

Gazihan Alankus, Rogério Theodoro de Brito,
Basheer Ahamed Fazal, Vinicius Isola and Miles Obare

A fast-paced and pragmatic introduction to one of
the world's most popular programming languages

Java Fundamentals

Java Fundamentals

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Gazihan Alankus, Rogério Theodoro de Brito, Basheer Ahamed Fazal, Vinicius
Isola, and Miles Obare

Reviewer: Vishnu Kulkarni

Managing Editor: Rutuja Yerunkar

Acquisitions Editor: Koushik Sen

Production Editor: Nitesh Thakur

Editorial Board: David Barnes, Ewan Buckingham, Shivangi Chatterji, Simon Cox,
Manasa Kumar, Alex Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary,
Saman Siddiqui, Erol Staveley, Ankita Thakur and Mohita Vyas.

First Published: March 2019

Production Reference: 1080319

ISBN: 978-1-78980-173-6

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Introduction to Java 	  1

Introduction ...  2

The Java Ecosystem ..  2

Our First Java Application ..  4

Syntax of a Simple Java Program .. 4

Exercise 1: A Simple Hello World Program .. 5

Exercise 2: A Simple Program for Performing Simple
Mathematic Operations  .. 6

Exercise 3: Displaying Non-ASCII Characters ... 7

Activity 1: Printing the Results of Simple Arithmetic Operations ................... 7

Getting Input from the User .. 8

Exercise 4: Reading Values from the User and Performing Operations ...... 10

Packages ..  11

Rules to Follow When Using Packages ... 12

Activity 2: Reading Values from the User and Performing
Operations Using the Scanner Class .. 13

Activity 3: Calculating the Percent Increase or Decrease of
Financial Instruments .. 14

Summary ..  14

Variables, Data Types, and Operators 	  17

Introduction ...  18

Variables and Data Types ..  18

Variables .. 19

Reserved Keywords .. 20

Integral Data Types ...  21

int Data Type ... 21

long Data Type .. 22

Type Casting ..  22

Exercise 5: Type Casting  .. 23

byte Data Type .. 24

short Data Type ... 24

Boolean Data Type .. 25

char Data Type .. 25

Floating-Point Data Types .. 27

float Data Type .. 28

double Data Type .. 29

Activity 4: Inputting Student Information and Outputting an ID .................. 30

Activity 5: Calculating the Number of Full Fruit Boxes ................................... 31

Summary ..  32

Control Flow 	  35

Introduction ...  36

Conditional Statements ...  36

The if Statement .. 37

The else Statement ... 38

Exercise 6: Implementing a Simple if-else Statement .................................... 38

The else-if Statement ... 39

Exercise 7: Implementing the else-if Statements ... 40

Nested if Statements .. 42

switch case Statements ... 42

Activity 6: Controlling the Flow of Execution Using Conditionals ................. 44

Activity 7: Developing a Temperature System .. 45

Looping Constructs ...  46

for Loops .. 46

Exercise 8: Implementing a Simple for Loop  .. 47

Activity 8: Implementing the for Loop .. 49

Nested for Loops ... 52

Exercise 9: Implementing a Nested for Loop .. 53

for-each Loops ... 54

The while and do while Loops ... 56

Exercise 10: Implementing the while Loop .. 58

Activity 9: Implementing the while Loop ... 59

Activity 10: Implementing Looping Constructs ... 60

Activity 11: Continuous Peach Shipment with Nested Loops. ....................... 60

Summary ..  62

Object-Oriented Programming 	  65

Introduction ...  66

Object-Oriented Principles ..  66

Classes and Objects ..  67

Object-Oriented Programming  .. 67

Naming Conventions for Class Names ... 69

Exercise 11: Working with Classes and Objects .. 70

Exercise 12: Using the Person Class .. 72

Constructors ..  73

The this Keyword ..  75

Activity 12: Creating a Simple Class in Java ... 76

Activity 13: Writing a Calculator Class .. 77

Inheritance ..  78

Types of Inheritance ... 78

Importance of Inheritance in OOP ... 79

Implementing Inheritance in Java .. 82

Activity 14: Creating a Calculator Using Inheritance ...................................... 83

Overloading ...  85

Constructor Overloading ...  89

Polymorphism and Overriding ..  90

The Difference between Overriding and Overloading ................................... 90

Annotations ...  91

Creating Your Own Annotation Types .. 93

References ...  93

Activity 15: Understanding Inheritance and Polymorphism in Java ............. 95

Summary ..  96

OOP in Depth 	  99

Introduction ...  100

Interfaces ...  100

Use Case: Listeners ..  103

Exercise 13: Implementing Interfaces ...  103

Activity 16: Creating and Implementing Interfaces in Java ........................  106

Typecasting ..  107

Activity 17: Using instanceof and Typecasting ...  109

The Object Class ..  111

Autoboxing and Unboxing ...  112

Activity 18: Understanding Typecasting in Java ...  113

Abstract Classes and Methods ..  114

Activity 19: Implementing Abstract Classes and Methods in Java .............  114

Activity 20: Use abstract class to Encapsulate Common Logic ..................  117

Summary ..  118

Data Structures, Arrays, and Strings 	  121

Introduction ...  122

Data Structures and Algorithms ...  122

Arrays ..  123

Creating and Initializing an Array ..  124

Accessing Elements ...  124

Exercise 14: Creating an Array Using a Loop ..  125

Exercise 15: Searching for a Number in an Array ..  127

Activity 21: Finding the Smallest Number in an Array ................................  128

Activity 22: Calculator with Array of Operators ...  129

Two-Dimensional Arrays ...  129

Exercise 16: Printing a Simple Two-Dimensional Array ..............................  131

Exercise 17: Creating a Three-Dimensional Array  .......................................  132

The Arrays Class in Java ..  135

Insertion sort ..  137

Example ...  137

Exercise 18: Implementing Insertion Sort ...  138

Creating an ArrayList and Adding Elements ...  140

Replacing and Removing Elements ...  142

Exercise 19: Adding, Removing, and Replacing Elements in an Array .......  144

Iterators ..  145

Exercise 20: Iterating through an ArrayList ..  146

Activity 23: Working with ArrayList ..  148

Strings ..  149

Creating a String ..  150

Concatenation ..  150

String Length and Characters ...  152

Activity 24: Input a String and Output Its Length and as an Array ............  153

Activity 25: Calculator Reads from Input ..  154

Conversion ..  154

Comparing Strings and Parts of Strings ..  155

StringBuilder ...  156

Exercise 21: Working with StringBuilder ...  156

Activity 26: Removing Duplicate Characters from a String .........................  158

Summary ..  159

The Java Collections Framework and Generics 	  161

Introduction ...  162

Reading Data from Files ...  162

Binary versus Text Files ...  162

CSV Files ..  163

Reading Files in Java ..  163

Exercise 22: Reading a CSV File ..  164

Building a CSV Reader ...  166

Exercise 23: Building a CSV Reader ..  166

Arrays ..  169

Exercise 24: Reading Users from a CSV File into an Array ..........................  170

Activity 27: Read Users from CSV Using Array with Initial Capacity ..........  172

The Java Collections Framework ...  173

Vectors ..  173

Exercise 25: Reading Users from a CSV File into a Vector ...........................  174

Activity 28: Reading a Real Dataset Using Vector ..  175

Iterating over Collections ..  176

Activity 29: Iterating on a Vector of Users ..  179

Hashtable ..  179

Exercise 26: Writing an Application that Finds a User by Email .................  181

Activity 30: Using a Hashtable to Group Data ..  183

Generics ...  184

What was the Problem? ..  184

How to Use Generics ...  186

Exercise 27: Finding a User by Text in a Name or Email .............................  187

Sorting and Comparing ...  189

Comparables and Comparators ...  190

Exercise 28: Creating a Comparator that Compares Strings
Alphabetically ...  191

Sorting ...  192

Bubble Sort ...  192

Merge Sort ..  194

Activity 31: Sorting Users ..  195

Data Structures ..  196

Collection ...  196

List ...  197

ArrayList ..  197

LinkedList ..  198

Map ..  199

HashMap ...  200

TreeMap ..  200

LinkedHashMap ...  201

Set ..  201

HashSet ...  201

TreeSet ..  201

LinkedHashSet ...  201

Exercise 29: Using TreeSet to Print Sorted Users ...  202

Queue ..  204

java.util.ArrayDeque ..  205

java.util.PriorityQueue ..  205

Exercise 30: Fake Email Sender ..  205

Properties of Collections ...  208

Summary ..  209

Advanced Data Structures in Java 	  211

Introduction ...  212

Implementing a Custom Linked List ...  212

Disadvantages of ArrayList ...  212

Advantages of Linked List over Arrays ..  213

Exercise 31: Adding Elements to a Linked list ..  213

Activity 32: Creating a Custom Linked List in Java  ......................................  216

Drawbacks of Linked List ..  217

Implementing Binary Search Tree  ...  217

Exercise 32: Creating a Binary Search Tree in Java ......................................  218

Activity 33: Implementing the Methods in the BinarySearchTree
Class to Find the Highest and Lowest Value in the BST ..............................  222

Enumerations ..  222

Exercise 33: Using Enum to Store Directions ..  223

Activity 34: Using an Enum to Hold College Department Details ..............  224

Activity 35: Implementing Reverse Lookup ..  225

Set and Uniqueness in Set ...  226

Basic Rules for the equals() and hashCode() Methods ................................  226

Adding an Object to a Set ...  226

Exercise 34: Understanding the Behavior of equals()
and hashCode() ..  227

Exercise 35: Overriding equals() and hashCode() ..  230

Summary ..  232

Exception Handling 	  235

Introduction ...  236

Motivation behind Exceptions ..  236

Exercise 36: Introducing Exceptions ..  240

An Inevitable Introduction to Exceptions ...  241

Exercise 37: Using an IDE to Generate Exception-Handling Code .............  244

Exceptions versus Error Codes ...  253

Exercise 38: Exceptions Versus Error Codes ...  254

Activity 36: Handling Mistakes in Numeric User Input ...............................  258

Exception Sources ...  259

Checked Exceptions ...  260

Throwing a Checked Exception ..  261

Exercise 39: Working with catch or Specify ..  262

Unchecked Exceptions ..  264

Exercise 40: Using Methods That Throw Unchecked Exceptions ...............  265

Exception Class Hierarchy ..  266

Browsing the Exception Hierarchy ..  268

Throwing Exceptions and Custom Exceptions  ..  268

Exercise 41: Throwing an Exception ..  269

Exercise 42: Creating Custom Exception Classes ...  271

Activity 37: Writing Custom Exceptions in Java. ...  273

Exception Mechanics  ...  274

How try/catch Works ...  274

Exercise 43: Exception Not Caught Because It Cannot Be
Assigned to a Parameter in the catch Block ...  275

Exercise 44: Multiple catch Blocks and Their Order  ...................................  276

Exercise 45: Exception Propagation ...  278

Multiple Exception Types in One Block ...  280

Activity 38: Dealing with Multiple Exceptions in a Block .............................  281

What Are We Supposed to Do in a Catch Block? ..  282

Exercise 46: Chained Exceptions ..  283

finally Block and Their Mechanics  ..  284

Exercise 47: Leaving a File Open as a Result of an Exception ....................  285

Activity 39: Working with Multiple Custom Exceptions ..............................  289

The try with resource Block ..  291

Exercise 48: try with resources Block ..  291

Best Practices ..  292

Suppressing Exceptions ..  293

Exercise 49: Suppressing Exceptions  ..  293

Keeping the User in the Loop ...  297

Exercise 50: Asking the User for Help ..  297

Do Not Throw Unless It Is Expected ..  299

Consider Chaining and Being More Specific When You Let
Exceptions Propagate ..  300

Summary ..  300

Appendix 	  303

Index 	  373

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

Preface

>

ii | Preface

About the Book
Since its inception, Java has stormed the programming world. Its features and
functionalities provide developers with the tools needed to write robust cross-platform
applications. Java Fundamentals introduces you to these tools and functionalities that
will enable you to create Java programs. The book begins with an introduction to the
language, its philosophy, and evolution over time, up until the latest release. You'll
learn how the javac/java tools work and what Java packages are, as well as the way in
which a Java program is usually organized. Once you are comfortable with this, you'll
be introduced to advanced concepts of the language, such as control flow keywords.
You'll explore object-oriented programming and the part it plays in making Java what it
is. In the concluding lessons, you'll get to grips with classes, typecasting, and interfaces,
and gain an understanding of the uses of data structures, arrays, and strings; handling
exceptions; and creating generics.

By the end of this book, you will have learned how to write programs, automate
tasks, and follow advanced books on algorithms and data structures, or explore more
advanced Java books.

About the Authors

Gazihan Alankus is an assistant professor at Izmir University of Economics, where
he teaches books related to mobile applications, games, and IoT. He received his PhD
from Washington University in St. Louis and worked as an intern at Google. In 2019,
he became a Google Developer Expert in the Dart programming language. He enjoys
working on a variety of research and development projects.

