 
requirements of the application.

In this recipe, we will see how to get and set socket options with Boost.Asio.

Getting ready…
This recipe assumes familiarity with the content provided in Chapter 1, The Basics.

How to do it…
Each socket option, whose value can be set or obtained by means of a functionality provided 
by Boost.Asio, is represented by a separate class. The complete list of classes that represent 
setting or getting socket options, which are supported by Boost.Asio, can be found on this 
Boost.Asio documentation page at http://www.boost.org/doc/libs/1_58_0/doc/
html/boost_asio/reference/socket_base.html.

Note that there are fewer classes that represent socket options listed on this page than the 
options that can be set or obtained from a native socket (an object of the underlying operating 
system). This is because Boost.Asio supports only a limited amount of socket options. To set 
or obtain values of other socket options, developers may need to extend the Boost.Asio library 
by adding classes that represent the required options. However, the topic on the extension 
of the Boost.Asio library is beyond the scope of this book. We will focus on how to work with 
socket options that are supported by the library out of the box.

Let's consider a hypothetical situation where we want to make the size of the socket's receive 
buffer two times bigger than whatever its size is now. To do this, we first need to get the 
current size of the buffer, then multiply it by two, and finally, set the value obtained after 
multiplication as the new receive buffer size.

http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/socket_base.html
http://www.boost.org/doc/libs/1_58_0/doc/html/boost_asio/reference/socket_base.html
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The following sample demonstrates how to do this in the following code:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main()
{
  try {
    asio::io_service ios;

    // Create and open a TCP socket.
    asio::ip::tcp::socket sock(ios, asio::ip::tcp::v4());

    // Create an object representing receive buffer
      // size option.
    asio::socket_base::receive_buffer_size cur_buf_size;

    // Get the currently set value of the option. 
    sock.get_option(cur_buf_size);

    std::cout << "Current receive buffer size is "
      << cur_buf_size.value() << " bytes."
      << std::endl;

    // Create an object representing receive buffer
      // size option with new value.
    asio::socket_base::receive_buffer_size
      new_buf_size(cur_buf_size.value() * 2);

    // Set new value of the option.
    sock.set_option(new_buf_size);

    std::cout << "New receive buffer size is "
      << new_buf_size.value() << " bytes."
      << std::endl;
  }
  catch (system::system_error &e) {
    std::cout << "Error occured! Error code = " << e.code()
      << ". Message: " << e.what();

    return e.code().value();
  }

  return 0;
}
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How it works…
Our sample consists of a single component: the main() entry point function. This function 
begins with creating an instance of the asio::io_service class. This instance is then used 
to create an object that represents a TCP socket.

Note the usage of the socket class constructor, which creates and opens the socket. Before 
we can get or set options on a particular socket object, the corresponding socket must be 
opened. This is because before the Boost.Asio socket object is opened, the underlying native 
socket object of the corresponding operating system is not yet allocated, and there is nothing 
to set the options on or get them from.

Next, an instance of the asio::socket_base::receive_buffer_size class is 
instantiated. This class represents an option that controls the size of the socket's receive 
buffer. To obtain the current value of the option, the get_option() method is called on the 
socket object and the reference to the option object is passed to it as an argument.

The get_option() method deduces the option that is requested by the type of the 
argument passed to it. Then, it stores the corresponding option's value in the option object 
and returns. The value of the option can be obtained from the object that represents the 
corresponding option by invoking the object's value() method, which returns the value of 
the option.

After the current value of receive buffer size option is obtained and output to the standard 
output stream, in order to set the new value of this option, the main() function proceeds with 
creating one more instance of the asio::socket_base::receive_buffer_size class 
named new_buf_size. This instance represents the same option as the first instance, cur_
buf_size, but this one contains the new value. The new option value is passed to the option 
object as an argument of its constructor.

After the option object that contains the new receive buffer size option value is constructed, 
the reference to it is passed as an argument to the socket's set_option() method. Like 
get_option(), this method deduces the option to be set by the type of the argument 
passed to it, and then, sets the corresponding option value, making the new value equal to 
the one stored in the option object.

In the last step, the new option's value is output to the standard output stream.

Performing a stream-based I/O
The concepts of a stream and stream-based I/O are powerful in their expressiveness and 
elegance when used properly. Sometimes, most of the application's source code consists 
of stream-based I/O operations. The source code readability and maintainability of such an 
application would be increased if network communication modules were implemented by 
means of stream-based operations as well.
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Fortunately, Boost.Asio provides tools that allow us to implement inter-process communication 
in a stream-based fashion. In this recipe, we will see how to use them.

How to do it…
The Boost.Asio library contains the asio::ip::tcp::iostream wrapper class that 
provides an I/O stream-like interface to the TCP socket objects, which allows us to express 
inter-process communication operations in terms of stream-based operations.