Rogério Theodoro de Brito has a bachelor's degree in computer science and a master's
degree in computational biology, both from the University of São Paulo, Brazil.
Academically, he is a free/open source software (FOSS) enthusiast and teaches various
subjects in computer science and IT at the Mackenzie Presbyterian University in São
Paulo, Brazil. He was the technical reviewer of Packt's edX E-Learning Course Marketing.

After completing his master's degree, he started his role as an academic instructor and
has been working with many languages, such as C, C++, Java, C, Perl, and Python.

About the Book | iii

Basheer Ahamed Fazal works as a technical architect at a renowned Software as a
Service-based product company in India. He had advanced his career with technology
organizations such as Cognizant, Symantec, HID Global, and Ooyala. He has seasoned
his programming and algorithmic abilities by solving complex problems around agile
product development, including those to do with microservices, Amazon Web Services,
Google Cloud-based architectures, application security, and big data- and AI- driven
initiatives.

Vinicius Isola has a diverse background with a bachelors' degree in physics from
the University of Campinas. He started learning how to program ActionScript, when
Macromedia Flash was taking over the internet. While taking a 10-month course on
Visual Basic, he used it to build a simulation of life using Cellular Automata combined
with Genetic Algorithms for his scientific initiation program at university.

Nowadays, he works as a full-time software engineer at Everbridge and spends his
spare time learning new programming languages, such as Go, and building tools to help
developers implement powerful continuous integration and continuous deployment of
automated pipelines.

Miles Obare leads the data engineering team at Betika, a Nairobi-based sports betting
firm. He works on building real-time, scalable backend systems. Formerly, he worked as
a data engineer for a fintech start-up, where his role involved developing and deploying
data pipelines and machine learning models to production. He holds a degree in
electrical and computer engineering and often writes about distributed systems.

Objectives

•	 Create and run Java programs

•	 Use data types, data structures, and control flow in your code

•	 Implement best practices when creating objects

•	 Work with constructors and inheritance

•	 Understand advanced data structures to organize and store data

•	 Employ generics for stronger check-types during compilation

•	 Learn to handle exceptions in your code

iv | Preface

Audience

Java Fundamentals is designed for tech enthusiasts who are familiar with some
programming languages and want a quick introduction to the most important principles
of Java.

Approach

Java Fundamentals takes a practical approach to equip beginners with the most
essential data analysis tools in the shortest possible time. It contains multiple activities
that use real-life business scenarios for you to practice and apply your new skills in a
highly relevant context.

Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

•	 Processor: Intel Core i7 or equivalent

•	 Memory: 8 GB RAM

•	 Storage: 35 GB available space

Software Requirements

You'll also need the following software installed in advance:

•	 Operating system: Windows 7 or above

•	 Java 8 JDK

•	 IntelliJ IDEA

Installation and Setup

IntelliJ IDEA is an integrated development environment that attempts to integrate all of
the development tools that you might need into one single place.

Install IntelliJ IDEA

1.	 To install IntelliJ on your machine, go to https://www.jetbrains.com/idea/down-
load/#section=windows and download the Community Edition specific to your
operating system.

https://www.jetbrains.com/idea/download/#section=windows
https://www.jetbrains.com/idea/download/#section=windows

About the Book | v

2.	 Open the downloaded file. You will see the following window. Click Next:

Figure 0.1: IntelliJ IDEA Community Setup Wizard

3.	 Select the directory to install IntelliJ and select Next:

Figure 0.2: Wizard to choose the installation location

vi | Preface

4.	 Choose the preferred installation options and click Next:

Figure 0.3: Wizard to choose the installation options

5.	 Choose the start menu folder and click on Install:

Figure 0.4: Wizard to choose the start menu folder

About the Book | vii

6.	 Click on Finish once the download is complete:

Figure 0.5: Wizard to finish the installation

Reboot your system once IntelliJ is installed.

Install Java 8 JDK

Java Development Kit (JDK) is a development environment for building applications
using the Java programming language:

1.	 To install the JDK, go to https://www.oracle.com/technetwork/java/javase/
downloads/jdk8-downloads-2133151.html.

2.	 Go to Java SE Development Kit 8u201 and select the Accept License Agreement
option.

3.	 Download the JDK specific to your operating system.

4.	 Run the installer once the file is downloaded.

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

viii | Preface

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
correct instruction should be System.out.println."

A block of code is set as follows:

public class Test { //line 1

 public static void main(String[] args) { //line 2

 System.out.println("Test"); //line 3

 } //line 4

} //line 5

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Right-click the src
folder and select New | Class."

Installing the Code Bundle

Download the code bundle for the book from the GitHub repository and copy it to the
folder where you have installed IntelliJ.

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Java-Fundamentals.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/TrainingByPackt/Java-Fundamentals
https://github.com/TrainingByPackt/Java-Fundamentals
https://github.com/PacktPublishing/

Learning Objectives

By the end of this lesson, you'll be able to:

•	 Describe the working of the Java ecosystem

•	 Write simple Java programs

•	 Read input from the users

•	 Utilize classes in the java.util package

Introduction to Java

1

2 | Introduction to Java

Introduction
In this first lesson, we are embarking on our study of Java. If you are coming to Java
from a background of working with another programming language, you probably
know that Java is a language for programming computers. But Java goes beyond just
that. It's more than a very popular and successful language that is virtually present
everywhere, it is a collection of technologies. Besides the language, it encompasses a
very rich ecosystem and it has a vibrant community working on many facets to make
the ecosystem as dynamic as it can be.

The Java Ecosystem
The three most basic parts of the Java ecosystem are the Java Virtual Machine (JVM),
the Java Runtime Environment (JRE), and the Java Development Kit (JDK), which are
stock parts that are supplied by Java implementations.

Figure 1.1: A representation of the Java ecosystem

Every Java program runs under the control of a JVM. Every time you run a Java
program, an instance of JVM is created. It provides security and isolation for the
Java program that is running. It prevents the running of the code from clashing with
other programs within the system. It works like a non-strict sandbox, making it safe
to serve resources, even in hostile environments such as the internet, but allowing
interoperability with the computer on which it runs. In simpler terms, JVM acts as a
computer inside a computer, which is meant specifically for running Java programs.

Note

It is common for servers to have many JVMs in execution simultaneously.

The Java Ecosystem | 3

Up in the hierarchy of stock Java technologies is the JRE. The JRE is a collection of
programs that contains the JVM and also many libraries/class files that are needed for
the execution of programs on the JVM (via the java command). It includes all the base
Java classes (the runtime) as well as the libraries for interaction with the host system
(such as font management, communication with the graphical system, the ability to play
sounds, and plugins for the execution of Java applets in the browser) and utilities (such
as the Nashorn JavaScript interpreter and the keytool cryptographic manipulation tool).
As stated before, the JRE includes the JVM.

At the top layer of stock Java technologies is the JDK. The JDK contains all the programs
that are needed to develop Java programs, and it's most important part is the Java
Compiler (javac). The JDK also includes many auxiliary tools such as a Java disassembler
(javap), a utility to create packages of Java applications (jar), system to generate
documentation from source code (javadoc), among many other utilities. The JDK is a
superset of the JRE, meaning that if you have the JDK, then you also have the JRE (and
the JVM).

But those three parts are not the entirety of Java. The ecosystem of Java includes a very
large participation of the community, which is one of the reasons for the popularity of
the platform.

Note

Research into the most popular Java libraries that are used by the top Java projects
on GitHub (according to research that has been repeated in 2016 and 2017)
showed that JUnit, Mockito, Google's Guava, logging libraries (log4j, sl4j), and all
of Apache Commons (Commons IO, Commons Lang, Commons Math, and so on),
marked their presence, together with libraries to connect to databases, libraries for
data analysis and machine learning, distributed computing, and almost anything
else that you can imagine. In other words, for almost any use that you want to
write programs to, there are high chances of an existing library of tools to help you
with your task.

Besides the numerous libraries that extend the functionality of the stock distributions
of Java, there is a myriad of tools to automate builds (for example, Apache Ant, Apache
Maven, and Gradle), automate tests, distribution and continuous integration/delivery
programs (for example, Jenkins and Apache Continuum), and much, much more.

4 | Introduction to Java

Our First Java Application
As we briefly hinted before, programs in Java are written in source code (which are plain
text, human-readable files) that is processed by a compiler (in the case of Java, javac)
to produce the Java bytecode in class files. The class files containing Java bytecode
are, then, fed to a program called java, which contains the Java interpreter/JVM that
executes the program that we wrote:

Figure 1.2: The process of compilation in Java

Syntax of a Simple Java Program

Like all programming languages, the source code in Java must follow particular
syntaxes. Only then, will the program compile and provide accurate results. Since Java
is an object-oriented programming language, everything in Java is enclosed within
classes. A simple Java program looks similar to this:

public class Test { //line 1

 public static void main(String[] args) { //line 2

 System.out.println("Test"); //line 3

 } //line 4

} //line 5

Every java program file should have the same name as that of the class that contains
main (). It is the entry point into the Java program.

Therefore the preceding program will compile and run without any errors only when
these instructions are stored in a file called Test.java.

Another key feature of Java is that it is case-sensitive. This implies that System.out.
Println will throw an error as it is not capitalized correctly. The correct instruction
should be System.out.println.

Our First Java Application | 5

main() should always be declared as shown in the sample. This is because, if main() is
not a public method, it will not be accessed by the compiler, and the java program will
not run. The reason main() is static is because we do not call it using any object, like you
would for all other regular methods in Java.

Note

We will discuss these the public and static keywords later in this book, in greater
depth.

Comments are used to provide some additional information. The Java compiler ignores
these comments.

Single line comments are denoted by // and multiline comments are denoted by /* */.

Exercise 1: A Simple Hello World Program

1.	 Right-click the src folder and select New | Class.

2.	 Enter HelloWorld as the class name, and then click OK.

3.	 Enter the following code within the class:

public class HelloWorld{
public static void main(String[] args) { // line 2
 System.out.println("Hello, world!"); // line 3
 }
}

4.	 Run the program by clicking on Run | Run 'Main'.

The output of the program should be as follows:

Hello World!

6 | Introduction to Java

Exercise 2: A Simple Program for Performing Simple Mathematic Operations

1.	 Right-click the src folder and select New | Class.

2.	 Enter ArithmeticOperations as the class name, and then click OK.

3.	 Replace the code inside this folder with the following code:

public class ArithmeticOperations {
 public static void main(String[] args) {
 System.out.println(4 + 5);
 System.out.println(4 * 5);
 System.out.println(4 / 5);
 System.out.println(9 / 2);
 }
}

4.	 Run the main program.

The output should be as follows:

9
20
0
4

In Java, when you divide an integer (such as 4) by another integer (such as 5), the
result is always an integer (unless you instruct the program otherwise). In the
preceding case, do not be alarmed to see that 4 / 5 gives 0 as a result, since that's
the quotient of 4 when divided by 5 (you can get the remainder of the division by
using a % instead of the division bar).

To get the result of 0.8, you would have to instruct the division to be a floating-
point division instead of an integer division. You can do that with the following
line:

System.out.println(4.0 / 5);

Yes, this does mean, like most programming languages, there is more than one
type of number in Java.

Our First Java Application | 7

Exercise 3: Displaying Non-ASCII Characters

1.	 Right-click the src folder and select New | Class.

2.	 Enter ArithmeticOperations as the class name, and then click OK.

3.	 Replace the code in this folder with the following code:

public class HelloNonASCIIWorld {
 public static void main(String[] args) {
 System.out.println("Non-ASCII characters: ☺");
 System.out.println("∀x ∈ ℝ: ⌈x⌉ = −⌊−x⌋");
 System.out.println("π ≅ " + 3.1415926535); // + is used to
concatenate
 }
}

4.	 Run the main program.

The output for the program should be as follows:

Non-ASCII characters: ☺
∀x ∈ ℝ: ⌈x⌉ = −⌊−x⌋
π ≅ 3.1415926535

Activity 1: Printing the Results of Simple Arithmetic Operations

To write a java program that prints the sum and the product of any two values, perform
the following steps:

1.	 Create a new class.

2.	 Within main(), print a sentence describing the operation on the values you will be
performing along with the result.

3.	 Run the main program. Your output should be similar to the following:

The sum of 3 + 4 is 7
The product of 3 + 4 is 12

Note

The solution for this activity can be found on page 304.

8 | Introduction to Java

Getting Input from the User

We previously studied a program that created output. Now, we are, going to study a
complementary program: a program that gets input from the user so that the program
can work based on what the user gives the program:

import java.io.IOException; // line 1

public class ReadInput { // line 2

 public static void main(String[] args) throws IOException { // line 3

 System.out.println("Enter your first byte");

 int inByte = System.in.read(); // line 4

 System.out.println("The first byte that you typed: " + (char)
inByte); // line 5

 System.out.printf("%s: %c.%n", "The first byte that you typed",
inByte); // line 6

 } // line 7

} // line 8

Now, we must dissect the structure of our new program, the one with the public
class ReadInput. You might notice that it has more lines and that it is apparently more
complex, but fret not: every single detail will be revealed (in all its full, glorious depth)
when the time is right. But, for now, a simpler explanation will do, since we don't want
to lose our focus on the principal, which is taking input from the user.

First, on line 1, we use the import keyword, which we have not seen yet. All Java code
is organized in a hierarchical fashion, with many packages (we will discuss packages in
more detail later, including how to make your own).

Here, hierarchy means "organized like a tree", similar to a family tree. In line 1 of the
program, the word import simply means that we will use methods or classes that are
organized in the java.io.Exception package.

On line 2, we, as before, create a new public class called ReadInput, without any
surprises. As expected, the source code of this program will have to be inside a source
file called ReadInput.java.

On line 3, we start the definition of our main method, but, this time, add a few words
after the closing parentheses. The new words are throws IOException. Why is this
needed?

Our First Java Application | 9

The short explanation is: "Because, otherwise, the program will not compile." A longer
version of the explanation is "Because when we read the input from the user, there may
be an error and the Java language forces us to tell the compiler about some errors that
our program may encounter during execution."

Also, line 3 is the line that's responsible for the need of the import in line 1: the
IOException is a special class that is under the java.io.Exception hierarchy.

Line 5 is where the real action begins: we define a variable called inByte (short for "byte
that will be input"), which will contain the results of the System.in.read method.

The System.in.read method, when executed, will take the first byte (and only one) from
the standard input (usually, the keyboard, as we already discussed) and give it back as
the answer to those who executed it (in this case, we, in line 5). We store this result in
the inByte variable and continue the execution of the program.

With line 6, we print (to the standard output) a message saying what byte we read, using
the standard way of calling the System.out.println method.

Notice that, for the sake of printing the byte (and not the internal number that
represents the character for the computer), we had to use a construct of the following
form:

•	 An open parenthesis

•	 The word char

•	 A closing parenthesis

We use this before the variable named inByte. This construct is called a type cast and
will be explained in much more detail in the lessons that follow.

On line 7, we use a different way to print the same message to the standard output. This
is meant to show you how many tasks may be accomplished in more than one way and
that there is "no single correct" way. Here, we use the System.out.println function.

The remaining lines simply close the braces of the main method definition and that of
the ReadInput class.

10 | Introduction to Java

Some of the main format strings for System.out.printf are listed in the following table:

Table 1.1: Format strings and their meaning

There are many other formatting strings and many variables, and you can find the full
specification on Oracle's website.

We will see some other common (modified) formatted strings, such as %.2f (which
instructs the function to print a floating-point number with exactly two decimal digits
after the decimal point, such as 2.57 or -123.45) and %03d (which instructs the function
to print an integer with at least three places possibly left filled with 0s, such as 001 or
123 or 27204).

Exercise 4: Reading Values from the User and Performing Operations

To read two numbers from the user and print their product, perform the following
steps:

1.	 Right-click the src folder and select New | Class.

2.	 Enter ProductOfNos as the class name, and then click OK.

3.	 Import the java.io.IOException package:

import java.io.IOException;

Packages | 11

4.	 Enter the following code within the main() to read integers:

public class ProductOfNos{
public static void main(String[] args){
System.out.println("Enter the first number");
int var1 = Integer.parseInt(System.console().readLine());
System.out.println("Enter the Second number");
int var2 = Integer.parseInt(System.console().readLine());

5.	 Enter the following code to display the product of the two variables:

System.out.printf("The product of the two numbers is %d", (var1 * var2));
}
}

6.	 Run the program. You should see an output similar to this:

Enter the first number
10
Enter the Second number
20
The product of the two numbers is 200

Well done, this is your first Java program.

Packages
Packages are namespaces in Java that can be used to avoid name collisions when you
have more than one class with the same name.

For example, we might have more than one class named Student being developed by
Sam and another class with the same name being developed by David. We need a way
to differentiate between the two classes if we need to use them in our code. We use
packages to put the two classes in two different namespaces.

For example, we might have the two classes in two packages:

•	 sam.Student

•	 david.Student

12 | Introduction to Java

The two packages look as follows in File Explorer:

Figure 1.3: Screenshot of the sam.Student and david.Student packages in File Explorer

All the classes that are fundamental to the Java language belong to the java.lang
package. All the classes that contain utility classes in Java, such as collections, classes
for localization, and time utilities, belong to the java.util package.

As a programmer, you can create and use your own packages.

Rules to Follow When Using Packages

Here are a few rules to be considered while using packages:

•	 Packages are written in lowercase

•	 To avoid name conflicts, the package name should be the reverse domain of the
company. For example, if the company domain is example.com, then the package
name should be com.example. So, if we have a Student class in that package, the
class can be accessed with com.example.Student.

•	 Package names should correspond to folder names. For the preceding example,
the folder structure would be as follows:

Figure 1.4: Screenshot of the folder structure in File Explorer

Packages | 13

To use a class from a package in your code, you need to import the class at the top of
your Java file. For example, to use the Student class, you would import it as follows:

import com.example.Student;

public class MyClass {

}

Scanner is a useful class in the java.util package. It is an easy way of inputting types,
such as int or strings. As we saw in an earlier exercise, the packages use nextInt() to
input an integer with the following syntax:

sc = new Scanner(System.in);

int x = sc.nextIn()

Activity 2: Reading Values from the User and Performing Operations Using

the Scanner Class

To read two numbers from the user and print their sum, perform the following steps:

1.	 Create a new class and enter ReadScanner as the class name

2.	 Import the java.util.Scanner package

3.	 In the main() use System.out.print to ask the user to enter two numbers of
variables a and b.

4.	 Use System.out.println to output the sum of the two numbers.

5.	 Run the main program.

The output should be similar to this:

Enter a number: 12
Enter 2nd number: 23
The sum is 35.

Note

The solution for this activity can be found on page 304.

14 | Introduction to Java

Activity 3: Calculating the Percent Increase or Decrease of Financial

Instruments

Users expect to see the daily percentage of increase or decrease of financial
instruments such as stocks and foreign currency. We will ask the user for the stock
symbol, the value of the stock on day 1, the value of the same stock on day 2, calculate
the percent change and print it in a nicely formatted way. To achieve this, perform the
following steps:

1.	 Create a new class and enter StockChangeCalculator as the class name

2.	 Import the java.util.Scanner package:

3.	 In the main() use System.out.print to ask the user for the symbol of the stock,
followed by the day1 and day2 values of the stock.

4.	 Calculate the percentChange value.

5.	 Use System.out.println to output the symbol and the percent change with two
decimal digits.

6.	 Run the main program.

The output should be similar to:

Enter the stock symbol: AAPL
Enter AAPL's day 1 value: 100
Enter AAPL's day 2 value: 91.5
AAPL has changed -8.50% in one day.

Note

The solution for this activity can be found on page 305.

Summary
This lesson covered the very basics of Java. We saw some of the basic features of a Java
program, and how we can display or print messages to the console. We also saw how we
can read values using the input consoles. We also looked at packages that can be used
to group classes, and saw an example of Scanner in java.util package.

In the next lesson, we will cover more about how values are stored, and the different
values that we can use in a Java program.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Use primitive data types in Java

•	 Use reference types in Java

•	 Implement simple arithmetic operations

•	 Use type-casting methods

•	 Input and output various data types

Variables, Data Types,
and Operators

2

18 | Variables, Data Types, and Operators

Introduction
In the previous lesson, we were introduced to the Java ecosystem and the tools that are
needed to develop Java programs. In this lesson, we will start our journey of the Java
language by looking at the fundamental concepts in the language such as variables, data
types, and operations.

Variables and Data Types
One of the fundamental concepts in computer programming is memory, used to
store information in the computer. Computers use bits as the smallest information
that can be stored. A bit is either a 1 or 0. We can group 8 bits to get what is called a
byte. Because bits are very small, we usually deal with bytes as the smallest unit when
programming. When we write programs, what we are essentially doing is fetching some
bits from a certain memory location, doing some operations on them, and writing back
the result to a memory location.

We need a way to store different kinds of data in the computer's memory and tell the
computer what kind of data is stored at what memory location.

Data types are a way for us to specify what kind of data and the size we need to store
at a given memory location. An example of a data type is an integer, a character, or a
string. Broadly, the data types available in Java can be classified into the following types:

•	 Primitive data types

•	 Reference data types

Primitive types are the fundamental types, that is, they cannot be modified. They are
indivisible and form the basis for forming complex types. There are eight primitive data
types in Java, which we will cover in depth in the subsequent sections:

•	 byte

•	 short

•	 int

•	 long

•	 char

•	 float

•	 double

•	 boolean

Variables and Data Types | 19

Reference types are types that refer to data that's stored in a certain memory location.
They don't hold the data themselves, but hold the address of the data. Objects, which
will be covered later, are examples of reference types:

Figure 2.1: Representation of reference types

All data types have the following common properties:

•	 They are associated with a value.

•	 They support certain operations on the value they hold.

•	 They occupy a given number of bits in memory.

For example, an integer can have a value such as 100, support operations such as
addition and subtraction, and is represented using 32-bits on the computer's memory.

Variables

Whenever we want to deal with a given data type, we have to create a variable of that
data type. For example, to create an integer that holds your age, you would use a line
like the following:

int age;

Here, we are saying the variable is called age and is an integer. Integers can only hold
values in the range -2,147,483,648 to 2,147,483,647. Trying to hold a value outside the
range will result in an error. We can then assign a value to the age variable, as follows:

age = 30;

The age variable now holds the value 30. The word age is called an identifier and is used
to refer to the memory location where the value 30 is stored. An identifier is a human-
readable word that is used to refer to the memory address of the value.

20 | Variables, Data Types, and Operators

You can use a word of your choice as an identifier to refer to the same memory address.
For example, we could have written this as follows:

int myAge ;

myAge = 30;

Here is a graphical representation of the preceding code snippet:

Figure 2.2: Representation of age in memory address

As much as we can use any word as an identifier, Java has some rules on what makes
up a valid identifier. The following are some of the rules to adhere to when creating
identifier names:

•	 Identifiers should start with either a letter, _, or $. They cannot start with a
number.

•	 Identifiers can only contain valid unicode characters and numbers.

•	 Identifiers cannot have spaces in between them.

•	 Identifiers can be of any length.

•	 Identifiers cannot be reserved keywords.

•	 Identifiers cannot have arithmetic symbols such as + or -.

•	 Identifiers are case-sensitive, for example, age and Age are not the same
identifiers.

Reserved Keywords

Java also contains inbuilt words that are reserved and cannot be used as identifiers.
These words have special meanings in the language.

Now let's discuss the primitive data types in Java. As we said before, Java has 8 primitive
data types, which we will look at in detail.

Integral Data Types | 21

Integral Data Types
Integral types are types that have integer values. These are int, long, short, byte, and
char.

int Data Type

The int data type is used to represent integers. Integers are 32-bit numbers in the
range of -2,147,483,648 to 2,147,483,647. Example of integers are 0, 1, 300, 500, 389 230,
1,345,543, -500, -324,145, and others in that range. For example, to create an int variable
to hold a value 5, we write the following:

int num = 5;

The num variable is now an int with a value of five. We can also declare more than one
variable of the same type in one line:

int num1, num2, num3, num4, num5;

Here, we have created five variables, all of the int type, and initialized to zero. We can
also initialize all of the variables to a specific value, as follows:

int num1 = 1, num2 = 2, num3 = 3, num4 = 4, num5 = 5;

In addition to expressing integers in decimal format, we can also express integers in
octal, hexadecimal, and binary format:

•	 To express in hexadecimal format, we start the int with 0x or 0X, that is, a zero
followed by x or X. The number has to be at least 2 digits in length. Hexadecimal
numbers use 16 digits (0-9 and A-F). For example, to express 30 in hexadecimal,
we would use the following code:

int hex_num = 0X1E;

Printing the number will output 30 as expected. To hold an integer with a value of
501 in hexadecimal, we would write the following:

int hex_num1 = 0x1F5;

•	 To express in octal format, we start the int with a zero and must have at least 2
digits. Octal numbers have 8 digits. For example, to express 15 in octal, we would
do the following:

int oct_num = 017;

Trying to print the preceding variable will output 15. To represent 501 in octal, we
would do the following:

int oct_num1 = 0765;

22 | Variables, Data Types, and Operators

•	 To express in binary format, we start the int with 0b or 0B, that is, a zero followed
by b or B. The case doesn't matter. For example, to hold the value 100 in binary, we
would do the following:

int bin_num = 0b1100100;

•	 To hold the number 999 in binary, we would do the following:

int bin_num1 = 0B1111100111;

As a summary of the aforementioned four formats of representing integers, all the
following variables hold the same value of 117:

int num = 117;

int hex_num = 0x75;

int oct_num = 0165;

int bin_num = 0b1110101;

long Data Type

long is a 64 bit equivalent of an int. They hold numbers in the range of
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Numbers of long type are called
long literal and are denoted by an L at the end. For example, to declare a long of value
200, we would do the following:

long long_num = 200L;

To declare a long of value 8, we would do the following:

long long_num = 8L;

Since integers are 32-bit and hence lie within the range of long, we can convert an int
into a long.

Type Casting
To convert an int of value of 23 into a long literal, we would need to do what is called
type casting:

int num_int = 23;

long num_long = (long)num_int;

In the second line, we cast the num_int of the int type to a long literal by using the
notation (long)num_int. This is referred to as casting. Casting is the process of
converting one data type into another. Although we can cast a long to an int, remember
that the number might be outside the int range and some numbers will be truncated if
they can't fit into the int.