Let's consider a TCP client application, which takes advantage of a stream-based I/O provided 
by Boost.Asio. When using this approach, the TCP client application becomes as simple as the 
following code:

#include <boost/asio.hpp>
#include <iostream>

using namespace boost;

int main() 
{
  asio::ip::tcp::iostream stream("localhost", "3333");
  if (!stream) {
    std::cout << "Error occurred! Error code = " 
      << stream.error().value()
      << ". Message = " << stream.error().message()
      << std::endl;

    return -1;
  }
  
  stream << "Request.";
  stream.flush();

  std::cout << "Response: " << stream.rdbuf();

  return 0;
} 

How it works…
The sample TCP client is quite simple and consists of a single component: the main() 
entry point function. The main() function begins with creating an instance of the 
asio::ip::tcp::iostream class, which wraps a TCP socket and provides an I/O  
stream-like interface to it.
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The stream object is constructed with a constructor that accepts a server DNS name and 
a protocol port number and automatically tries to resolve the DNS name and then tries to 
connect to that server. Note that the port number is represented as a string rather than an 
integer. This is because both arguments passed to this constructor are directly used to create 
the resolver query, which requires the port number to be represented as a string (it should 
be expressed as a service name such as http, ftp, and so on or a port number that is 
represented as a string such as "80", "8081", "3333", and so on).

Alternatively, we can construct the stream object using the default constructor, which does 
not perform the DNS name resolution and connection. Then, when the object is constructed, 
we can call the connect() method on it by specifying the DNS name and protocol port 
number in order to perform the resolution and connect the socket.

Next, the state of the stream object is tested to find out whether the connection has 
succeeded. And if the stream object is in a bad or erroneous state, the appropriate message 
is output to the standard output stream and the application exits. The error() method of the 
asio::ip::tcp::iostream class returns an instance of the boost::system::error_
code class, which provides the information about the last error that occurred in the stream.

However, if the stream has been successfully connected to the server, the output operation 
is performed on it, which sends the string Request, to the server. After this, the flush() 
method is called on the stream object to make sure that all the buffered data is pushed to  
the server.

In the last step, the input operation is performed on the stream to read all the data that was 
received from the server as a response. The received message is output to the standard 
output stream. After this, the main() function returns and the application exits.

There's more…
Not only can we implement the client-side I/O in a stream-oriented fashion using the 
asio::ip::tcp::iostream class, we can also perform I/O operations on the server side 
as well. In addition to this, this class allows us to specify timeouts for operations, which makes 
a stream-based I/O more advantageous than a normal synchronous I/O. Let's take a look at 
how this is done.

Implementing a server-side I/O
The following code snippet demonstrates how to implement a simple server that performs a 
stream-based I/O using the asio::ip::tcp::iostream class:

  // ... 
  asio::io_service io_service;

  asio::ip::tcp::acceptor acceptor(io_service,
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    asio::ip::tcp::endpoint(asio::ip::tcp::v4(), 3333));
   
  asio::ip::tcp::iostream stream;

acceptor.accept(*stream.rdbuf());
std::cout << "Request: " << stream.rdbuf();
stream << "Response.";
// ...

This code snippet demonstrates a piece of source code of a simple server application. It 
creates instances of acceptors and the asio::ip::tcp::iostream classes. And then,  
the interesting thing happens.

The accept() method is invoked on the acceptor object. As an argument, this method 
is passed an object, a pointer to which is returned by the rdbuf() method called on the 
stream object. The rdbuf() method of the stream object returns a pointer to the stream 
buffer object. This stream buffer object is an instance of a class, which is inherited from the 
asio::ip::tcp::socket class, which means that the stream buffer used by objects of 
the asio::ip::tcp ::iostream class plays two roles: one of a stream buffer and another 
of a socket. Therefore, this twofold stream buffer/socket object can be used as a normal 
active socket to connect and communicate with the client application.

When the connection request is accepted and the connection is established, further 
communication with the client is done in a stream-fashioned style just like it is done in  
the client application, as demonstrated earlier in this recipe.

Setting timeout intervals
Because I/O operations are provided by the asio::ip::tcp::stream class block the 
thread of execution, and they potentially may run for a substantial amount of time, the class 
provides a way to set a timeout period that, when it runs out, leads to the interruption of the 
operation that currently blocks the thread, if any.

The timeout interval can be set by the expires_from_now() method of the 
asio::ip::tcp::stream class. This method accepts the duration of the timeout interval 
as an input parameter and starts the internal timer. If at the moment, when the timer expires, 
an I/O operation is still in progress, that operation is considered timed out and is, therefore, 
forcefully interrupted.
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