Type Casting | 23

As is with int, long can also be in octal, hexadecimal, and binary, as shown in the
following code:

long num = 117L;

long hex_num = 0x75L;

long oct_num = 0165L;

long bin_num = 0b1110101L;

Exercise 5: Type Casting

It's often important to change one type to another. In this exercise, we will convert an
integer into a floating point:

1.	 Import Scanner and create a public class:

import java.util.Scanner;

public class Main

{
 static Scanner sc = new Scanner(System.in);
 public static void main(String[] args)

2.	 Input a number as an integer:

{
 System.out.println("Enter a Number: ");
 int num1 = sc.nextInt();

3.	 Print out the integer:

System.out.println("Entered value is: " + num1);

4.	 Convert the integer into a floating point:

float fl1 = num1;

5.	 Print out the floating point:

System.out.print("Entered value as a floating point variable is: " + fl1);

 }

}

24 | Variables, Data Types, and Operators

byte Data Type

A byte is an 8-bit digit that can hold values in the range of -128 to 127. byte is the
smallest primitive data type in Java, and can be used to hold binary values. To assign a
value to a byte, it has to be in the range -128 to 127, otherwise the compiler will raise an
error:

byte num_byte = -32;

byte num_byte1 = 111;

You can also cast an int to a byte, as we did with long:

int num_int = 23;

byte num_byte = (byte)num_int;

In addition to casting, we can assign a byte to an int:

byte num_byte = -32;

int num_int = num_byte;

We, however, cannot directly assign an int to a byte without casting. The following code
will raise an error when you try to run it:

int num_int = 23;

byte num_byte = num_int;

This is because an integer can be outside the byte range (-128 to 127) and hence some
precision will be lost. Java doesn't allow you to assign out of range types to lower range
types. You have to cast so that the overflow bits will be ignored.

short Data Type

short is a 16-bit data type that can hold numbers in the range of -32,768 to 32,767. To
assign a value to a short variable, make sure it is in the specified range, otherwise an
error will be thrown:

short num = 13000;

short num_short = -18979;

Type Casting | 25

You can assign a byte to a short because all the values of a byte fall in the short's range.
However, the reverse will throw an error, as explained with byte and int. To convert
an int into a short, you have to cast to avoid the compile errors. This also applies to
converting a long into a short:

short num = 13000;

byte num_byte = 19;

num = num_byte; //OK

int num1 = 10;

short s = num1; //Error

long num_long = 200L;

s = (short)num_long; //OK

Boolean Data Type

A boolean is a true or false value:

boolean finished = true;

boolean hungry = false;

Note

Some languages, such as like C and C++, allow Booleans to take a value of 1 for
true and 0 for a false. Java doesn't allow you to assign 1 or 0 to Boolean and this
will raise a compile-time error.

char Data Type

The char data type is used to hold a single character. The character is enclosed in single
quotes. Examples of characters are 'a', 'b', 'z', and '5'. Char types are 16 bit and cannot
be negative. Char types are essentially integers from 0 to 65,535 to represent Unicode
characters. Examples of how to declare chars are as follows:

char a = 'a';

char b = 'b';

char c = 'c';

char five = '5';

26 | Variables, Data Types, and Operators

Note that chars are enclosed in single quotes, NOT double quotes. Enclosing a char in
double quotes changes it to a string. A string is a collection of one or more chars. An
example of a String is "Hello World":

String hello = "Hello World";

Enclosing a char in double quotes will raise an error because the compiler interprets
double quotes as a string, not a char:

char hello = "Hello World"; //ERROR

Likewise, enclosing more than one character in single quotes raises a compiler error
because chars should be only one character:

String hello = 'Hello World'; //ERROR

In addition to chars being used to hold single characters, they can also be used to hold
escape characters. Escape characters are special characters that have a special use.
They consist of a backslash followed by a character and are enclosed in single quotes.
There are 8 predefined escape characters, as shown in the following table, along with
their uses:

Table 2.1: Representation of escape characters and their use

Type Casting | 27

Let's say you write a line such as the following:

char nl = '\n';

The char holds a newline and if you try printing it to the console, it skips to the next
line.

If you print '\t', a tab is escaped in the output:

char tb = '\t';

A '\\' will print a backslash in the output.

You can use escape characters to format a string according to your desired output. For
example, let's look at the following line:

String hello_world = "Hello \n World";

Here's the output:

Hello

 World

This is because the escape character '\n' introduces a new line between Hello and World.

In addition, chars can also be expressed in Unicode using the Unicode escape character
'\u'. Unicode is an international standard of encoding in which a character is assigned
a numeric value that can be used on any platform. Unicode aims to support all the
available languages in the world, which is in contrast to ASCII.

Floating-Point Data Types

Floating-point data types are numbers that have a fractional part in their
representation. Examples include 3.2, 5.681, and 0.9734. Java has two data types to
represent types with fractional parts:

•	 float

•	 double

Floating types are represented using a special standard referred to as the IEEE 754
Floating-point standard. This standard was set up by the Institute of Electrical and
Electronic Engineers (IEEE) and is meant to make the representation of floating types
uniform in the low level parts of the compute. Remember that floating types are usually
approximations. When we say 5.01, this number has to be represented in binary format
and the representation is usually an approximation to the real number. When working
with very high-performance programs where values have to be measured to the order
of micro numbers, it becomes imperative that you understand how floating types are
represented at the hardware levels to avoid precision loss.

28 | Variables, Data Types, and Operators

Floating types have two representations: decimal format and scientific notation.

The decimal format is the normal format we usually use, such as 5.4, 0.0004, or
23,423.67.

The scientific notation is the use of the letter e or E to represent a ten raised to a value.
For example, 0.0004 in scientific notation is 4E-4 or 4e-4, which is similar to 4 x 10-4 .
The number 23,423.67 in scientific notation would be 2.342367E4 or 2.342367e4, which
is similar to 2.342367 x 104.

float Data Type

float is used to hold 32-bit fractional numbers in the range 1.4 x 10 -45 and as big as
3.4 x 10 38. That is, the smallest number a float can hold is 1.4 x 10 -45 and the largest
number it can hold is 3.4 x 10 38. Floats are followed by a letter f or F to indicate that
they are of float type. Examples of floats are shown as follows:

float a = 1.0f;

float b = 0.0002445f;

float c = 93647.6335567f;

Floats can also be represented in scientific notation, as follows:

float a = 1E0f;

float b = 2.445E-4f;

float c = 9.36476335567E+4f;

Java also has a class called Float that can encapsulate floats and offers some useful
features. For example, to know the largest float number and the smallest float number
available in your environment, you'd call the following:

float max = Float.MAX_VALUE;

float min = Float.MIN_VALUE;

The Float class also has values to represent positive and negative infinity when a
division by zero occurs:

float max_inf = Float.POSITIVE_INFINITY;

float min_inf = Float.NEGATIVE_INFINITY;

Floats support two types of zeros: -0.0f and +0.0f. As we already said, float types are
represented as approximations in the memory, and so even a zero is not an absolute
zero. That is why we have two zeros. When a number is divided by positive zero, we get
Float.POSITIVE_INFINITY and when a number is divided by negative zero, we get Float.
NEGATIVE_INFINITY.

Type Casting | 29

The Float class also has the constant NaN to indicate a number that is not of a float type:

float nan = Float.NaN;

As with the integral types we have discussed, we can assign an int, byte, short, long,
and char to a float, but cannot do the reverse unless we cast.

Note

Casting an integer to a float and then back to an int will not always lead to an
original number. Be careful when doing casting between int and float.

double Data Type

double holds 64-bit numbers with fractional parts. That is, the range 4.9 x 10e -324 to 1.7
x 10e 308. Doubles are used to hold larger numbers than floats. They are represented
with a d or D at the end. However, by default, in Java, any number with a fractional part
is a double, so there is usually no need to append the d or D at the end. Examples of
doubles are as follows:

double d1 = 4.452345;

double d2 = 3.142;

double d3 = 0.123456;

double d4 = 0.000999;

Like floats, doubles can also be represented in scientific notation:

double d1 = 4.452345E0;

double d2 = 3.142E0;

double d3 = 1.23456E-1;

double d4 = 9.99E-4;

As you might have already guessed it, Java also provides a class called Double with some
useful constants, as shown in the following code:

double max = Double.MAX_VALUE;

double min = Double.MIN_NORMAL;

double max_inf = Double.POSITIVE_INFINITY;

double min_inf = Double.NEGATIVE_INFINITY;

double nan = Double.NaN;

30 | Variables, Data Types, and Operators

Likewise, we can assign the integral types and float except the boolean type to double
and not the other way round until we cast. The following are example operations that
are allowed and some that are forbidden:

int num = 100;

double d1 = num;

float f1 = 0.34f;

double d2 = f1;

double d3 = 'A'; //Assigns 65.0 to d3

int num = 200;

double d3 = 3.142;

num = d3; //ERROR: We must cast

num = (int)d3; //OK

Activity 4: Inputting Student Information and Outputting an ID

Storing and outputting variables in foundational in any developing environment. In this
activity you will be creating a program that will ask a student to input their data and
then output a simple ID card. The program will use integers and strings along with the
scanner class in the java.util package.

The following activity uses the string variable and the integer variable to input
information about a student and then print it out.

1.	 Import the scanner package and create a new class.

2.	 Import the student name as a string.

3.	 Import the university name as a string.

4.	 Import the student's age as an integer.

5.	 Use System.out.println to print out the student details.

Type Casting | 31

6.	 After running the program, the output should be similar to this:

Here is your ID

Name: John Winston
University: Liverpool University
Age: 19

Note

The solution for this activity can be found on page 306.

Activity 5: Calculating the Number of Full Fruit Boxes

John is a peach grower. He picks peaches from his trees, puts them into fruit boxes and
ships them. He can ship a fruit box if it is full with 20 peaches. If he has less than 20
peaches, he has to pick more peaches so he can fill a fruit box with 20 peaches and ship
it.

We would like to help John by calculating the number of fruit boxes that he can ship and
the number of peaches left behind, given the number of peaches he was able to pick. To
achieve this, perform the following steps:

1.	 Create a new class and enter PeachCalculator as the class name

2.	 Import the java.util.Scanner package:

3.	 In the main() use System.out.print to ask the user for the numberOfPeaches.

4.	 Calculate the numberOfFullBoxes and numberOfPeachesLeft values. Hint: use integer
division.

5.	 Use System.out.println to output these two values.

6.	 Run the main program.

32 | Variables, Data Types, and Operators

The output should be similar to:

Enter the number of peaches picked: 55
We have 2 full boxes and 15 peaches left.

Note

The solution for this activity can be found on page 307.

Summary
In this lesson, we learned about the use of primitive and reference data types, along
with simple arithmetic operations on data in Java. We learned how to cast data types
from one type to another. We then saw how we can work with floating-point data types.

In the next lesson, we will work with conditional statements and looping structures.

Learning Objectives

By the end of this lesson, you'll be able to:

•	 Control the flow of execution using the if and else statements in Java

•	 Check through multiple conditions using the switch case statements in Java

•	 Utilize the looping constructs in Java to write concise code to perform repetitive actions

Control Flow

3

36 | Control Flow

Introduction
So far, we have looked at programs that consist of a series of statements that the Java
compiler executes sequentially. However, in certain cases, we might need to perform
actions based on the current state of the program.

Consider the example of the software that's installed in an ATM machine – it performs a
set of actions, that is, it allows a transaction to occur when the PIN that's been entered
by the user is correct. However, when the PIN that's been entered is incorrect, then the
software performs another set of actions, that is, it informs the user that the PIN does
not match and asks the user to reenter the PIN. You'll find that such logical constructs
that depend upon values or stages are present in almost all real-world programs.

There are also times where a particular task might need to be performed repeatedly,
that is, for a particular time duration, for a particular set number of times, or until a
condition is met. Continuing from our example of the ATM machine, if the number of
times an incorrect password is entered exceeds three, then the card is blocked.

These logical constructs act as building blocks, as we move toward building complex
programs in Java. This lesson will dive into these basic constructs, which can be
categorized into two general classes, as follows:

•	 Conditional statements

•	 Looping statements

Conditional Statements
Conditional statements are used to control the flow of execution of the Java compiler
based on certain conditions. This implies that we are making a choice based on a
certain value or the state of a program. The conditional statements that are available in
Java are as follows:

•	 The if statement

•	 The if-else statement

•	 The else-if statement

•	 The switch statement

Conditional Statements | 37

The if Statement

The if statement tests a condition, and when the condition is true, the code contained
in the if block is executed. If the condition is not true, then the code in the block is
skipped and the execution continues from the line after the block.

The syntax for an if statement is as follows:

if (condition) {

//actions to be performed when the condition is true

}

Consider the following example:

int a = 9;

if (a < 10){

System.out.println("a is less than 10");

}

Since the condition a<10 is true, the print statement is executed.

We can check for multiple values in the if condition as well. Consider the following
example:

if ((age > 50) && (age <= 70) && (age != 60)) {

System.out.println("age is above 50 but at most 70 excluding 60");

}

The preceding code snippet checks whether the value of age is above 50, but at most 70,
excluding 60.

When the statement in the if block is just one line, then we don't need to include the
enclosing braces:

if (color == 'Maroon' || color == 'Pink')

System.out.println("It is a shade of Red");

38 | Control Flow

The else Statement

For some scenarios, we need a different block of code to be executed if the if condition
fails. For that, we can use the else clause. It is optional.

The syntax for the if else statement is as follows:

if (condition) {

//actions to be performed when the condition is true

}

else {

//actions to be performed when the condition is false

}

Exercise 6: Implementing a Simple if-else Statement

In this exercise, we are going to create a program that checks whether bus tickets can
be book based on the number of empty seats. Complete the following steps to do so:

1.	 Right-click the src folder and select New | Class.

2.	 Enter Booking as the class name, and then click OK.

3.	 Set up the main method:

public class Booking{
public static void main(String[] args){
}
}

4.	 Initialize two variables, one for the number of empty seats and the other for the
requested ticket numbers:

int seats = 3; // number of empty seats
int req_ticket = 4; // Request for tickets

5.	 Use the if condition to check whether the requested ticket numbers are lower
than or equal to the empty seats available, and print the appropriate messages:

if((req_ticket == seats) || (req_ticket < seats)) {
 System.out.print("This booing can be accepted");
 }else
 System.out.print("This booking is rejected");

Conditional Statements | 39

6.	 Run the program.

You should get the following output:

This booking is rejected

The else-if Statement

else if statements are used when we wish to compare multiple conditions before the
else clause is evaluated.

The syntax for the else if statement is as follows:

if (condition 1) {

//actions to be performed when condition 1 is true

}

else if (Condition 2) {

//actions to be performed when condition 2 is true

}

else if (Condition 3) {

//actions to be performed when condition 3 is true

}

…

…

else if (Condition n) {

//actions to be performed when condition n is true

}

else {

//actions to be performed when the condition is false

}

40 | Control Flow

Exercise 7: Implementing the else-if Statements

We are building an e-commerce application that calculates the delivery fee based
on the distance between the seller and the buyer. A buyer purchases an item on our
website and enters the delivery address. Based on the distance, we calculate the
delivery fee and display it to the user. In this exercise, we are given the following table
and need to write a program to output the delivery fee to the user:

Table 3.1: Table showing the distance and its corresponding fee

To do this, perform the following steps:

1.	 Right-click the src folder and select New | Class.

2.	 Enter DeliveryFee as the class name, and then click OK.

3.	 Open the created class, and then create the main method:

public class DeliveryFee{
public static void main(String[] args){

}
}

4.	 Within the main method, create two integer variables, one called distance and
another called fee. The two variables will hold the distance and delivery fees,
respectively. Initialize the distance to 10 and the fee to zero:

int distance = 10;
int fee = 0;

Conditional Statements | 41

5.	 Create an if block to check the first condition in the table:

if (distance > 0 && distance < 5){
 fee = 2;
}

This if statement checks whether the distance is above 0 but below 5 and sets the
delivery fee to 2 dollars.

6.	 Add an else if statement to check the second condition in the table and set the
fee to 5 dollars:

else if (distance >= 5 && distance < 15){
 fee = 5;
}

7.	 Add two more else if statements to check for the third and fourth conditions in
the table, as shown in the following code:

else if (distance >= 15 && distance < 25){
 fee = 10;
}else if (distance >= 25 && distance < 50){
 fee = 15;
}

8.	 Finally, add an else statement to match the last condition in the table and set the
appropriate delivery fee:

else {
 fee = 20;
}

9.	 Print out the value of the fee:

System.out.println("Delivery Fee: " + fee);

10.	 Run the program and observe the output:

Delivery Fee: 5

42 | Control Flow

Nested if Statements

We can have if statements inside other if statements. This construct is called a nested
if statement. We evaluate the outer condition first and if it succeeds, we then evaluate
a second inner if statement and so on until all the if statements have finished:

if (age > 20){

 if (height > 170){

 if (weight > 60){

 System.out.println("Welcome");

 }

 }

}

We can nest as many statements as we wish to, and the compiler will evaluate them,
starting from the top going downward.

switch case Statements

The switch case statements are an easier and more concise way of doing multiple if
else statements when the same value is being compared for equality. The following is a
quick comparison:

A traditional else if statement would look like this:

if(age == 10){

 discount = 300;

} else if (age == 20){

 discount = 200;

} else if (age == 30){

 discount = 100;

} else {

 discount = 50;

}

Conditional Statements | 43

However, with the same logic, when implemented using a switch case statement, it
would look as follows:

switch (age){

 case 10:

 discount = 300;

 case 20:

 discount = 200;

 case 30:

 discount = 100;

 default:

 discount = 50;

}

Notice how this code is more readable.

To use a switch statement, first you need to declare it with the keyword switch, followed
by a condition in parentheses. The case statements are used to check these conditions.
They are checked in a sequential order.

The compiler will check the value of age against all the cases and if it finds a match, the
code in that case will execute and so will all the cases following it. For example, if our
age was equal to 10, the first case will be matched and then the second case, the third
case, and the default case. The default case is executed if all the other cases are not
matched. For example, if age is not 10, 20, or 30, then the discount would be set to 50. It
can be interpreted as the else clause in if-else statements. The default case is optional
and can be omitted.

If age was equal to 30, then the third case would be matched and executed. Since the
default case is optional, we can leave it out and the execution will end after the third
case.

44 | Control Flow

Most of the time, what we really wish for is the execution to end at the matched
case. We want it to be so that if the first case is matched, then the code in that case
is executed and the rest of the cases are ignored. To achieve this, we use a break
statement to tell the compiler to continue to execute outside the switch statement.
Here is the same switch case with break statements:

switch (age){

 case 10:

 discount = 300;

 break;

 case 20:

 discount = 200;

 break;

 case 30:

 discount = 100;

 break;

 default:

 discount = 50;

}

Because the default is the last case, we can safely ignore the break statement because
the execution will end there anyway.

Note:

It is good design to always add a break statement in case another programmer
adds extra cases in the future.

Activity 6: Controlling the Flow of Execution Using Conditionals

A factory pays its workers $10 per hour. The standard working day is 8 hours, but the
factory gives extra compensation for additional hours. The policy it follows to calculate
the salary is like so:

•	 If a person works for less than 8 hours – number of hours * $10

•	 If the person works for more than 8 hours but less than 12 – 20% extra for the
additional hours

•	 More than 12 hours – additional day's salary is credited

Conditional Statements | 45

Create a program that calculates and displays the salary earned by the worker based on
the number of hours worked.

To meet this requirement, perform the following steps:

1.	 Initialize two variables and the values of the working hours and salary.

2.	 In the if condition, check whether the working hours of the worker is below the
required hours. If the condition holds true, then the salary should be (working
hours * 10).

3.	 Use the else if statement to check if the working hours lies between 8 hours and
12 hours. If that is true, then the salary should be calculated at $10 per hour for the
first eight hours and the remaining hours should be calculated at $12 per hour.

4.	 Use the else block for the default of $160 (additional day's salary) per day.

5.	 Execute the program to observe the output.

Note

The solution for this activity can be found on page 308.

Activity 7: Developing a Temperature System

Write a program in Java that displays simple messages, based on the temperature. The
temperature is generalized to the following three sections:

•	 High: In this case, suggest the user to use a sunblock

•	 Low: In this case, suggest the user to wear a coat

•	 Humid: In this case, suggest the user to open the windows

To do this perform the following steps:

1.	 Declare two strings, temp and weatherWarning.

2.	 Initialize temp with either High, Low, or Humid.

3.	 Create a switch statement that checks the different cases of temp.

4.	 Initialize the variable weatherWarning to appropriate messages for each case of
temp (High, Low, Humid).

5.	 In the default case, initialize weatherWarning to "The weather looks good. Take a
walk outside".

46 | Control Flow

6.	 After you complete the switch construct, print the value of weatherWarning.

7.	 Run the program to see the output, it should be similar to:

Its cold outside, do not forget your coat.

Note

The solution for this activity can be found on page 309.

Looping Constructs
Looping constructs are used to perform a certain operation a given number of times
as long as a condition is being met. They are commonly used to perform a specific
operation on the items of a list. An example is when we want to find the summation of
all the numbers from 1 to 100. Java supports the following looping constructs:

•	 for loops

•	 for each loops

•	 while loops

•	 do while loops

for Loops

The syntax of the for loop is as follows:

for(initialization ; condition ; expression) {

 //statements

}

The initialization statements are executed when the for loop starts executing. It can be
more than one expression, all separated by commas. The expressions must all be of the
same type:

for(int i = 0, j = 0; i <= 9; i++)

The condition section of the for loop must evaluate to true or false. If there is no
expression, the condition defaults to true.

Looping Constructs | 47

The expression part is executed after each iteration of the statements, as long as the
condition is true. You can have more than one expression separated by a comma.

Note

The expressions must be valid Java expressions, that is, expressions that can be
terminated by a semicolon.

Here is how a for loop works:

1.	 First, the initialization is evaluated.

2.	 Then, the condition is checked. If the condition is true, the statements contained
in the for block are executed.

3.	 After the statements are executed, the expression is executed, and then the
condition is checked again.

4.	 If it is still not false, the statements are executed again, then the expression is
executed, and the condition is evaluated again.

5.	 This is repeated until the condition evaluates to false.

6.	 When the condition evaluates to false, the for loop completes and the code
sections after the loop are executed.

Exercise 8: Implementing a Simple for Loop

To print all the single digit numbers in increasing and decreasing order, perform the
following steps:

1.	 Right-click the src folder and select New | Class.

2.	 Enter Looping as the class name, and then click OK.

3.	 Set up the main method:

public class Looping
{
 public static void main(String[] args) {
 }
}

48 | Control Flow

4.	 Implement a for loop that initializes a variable i at zero, a condition so that the
value remains below 10, and i should be incremented by one in each iteration:

System.out.println("Increasing order");
for(int i = 0; i <= 9; i++)
System.out.println(i);

5.	 Implement another for loop that initializes a variable k at 9, a condition so that the
value remains above 0, and k should be decremented by one in each iteration:

System.out.println("Decreasing order");
for(int k = 9; k >= 0; k--)
System.out.println(k);

Output:

Increasing order
0
1
2
3
4
5
6
7
8
9
Decreasing order
9
8
7
6
5
4
3
2
1
0

Looping Constructs | 49

Activity 8: Implementing the for Loop

John, a peach grower, picks peaches from his trees, puts them into fruit boxes and ships
them. He can ship a fruit box if it is full with 20 peaches. If he has less than 20 peaches,
he has to pick more peaches so he can fill a fruit box with 20 peaches and ship it.

We would like to help John by writing an automation software that initiates the filling
and shipping of boxes. We get the number of peaches from John, and we print a
message for each group of 20 peaches and say how many peaches have been shipped
so far. We print "shipped 60 peaches so far" for the third box, for example. We would
like to do this with a for loop. We do not need to worry about the peaches leftover. To
achieve this, perform the following steps:

1.	 Create a new class and enter PeachBoxCounter as the class name

2.	 Import the java.util.Scanner package:

3.	 In the main() use System.out.print to ask the user for the numberOfPeaches.

4.	 Write a for loop that counts the peaches that are shipped so far. This starts from
zero, increases 20 by 20 until the peaches left is less than 20.

5.	 In the for loop, print the number of peaches shipped so far.

6.	 Run the main program.

The output should be similar to:

Enter the number of peaches picked: 42
shipped 0 peaches so far
shipped 20 peaches so far
shipped 40 peaches so far

Note

The solution for this activity can be found on page 310.

All three sections of the for loop are optional. This implies that the line for(; ;) will
provide any error. It just provides an invite loop.

50 | Control Flow

This for loop doesn't do anything and won't terminate. Variables declared in the for
loop declaration are available in the statements of the for loop. For example, in our first
example, we printed the value of i from the statements sections because the variable i
was declared in the for loop. This variable is, however, not available after the for loop
and can be freely declared. It can't however be declared inside the for loop again:

for (int i = 0; i <= 9; i++)

 int i = 10; //Error, i is already declared

For loops can also have braces enclosing the statements if we have more than one
statement. This is just as we discussed in the if-else statements earlier. If we have only
one statement, then we don't need to have braces. When the statements are more than
one, they need to be enclosed within braces. In the following example, we are printing
out the value of i and j:

for (int i = 0, j = 0; i <= 9; i++, j++) {

 System.out.println(i);

 System.out.println(j);

}

Note

The expressions must be valid Java expressions, that is, expressions that can be
terminated by a semicolon.

A break statement can be used to interrupt the for loop and break out of the loop. It
takes the execution outside the for loop.

For example, we might wish to terminate the for loop we created earlier if i is equal to
5:

for (int i = 0; i <= 9; i++){

 if (i == 5)

 break;

 System.out.println(i);

}

Looping Constructs | 51

Output:

0

1

2

3

4

The preceding for loop iterates from 0, 1, 2, and 3 and terminates at 4. This is because
after the condition i, that is, 5 is met, the break statement is executed, which ends the
for loop and the statements after it are not executed. Execution continues outside the
loop.

The continue statement is used to tell the loop to skip all the other statements after it
and continue execution to the next iteration:

for (int i = 0; i <= 9; i++){

 if (i == 5)

 continue;

 System.out.println(i);

}

Output:

0

1

2

3

4

6

7

8

9

The number 5 is not printed because once the continue statement is encountered,
the rest of the statements after it are ignored, and the next iteration is started. The
continue statements can be useful when there are a few exceptions you wish to skip
when processing multiple items.

52 | Control Flow

Nested for Loops

The block of statements within a loop can be another loop was well. Such constructs
are known as nested loops:

public class Nested{

 public static void main(String []args){

 for(int i = 1; i <= 3; i++) {

 //Nested loop

 for(int j = 1; j <= 3; j++) {

 System.out.print(i + "" + j);

 System.out.print("\t");

 }

 System.out.println();

}

 }

}

Output:

11 12 13

21 22 23

31 32 33

For each single loop of i, we loop j three times. You can think of these for loops as
follows:

Repeat i three times and for each repetition, repeat j three times. That way, we have a
total of 9 iterations of j. For each iteration of j, we then print out the value of i and j.

Looping Constructs | 53

Exercise 9: Implementing a Nested for Loop

Our goal in this exercise is to print a pyramid of * with seven rows, like so:

Figure 3.1: Pyramid of * with seven rows

To achieve this goal, perform the following steps:

1.	 Right-click the src folder and select New | Class.

2.	 Enter NestedPattern as the class name, and then click OK.

3.	 In the main method, create a for loop that initializes the variable i at 1, introduces
the condition so that the value of i is at most 15, and increments the value of i by
2:

public class NestedPattern{
public static void main(String[] args) {
for (int i = 1; i <= 15; i += 2) {

}
}
}
}

54 | Control Flow

4.	 Within this loop, create two more for loops, one to print the spaces and the other
to print the *:

for (int k = 0; k < (7 - i / 2); k++) {
 System.out.print(" ");
 }
for (int j = 1; j <= i; j++) {
 System.out.print("*");
 }

5.	 Within the outer for loop, add the following code to add the next line:

System.out.println();

Run the program. You will see the resultant pyramid.

for-each Loops

for each loops are an advanced version of for loops that were introduced in Java 5.
They are used to perform a given operation on every item in an array or list of items.

Let's take a look at this for loop:

int[] arr = { 1, 2, 3, 4, 5 , 6, 7, 8, 9,10};

for (int i = 0; i < 10; i++){

 System.out.println(arr[i]);

}

The first line declares an array of integers. An array is a collection of items of the same
type. In this case, the variable arr is holding a collection of 10 integers. We then use a
for loop from 0 to 10, printing the elements of this array. We are using i < 10 because
the last item is at index 9, not 10. This is because the elements of an array start with
index 0. The first element is at index 0, the second at index 1, the third at 2, and so on.
arr[0] will return the first element, arr[1] the second, arr[2] the third, and so on.

This for loop can be replaced with a shorter for each loop. The syntax of a for each
loop is as follows:

for(type item : array_or_collection){

 //Code to executed for each item in the array or collection

}

Looping Constructs | 55

For our preceding example, the for each loop would be as follows:

for(int item : arr){

 System.out.println(item);

}

int item is the current element in the array we are at. The for each loop will iterate
for all the elements in the array. Inside the braces, we print out the item. Note that we
didn't have to use arr[i] like in the for loop earlier. This is because the for each loop
automatically extracts the value for us. In addition, we didn't have to use an extra int i
to keep the current index and check if we are below 10 (i < 10), like in the for loop we
used earlier. for each loops are shorter and automatically check the range for us.

For example, we can use the for each loop to print the squares of all the elements
present in the array, arr:

for(int item : arr){

 int square = item * item;

 System.out.println(square);

}

Output:

1

4

9

16

25

36

49

64

81

10

56 | Control Flow

The while and do while Loops

Sometimes, we wish to execute certain statements repeatedly, that is, as long as a
certain Boolean condition is true. Such cases require us to use a while loop or a do
while loop. A while loop first checks a Boolean statement and executes a block of code
if the Boolean is true, otherwise it skips the while block. A do while loop first executes
a block of code once before it checks the Boolean condition. Use a do while loop when
you want the code to be executed at least once and a while loop when you want the
Boolean condition to be checked first before the first execution. The following are the
formats of the while and do while loops:

The syntax for the while loop:

while(condition) {

//Do something

}

The syntax for the do while loop:

do {

//Do something

}

while(condition);

For example, to print all of the numbers from 0 to 10 using a while loop, we would use
the following code:

public class Loops {

 public static void main(String[] args){

 int number = 0;

 while (number <= 10){

 System.out.println(number);

 number++;

 }

 }

}

Looping Constructs | 57

Output:

0

1

2

3

4

5

6

7

8

9

10

We could also write the preceding code using a do while loop:

public class Loops {

 public static void main(String[] args){

 int number = 0;

 do {

 System.out.println(number);

 number++;

 }while (number <= 10);

 }

}

With the do while loop, the condition is evaluated last, so we are sure that the
statements will be executed at least once.

58 | Control Flow

Exercise 10: Implementing the while Loop

To print the first 10 numbers in the Fibonacci series using the while loop, perform the
following steps:

1.	 Right-click the src folder and select New | Class.

2.	 Enter FibonacciSeries as the class name, and then click OK.

3.	 Declare the variables that are required in the main method:

public class FibonacciSeries {
 public static void main(String[] args) {
 int i = 1, x = 0, y = 1, sum=0;
 }
}

Here, i is the counter, x and y store the first two numbers of the Fibonacci series,
and sum is a variable that is used to calculate the sum of the variables x and y.

4.	 Implement a while loop with the condition so that the counter i does not go
beyond 10:

while (i <= 10)
{
}

5.	 Within the while loop, implement the logic to print the value of x, and then assign
the appropriate values to x, y, and sum so that we are always printing the sum of the
last and the penultimate number:

System.out.print(x + " ");
sum = x + y;
x = y;
y = sum;
i++;

Looping Constructs | 59

Activity 9: Implementing the while Loop

Remember John, who is a peach grower. He picks peaches from his trees, puts them
into fruit boxes and ships them. He can ship a fruit box if it is full with 20 peaches. If he
has less than 20 peaches, he has to pick more peaches so he can fill a fruit box with 20
peaches and ship it.

We would like to help John by writing an automation software that initiates the filling
and shipping of boxes. We get the number of peaches from John, and we print a
message for each group of 20 peaches and say how many boxes we have shipped and
how many peaches we have left, e.g., "2 boxes shipped, 54 peaches remaining". We
would like to do this with a while loop. The loop will continue as we have a number of
peaches that would fit at least one box. In contrast to the previous activity with for, we
will also keep track of the remaining peaches. To achieve this, perform the following
steps:

1.	 Create a new class and enter PeachBoxCounter as the class name

2.	 Import the java.util.Scanner package:

3.	 In the main() use System.out.print to ask the user for the numberOfPeaches.

4.	 Create a numberOfBoxesShipped variable.

5.	 Write a while loop that continues as we have at least 20 peaches.

6.	 In the loop, remove 20 peaches from numberOfPeaches and increment
numberOfBoxesShipped by 1. Print these values.

7.	 Run the main program.

The output should be similar to:

Enter the number of peaches picked: 42
1 boxes shipped, 22 peaches remaining
2 boxes shipped, 2 peaches remaining

Note

The solution for this activity can be found on page 311.

60 | Control Flow

Activity 10: Implementing Looping Constructs

Our goal is to create a ticketing system so that when the user puts in a request for
the tickets, the tickets are approved based on the number of seats remaining in the
restaurant.

To create such a program, perform the following steps:

1.	 Import the packages that are required to read data from the user.

2.	 Declare the variables to store the total number of seats available, remaining seats,
and tickets requested.

3.	 Within a while loop, implement the if else loop that checks whether the request
is valid, which implies that the number of tickets requested is less than the
number of seats remaining.

4.	 If the logic in the previous step is true, then print a message to denote that the
ticket is processed, set the remaining seats to the appropriate value, and ask for
the next set of tickets.

5.	 If the logic in step 3 is false, then print an appropriate message and break out of
the loop.

Note

The solution for this activity can be found on page 312.

Activity 11: Continuous Peach Shipment with Nested Loops.

Remember John, who is a peach grower. He picks peaches from his trees, puts them
into fruit boxes and ships them. He can ship a fruit box if it is full with 20 peaches. If he
has less than 20 peaches, he has to pick more peaches so he can fill a fruit box with 20
peaches and ship it.

We would like to help John by writing an automation software that initiates the filling
and shipping of boxes. In this new version of our automation software, we will let John
bring in the peaches in batches of his own choosing and will use the remaining peaches
from the previous batch together with the new batch.

Looping Constructs | 61

We get the incoming number of peaches from John and add it to the current number
of peaches. Then, we print a message for each group of 20 peaches and say how many
boxes we have shipped and how many peaches we have left, e.g., "2 boxes shipped, 54
peaches remaining". We would like to do this with a while loop. The loop will continue
as we have a number of peaches that would fit at least one box. We will have another
while loop that gets the next batch and quits if there is none. To achieve this, perform
the following steps:

1.	 Create a new class and enter PeachBoxCount as the class name

2.	 Import the java.util.Scanner package:

3.	 Create a numberOfBoxesShipped variable and a numberOfPeaches variable.

4.	 In the main(), write an infinite while loop.

5.	 Use System.out.print to ask the user for the incomingNumberOfPeaches. If this is
zero, break out of this infinite loop.

6.	 Add the incoming peaches to the existing peaches.

7.	 Write a while loop that continues as we have at least 20 peaches.

8.	 In the for loop, remove 20 peaches from numberOfPeaches and increment
numberOfBoxesShipped by 1. Print these values.

9.	 Run the main program.

The output should be similar to:

Enter the number of peaches picked: 23
1 boxes shipped, 3 peaches remaining
Enter the number of peaches picked: 59
2 boxes shipped, 42 peaches remaining
3 boxes shipped, 22 peaches remaining
4 boxes shipped, 2 peaches remaining
Enter the number of peaches picked: 0

Note

The solution for this activity can be found on page 313.

62 | Control Flow

Summary
In this lesson, we've covered some of the fundamental and important concepts in Java
and programming by looking at some simple examples. Conditional statements and
looping statements are normally essential to implementing logic.

In the next lesson, we will focus on a couple more fundamental concepts, such as
functions, arrays, and strings. These concepts will help us in writing concise and
reusable code.

Learning Objectives

By the end of this lesson, you'll be able to:

•	 Explain the concept of classes and objects in Java

•	 Explain the four underlying principles of object-oriented programming

•	 Create simple classes and access them using objects in Java

•	 Implement inheritance in Java

•	 Experiment with method overloading and overriding in Java

•	 Create and use annotations in Java

Object-Oriented
Programming

4

66 | Object-Oriented Programming

Introduction
So far, we've looked at the basics of Java and how to use simple constructs such as
conditional statements and looping statements, and how methods are implemented in
Java. These basic ideas are very important to understand and are useful when building
simple programs. However, to build and maintain large and complex programs, the
basic types and constructs do not suffice. What makes Java really powerful is the fact
that it is an object-oriented programming language. It allows you to build and integrate
complex programs effectively, while maintaining a consistent structure, making it easy
to scale, maintain, and reuse.

In this lesson, we will introduce a programming paradigm called object-oriented
programming (OOP), which lies at the core of Java. We will have a look at how OOP is
done in Java and how you can implement it to design better programs.

We will start this lesson with a definition of OOP and the principles underlying it, will
look at OOP constructs called classes and objects, and will conclude the lesson by
looking at a concept called inheritance.

We will write two simple OOP applications in Java: one to represent people who are
normally found in a university, such as students, lecturers, and the staff, and the other
to represent domestic animals in a farm. Let's get started!

Object-Oriented Principles
OOP is governed by four main principles, as follows. Throughout the rest of this lesson,
we will delve further into each of these principles:

•	 Inheritance: We will learn how we can reuse code by using hierarchies of classes
and inheriting behavior from derived classes

•	 Encapsulation: We will also look at how we can hide the implementation details
from the outside world while providing a consistent interface to communicate
with our objects through methods

•	 Abstraction: We will look at how we can focus on the important details of an
object and ignore the other details

•	 Polymorphism: We will also have a look at how we can define abstract behaviors
and let other classes provide implementations for these behaviors

Classes and Objects | 67

Classes and Objects
A paradigm in programming is a style of writing programs. Different languages support
different paradigms. A language can support more than one paradigm.

Object-Oriented Programming

Object-oriented programming, often referred to as OOP, is a style of programming in
which we deal with objects. Objects are entities that have properties to hold their data
and methods to manipulate the data.

Let's break this down into simpler terms.

In OOP, we primarily deal with objects and classes. An object is a representation
of a real-world item. An example of an object is your car or yourself. An object has
properties associated with it and actions it can perform. For example, your car has
wheels, doors, an engine, and gears, which are all properties, and it can perform
actions such as speeding, braking, and stopping, which are all called methods. The
following diagram is an illustration of the properties and methods you have, as a person.
Properties can sometimes be referred to as fields:

Figure 4.1: Representation of objects relating to humans

In OOP, we define classes as blueprints of our items and objects as instances of classes.

68 | Object-Oriented Programming

An example of a class is Person and an example of an object/instance of Person is a
student or lecturer. These are specific example objects that belong to the Person class:

Figure 4.2 Representation of an instance of a class

In the preceding diagram, the Person class is used to represent all people, regardless of
their gender, age, or height. From this class, we can create specific examples of people,
as shown in the boxes inside the Person class.

In Java, we mainly deal with classes and objects, so it is very important that you
understand the difference between the two.

Note

In Java, everything except primitive data types are objects.

Here is the format of a class definition in Java:

modifier class ClassName {

 //Body

}

Classes and Objects | 69

A class definition in Java consists of the following parts:

•	 Modifiers: A class can be public, private, protected, or have no modifier. A
public class is accessible from other classes in other packages. A private class is
only accessible from within the class it is declared. A protected class member is
accessible within all classes in the same package.

•	 Class name: The name should begin with an initial letter.

•	 Body: The class body is surrounded by braces, { }. This is where we define the
properties and methods of the class.

Naming Conventions for Class Names

Naming conventions for classes in Java are as follows:

•	 Class names should use camelCase. That is, the first word should start with a
capital letter and all of the inner words should have a capitalized first word, for
example, Cat, CatOwner, and House.

•	 Class names should be nouns.

•	 Class names should be descriptive and should not be initials, unless they are
widely known.

Here is an example of how the Person class would be defined:

public class Person {

}

The modifier is public, meaning that the class can be accessed from other Java
packages. The class name is Person.

Here is a more robust example of the Person class with a few properties and methods:

public class Person {

 //Properties

 int age;

 int height;

 String name;

 //Methods

70 | Object-Oriented Programming

 public void walk(){

 //Do walking operations here

 }

 public void sleep(){

 //Do sleeping operations here

 }

 private void takeShower(){

 //Do take shower operations here

 }

}

These properties are used to hold the state of the object. That is, age holds the age of
the current person, which can be different from that of the next person. name is used to
hold the name of the current person, which will also be different from the next person.
They answer the question: who is this person?

The methods are used to hold the logic of the class. That is, they answer the question:
what can this person do? Methods can be private, public, or protected.

The operations in the methods can be as complex as your application needs. You can
even call methods from other methods, as well as adding parameters to those methods.

Exercise 11: Working with Classes and Objects

Perform the following steps:

1.	 Open IntelliJ IDEA and create a file called Person.java.

2.	 Create a public class with the name Person with three properties, that is, age,
height, and name. The age and height properties will hold integer values, whereas
the name property will hold a string value:

public class Person {

 //Properties
 int age;
 int height;
 String name;

Classes and Objects | 71

3.	 Define three methods, that is, walk(), sleep(), and takeShower(). Write the print
statements for each so that you can print out the text to the console when they
are called:

 //Methods
 public void walk(){
 //Do walking operations here
 System.out.println("Walking...");
 }
 public void sleep(){
 //Do sleeping operations here
 System.out.println("Sleeping...");
 }
 private void takeShower(){
 //Do take shower operations here
 System.out.println("Taking a shower...");
 }

4.	 Now, pass the speed parameter to the walk() method. If the speed is above 10, we
print the output to the console, otherwise we don't:

public void walk(int speed){
 //Do walking operations here
 if (speed > 10)
{
 System.out.println("Walking...");
}

5.	 Now that we have the Person class, we can create objects for it using the new
keyword. In the following code, we have created three objects:

Person me = new Person();
Person myNeighbour = new Person();
Person lecturer = new Person();

The me variable is now an object of the Person class. It represents a specific type of
person, me.

With this object, we can do anything we wish, such as calling the walk() method, calling
the sleep() method, and much more. We can do this as long as there are methods in the
class. Later, we will look at how we can add all of this behavior to a class. This code will
not have any output since we do not have the main method.

72 | Object-Oriented Programming

Exercise 12: Using the Person Class

To call the member functions of a class, perform the following steps:

1.	 Create a new class in IntelliJ called PersonTest.

2.	 Inside the PersonTest class, create the main method.

3.	 Inside the main method, create three objects of the Person class

public static void main(String[] args){
Person me = new Person();
Person myNeighbour = new Person();
Person lecturer = new Person();

4.	 Call the walk() method for the first object:

me.walk(20);
me.walk(5);
me.sleep();

5.	 Run the class and observe the output:

Walking...
Sleeping…

6.	 Do the same using the myNeighbour and lecturer objects instead of me:

myNeighbour.walk(20);
myNeighbour.walk(5);
myNeighbour.sleep();

lecturer.walk(20);
lecturer.walk(5);
lecturer.sleep();
}

7.	 Run the program again and observe the output:

Walking...
Sleeping...
Walking...
Sleeping...
Walking...
Sleeping...

Constructors | 73

In this example, we created a new class called PersonTest and inside it created three
objects of the Person class. We then called the methods of the me object. From this
program, it is evident that the Person class is a blueprint from which we can create
as many objects as we wish. We can manipulate each of these objects separately as
they are completely different and independent. We can pass these objects around as
if they were just like any other variables, and can even pass them to other objects as
parameters. This is the flexibility of object-oriented programming.

Note

We didn't call me.takeShower() because this method is declared private in the
Person class. Private methods cannot be called outside their class.

Constructors
To be able to create an object of a class, we need a constructor. A constructor is
called when you want to create an object of a class. When we create a class without a
constructor, Java creates an empty default constructor for us that takes no parameters.
If a class is created without a constructor, we can still instantiate it with the default
constructor. A good example of this is the Person class that we used previously. When
we wanted a new object of the Person class, we wrote the following:

Person me = new Person();

The default constructor is Person(), and it returns a new instance of the Person class.
We then assign this returned instance to our variable, me.

 A constructor is just like any other method, except for a few differences:

•	 A constructor has the same name as the class

•	 A constructor can be public or private

•	 A constructor doesn't return anything, even void

74 | Object-Oriented Programming

Let's look at an example. Let's create a simple constructor for our Person class:

public class Person {

 //Properties

 int age;

 int height;

 String name;

 //Constructor

 public Person(int myAge){

 age = myAge;

 }

 //Methods

 public void walk(int speed){

 //Do walking operations here

 if (speed > 10)

 System.out.println("Walking...");

 }

 public void sleep(){

 //Do sleeping operations here

 System.out.println("Sleeping...");

 }

 private void takeShower(){

 //Do take shower operations here

 System.out.println("Taking a shower...");

 }

}

This constructor takes one argument, an integer called myAge, and assigns its value
to the age property in the class. Remember that the constructor implicitly returns an
instance of the class.

We can use the constructor to create the me object again, this time passing age:

Person me = new Person(30);

The this Keyword | 75

The this Keyword
In our Person class, we saw the following line in our constructor:

age = myAge;

In this line, as we saw earlier, we are setting the age variable in our current object to the
new value, myAge, which is passed in as a parameter. Sometimes, we wish to be explicit
about the object we are referring to. When we want to refer to the properties in the
current object we are dealing with, we use the this keyword. As an example, we could
rewrite the preceding line as follows:

this.age = myAge;

In this new line, this.age is used to refer to the age property in the current object we
are dealing with. this is used to access the current object's instance variables.

For example, in the preceding line, we are setting the current object's age to the value
that's passed into the constructor.

In addition to referring to the current object, this can also be used to invoke a class'
other constructors if you have more than one constructor.

In our Person class, we will create a second constructor that takes no parameter. If this
constructor is invoked, it invokes the other constructor we created with a default value
of 28:

//Constructor

public Person(int myAge){

 this.age = myAge;

}

public Person(){

 this(28);

}

Now, when the call of Person me = new Person() is made, the second constructor will
call the first constructor with myAge set to 28. The first constructor will then set the
current object's age to 28.

76 | Object-Oriented Programming

Activity 12: Creating a Simple Class in Java

Scenario: Let's imagine we want to create a program for an animal farm. In this
program, we need to keep track of all the animals that are on the farm. To start with,
we need a way to represent the animals. We will create an animal class to represent a
single animal and then create instances of this class to represent the specific animals
themselves.

Objective: We will create a Java class to represent animals and create instances of
that class. By the end of this activity, we should have a simple Animal class and a few
instances of that class.

Aim: To understand how to create classes and objects in Java.

Follow these steps to complete the activity

1.	 Create a new project in the IDE and name it Animals.

2.	 In the project, create a new file called Animal.java under the src/ folder.

3.	 Create a class named Animal and add the instance variables legs, ears, eyes, family,
and name.

4.	 Define a constructor with no parameters and initialize legs to 4, ears to 2, and
eyes to 2.

5.	 Define another parameterized constructor which takes the legs, ears, and eyes as
arguments.

6.	 Add getters and setters for name and family.

7.	 Create another file called Animals.java, define the main method, and create two
objects of the Animal class.

8.	 Create another animal with two legs, two ears, and two eyes.

9.	 To set the animals' name and family, we will use the getters and setters we created
in the class and print names of the animals.

The this Keyword | 77

The output should be similar to the following:

Figure 4.3: Output of the Animal class

Note

The solution for this activity can be found on page 314.

Activity 13: Writing a Calculator Class

For this activity you'll create a Calculator class that, given two operands and one
operator, can execute the operation and return the result. This class will have one
operate method which will execute the operation using the two operands. The
operands and the operator will be fields in the class, set through the constructor.

With the Calculator class ready, write an application that executes some sample
operations and prints the results to the console.

To complete this activity you'll need to:

1.	 Create a class Calculator with three fields: double operand1, double operand2 and
String operator. Add a constructor that sets all three fields.

2.	 In this class, add an operate method that will check what operator is ("+", "-", "x"
or "/") and executes the correct operation, returning the result.

3.	 Add a main method to this class so that you can write a few sample cases and
print the results.

Note

The solution for this activity can be found on page 318.

78 | Object-Oriented Programming

Inheritance
In this section, we will have a look at another important principle of OOP, called
inheritance. Inheritance in OOP has the same meaning as it has in English. Let's look at
an example by using our family trees. Our parents inherit from our grandparents. We
then inherit from our parents, and finally, our children inherit, or will inherit, from us.
Similarly, a class can inherit the properties of another class. These properties include
methods and fields. Then, another class can still inherit from it, and so on. This forms
what we call an inheritance hierarchy.

The class being inherited from is called the superclass or the base class, and the class
that is inheriting is called the subclass or the derived class. In Java, a class can only
inherit from one superclass.

Types of Inheritance

An example of inheritance is a management hierarchy in a company or in the
government:

•	 Single Level Inheritance: In single level inheritance, a class inherits from only one
other class:

Figure 4.4: Representation of single level inheritance

•	 Multi-level inheritance: In multi-level inheritance, a class can inherit from
another class that also inherits from another class:

Figure 4.5: Representation of multi-level inheritance

Inheritance | 79

•	 Multiple inheritance: Here, a class can inherit from more than one class:

Figure 4.6: Representation of multiple inheritance

Multiple inheritance is not directly supported in Java, but can be achieved by using
interfaces, which will be covered in the next lesson.

Importance of Inheritance in OOP

Let's go back to our Person class.

It is clear that there are common properties and actions that all people support, despite
their gender or race. For example, in terms of properties, everyone has a name, and
everyone has an age, height, and weight. With regard to common actions, all people
sleep, all people eat, and all people breathe, among other things.

Instead of writing code for all of these properties and methods in all of our Person
classes, we can define all of these common properties and actions in one class and let
the other Person classes inherit from this class. That way, we won't have to rewrite the
properties and methods in these subclasses. Therefore, inheritance allows us to write
more concise code by reusing code.

The syntax for a class to inherit from another class is as follows:

class SubClassName extends SuperClassName {

}

We use the extends keyword to denote inheritance.

For example, if we wanted our Student class to extend the Person class, we would
declare it like so:

public class Student extends Person {

}

80 | Object-Oriented Programming

In this Student class, we have access to the public properties and methods that we
defined earlier in the Person class. When we create an instance of this Student class, we
automatically have access to the methods we defined in the Person class earlier, such as
walk() and sleep(). We don't need to recreate those methods anymore as our Student
class is now a subclass of the Person class. We, however, don't have access to private
methods such as takeShower().

Note

Please note that a subclass only has access to the public properties and methods
in its superclass. If a property or method is declared as private in the superclass,
we cannot access it from the subclass. By default, the properties we declared are
only accessible from classes in the same package, unless we specifically put the
public modifier before them.

In our Person class, let's define some common properties and methods that all people
have. Then, we will inherit these properties from this class to create other classes, such
as Student and Lecturer:

public class Person {

 //Properties

 int age;

 int height;

 int weight;

 String name;

 //Constructors

 public Person(int myAge, int myHeight, int myWeight){

 this.age = myAge;

 this.height = myHeight;

 this.weight = myWeight;

 }

 public Person(){

 this(28, 10, 60);

 }

Inheritance | 81

 //Methods

 public void walk(int speed){

 if (speed > 10)

 System.out.println("Walking...");

 }

 public void sleep(){

 System.out.println("Sleeping...");

 }

 public void setName(String name){

 this.name = name;

 }

 public String getName(){

 return name;

 }

 public int getAge(){

 return age;

 }

 public int getHeight(){

 return height;

 }

 public int getWeight(){

 return weight;

 }

}

Here, we have defined four properties, two constructors, and seven methods. Can you
explain what each method does? The methods are fairly simple for now so that we can
focus on the core concepts of inheritance. We have also modified the constructors to
take three parameters.

82 | Object-Oriented Programming

Let's create a Student class that inherits from this Person class, create an object of the
class, and set the name of the student:

public class Student extends Person {

 public static void main(String[] args){

 Student student = new Student();

 student.setName("James Gosling");

 }

}

We have created a new Student class that inherits from the Person class. We have
also created a new instance of the Student class and set its name. Note that we didn't
redefine the setName() method in the Student class because it is already defined in the
Person class. We can also call other methods on our student object:

public class Student extends Person {

 public static void main(String[] args){

 Student student = new Student();
 student.setName("James Gosling");
 student.walk(20);

 student.sleep();

 System.out.println(student.getName());

 System.out.println(student.getAge());

 }

}

Note that we did not create these methods in the Student class as they are already
defined in the Person class from which the Student class inherits.

Implementing Inheritance in Java

Write down the expected output of the preceding program. Explain the output by
looking at the program.

The solution was:

Walking...

Sleeping...

James Gosling

28

Inheritance | 83

Let's define a Lecturer class that inherits from the same Person class:

public class Lecturer extends Person {

 public static void main(String[] args){

 Lecturer lecturer = new Lecturer();

 lecturer.setName("Prof. James Gosling");

 lecturer.walk(20);

 lecturer.sleep();

 System.out.println(lecturer.getName());

 System.out.println(lecturer.getAge());

 }

}

Note

Please note how Inheritance has helped us reduce the amount of code we write by
reusing the same Person class. Without inheritance, we would have had to repeat
the same methods and properties in all of our classes.

Activity 14: Creating a Calculator Using Inheritance

In the previous activity, you created a Calculator class that contained all the known
operations in the same class. This makes this class harder to extend when you think
about adding new operations. The operator method would grow indefinitely.

To make this better, you will use OOP practices to split the operator logic out of this
class into its own class. In this activity you'll create a class Operator that defaults to the
sum operation and then three other classes that implement the other three operations:
subtraction, multiplication and division. This Operator class has a matches method that,
given a String returns a boolean that is true if the String represents that operator or
false if not.

With the operation logic in their own classes, write a new class called
CalculatorWithFixedOperators with three fields: double operand1, double operand2 and
operator of type Operator. This class will have the same constructor that the previous
calculator, but instead of storing the operator as a String, it will check for the operator
classes using the matches method to determine the correct operator.

84 | Object-Oriented Programming

As the previous calculator, this calculator also has a method operate that returns a
double, but instead of any login in there, it delegates the current operator, determined
in the constructor.

To complete this activity you'll need to:

1.	 Create a class Operator that has one String field initialized in the constructor
that represents the operator. This class should have a default constructor that
represents the default operator, which is sum. The operator class should also have
a method called operate that receives two doubles and return the result of the
operator as a double. The default operation is sum.

2.	 Create three other classes: Subtraction, Multiplication and Division. They extend
from Operator and override the operate method with each operation that they
represent. They also need a no-argument constructor that calls super passing the
operator that they represent.

3.	 Create a new class, called CalculatorWithFixedOperators. This class will contain
four fields that are constants (finals) and represent the four possible operations.
It should also have three other fields: operand1 and operator2 of type double
and operator of type Operator. These other three fields will be initialized in the
constructor that will receive the operands and the operator as a String. Using the
match methods of the possible operators, determine which one will be set as the
operator fields.

4.	 As the previous Calculator class, this one will also have an operate method, but it
will only delegate to the operator instance.

5.	 Last, write a main method that calls the new calculator a few times, printing the
results of the operation for each time.

Note

Rewriting the calculator to use more classes seems more complex than the initial
code. But it abstracts some important behavior which opens some possibilities
that will be explored in future activities.

Note

The solution for this activity can be found on page 319.

Overloading | 85

Overloading
The next principle of OOP we will discuss is called overloading. Overloading is a
powerful concept in OOP that allows us to reuse method names as long as they have
different signatures. A method signature is the method name, its parameters, and the
order of the parameters:

Figure 4.7: Representation of a method signature

The preceding is an example of a method that withdraws funds from a given bank name.
The method returns a double and accepts a String parameter. The method signature
here is the name of the getMyFundsFromBank() method and the String parameter
bankName. The signature doesn't include the return type of the method, only the name
and the parameters.

With overloading, we are able to define more than one method with the same method
names but different parameters. This can be useful in defining methods that do the
same thing but take different parameters.

Let's look at an example.

Let's define a class called Sum with three overloaded methods that add the parameters
that are passed and returns the result:

public class Sum {

 //This sum takes two int parameters

 public int sum(int x, int y) {

 return (x + y);

 }

 //This sum takes three int parameters

 public int sum(int x, int y, int z) {

86 | Object-Oriented Programming

 return (x + y + z);

 }

 //This sum takes two double parameters

 public double sum(double x, double y) {

 return (x + y);

 }

 public static void main(String args[]) {

 Sum s = new Sum();

 System.out.println(s.sum(10, 20));

 System.out.println(s.sum(10, 20, 30));

 System.out.println(s.sum(10.5, 20.5));

 }

}

The output is as follows:

30

60

31.0

In this example, the sum() method is overloaded to take different parameters and return
the sum. The method name is the same, but each of the methods takes a different set of
parameters. This difference in the method signatures allows us to use the same name as
many times as we wish.

You might be wondering about the benefits overloading brings to OOP. Imagine a
scenario where we wouldn't be able to reuse a certain method name more than once, as
in certain languages, such as C. For us to be able to accept different sets of parameters,
we would need to come up with six different method names. Coming up with six
different names for methods that essentially do the same thing is tiresome and painful
when dealing with large programs. Overloading saves us from such scenarios.

Overloading | 87

Let's go back to our Student class and create two overloaded methods. In the first
method, we will print a string to print "Going to class...", regardless of which day of the
week it is. In the second method, we will pass the day of the week and check whether it
is the weekend. If it is the weekend, we will print out a different string in comparison to
the rest of the week. Here is how we will implement this:

public class Student extends Person {

 //Add this

 public void goToClass(){

 System.out.println("Going to class...");

 }

 public void goToClass(int dayOfWeek){

 if (dayOfWeek == 6 || dayOfWeek == 7){

 System.out.println("It's the weekend! Not to going to class!");

 }else {

 System.out.println("Going to class...");

 }

 }

 public static void main(String[] args){

 Student student = new Student();

 student.setName("James Gosling");

 student.walk(20);

 student.sleep();

 System.out.println(student.getName());

 System.out.println(student.getAge());

 //Add this

 student.goToClass();

 student.goToClass(6);

 }

}

88 | Object-Oriented Programming

The output is as follows::

Walking...

Sleeping...

James Gosling

28

Going to class...

It's the weekend! Not to going to class!

Open the Lecturer class we created and add two overloaded methods, as follows:

•	 teachClass() prints out "Teaching a random class"

•	 teachClass(String className) prints out "Teaching " + className

Following is the code:

public void teachClass(){

 System.out.println("Teaching a random class.");

}

public void teachClass(String className){

 System.out.println("Teaching " + className);

}

We can overload the main method in a class, but once the program starts up, the JVM
will only call main(String[] args). We can call our overloaded main method from this
main method. Here is an example:

public class Student {

 public static void main(String[] args){

 // Will be called by the JVM

 }

 public static void main(String[] args, String str1, int num){

 //Do some operations

 }

 public static void main(int num, int num1, String str){

 }

}

Constructor Overloading | 89

In this example, the main method is overloaded three times. However, when we run our
program, the main method whose signature is main(String[] args) will be called. From
anywhere in our code, we can then freely call the other main methods.

Constructor Overloading
Just like methods, constructors can be overloaded too. When the same constructors
are declared with different parameters in the same class, this is known as constructor
overloading. The compiler differentiates which constructor is to be called, depending
on the number of parameters and their data types.

In our discussion on constructors, we created a second constructor for our Person
class that takes age, height, and weight as parameters. We can have this constructor in
the same class as the constructor that takes in no parameters. This is because the two
constructors have a different signature and can hence be used side by side. Let's look at
how we can do this:

//Constructors

public Person(){

 this(28, 10, 60);

}

//Overloaded constructor

public Person(int myAge, int myHeight, int myWeight){

 this.age = myAge;

 this.height = myHeight;

 this.weight = myWeight;

}

The two constructors have same name (the class name) but take different parameters.

Add a third constructor that takes age, height, weight, and name. Inside the constructor,
set all the class variables to the passed parameters.

The code is as follows:

public Person(int myAge, int myHeight, int myWeight, String name){

 this.age = myAge;

 this.height = myHeight;

 this.weight = myWeight;

 this.name = name;

}

90 | Object-Oriented Programming

Polymorphism and Overriding
The next principle of OOP we will cover is called polymorphism. The term
"polymorphism" stems from biology in that an organism can take many forms and
stages. This term is also used in OOP in that sub-classes can define their unique
behaviors yet still share some functionalities with their parent classes.

Let's illustrate this with an example.

In our Person example, we had a method, walk. In our Student class, which inherits
from the Person class, we will redefine the same walk method, but now walking to
class instead of just walking. In our Lecturer class, we will also redefine the same walk
method and this time walk to the staff room instead of walking to class. This method
must have the same signature and return type as the walk method in the superclass for
this to be considered polymorphic. Here is what the implementation looks like in our
Student class:

public class Student extends Person {

 ….

 public void walk(int speed){

 //Walk to class

 System.out.println("Walking to class ..");

 }

…...

}

When we call student.walk(20), this method in our Student class will be called instead
of the same method in the Person class. That is, we have provided a unique way to walk
for our Student class that isn't the same for the Lecturer and Person classes.

In Java, we refer to such a method as overridden and the process as method overriding.
The Java virtual machine (JVM) calls the appropriate method for the object that is
referred.

The Difference between Overriding and Overloading

Let's have a look at the difference between method overloading and overriding:

•	 Method overloading deals with the notion of having two or more methods in the
same class with the same name but different arguments:

void foo(int a)
void foo(int a, float b)

Annotations | 91

•	 Method overriding means having two methods with the same arguments, but
different implementations. One of them would exist in the parent class, while
another would exist in the child class:

class Parent {
 void foo(double d) {
 // do something
 }
}

class Child extends Parent {

 void foo(double d){
 // this method is overridden.
 }
}

Annotations
We will now cover another important topic that will help us write better Java programs.

Annotations are a way in which we can add metadata to our programs. This metadata
can include information such as the version of a class we are developing. This is useful
in scenarios where a class is deprecated or where we are overriding a certain method.
Such metadata is not part of the program itself, but can help us catch errors or offer
guidance. Annotations have no direct effect on the operation of the code they annotate.

Let's look at a scenario. How do we ensure that we are overriding a certain method
and not creating another completely different method? When overriding a method, a
single mistake such as using a different return type will cause the method to not be
overridden anymore. Such a mistake is easy to make but can lead to software bugs
later on if not taken care of early in the software development stages. How, then,
do we enforce overriding? The answer, as you might have already guessed, is using
annotations.

The @ character indicates to the compiler that what follows is an annotation.

92 | Object-Oriented Programming

Let's enforce overriding in our Student class with an annotation:

@Override

public void walk(int speed){

 //Walk to class

 System.out.println("Walking to class ..");

}

Note that we have added the @Override line above the method name to indicate that
the method is overridden from the superclass. This annotation will be checked by
the compiler when you're compiling the program and it will immediately know that
we are trying to override this method. It will check whether this method exists in the
superclass and whether the overriding has been done correctly. If it hasn't, it will report
an error to indicate that the method is not correct. This, in a way, will have prevented
us from making a mistake.

Java contains built-in annotations, and you can also create your own. Annotations can
be applied to declarations of classes, properties, methods, and other program elements.
When used on a declaration, each annotation appears, by convention, on its own line.
Let's look at a few examples of the built-in annotations in Java:

Table 4.1: Table with different annotations and their use

References | 93

Creating Your Own Annotation Types

Annotations are created using the interface keyword. Let's declare an annotation so
that we can add the author information of a class:

public @interface Author {

 String name();

 String date();

}

This annotation accepts the name of the author and the date. We can then use this
annotation in our Student class:

@Author(name = "James Gosling", date = "1/1/1970")

public class Student extends Person {

}

You can replace the name and date with your values in the preceding example.

References
As you work with objects, it is important that you understand references. A reference is
an address that indicates where an object's variables and methods are stored.

When we assign objects to variables or pass them to methods as parameters, we aren't
actually passing the object itself or its copy – we are passing references to the objects
themselves in memory.

To better understand how references work, let's illustrate this with an example.

Following is an example:

Create a new class called Rectangle, as follows:

public class Rectangle {

 int width;

 int height;

 public Rectangle(int width, int height){

 this.width = width;

 this.height = height;

 }

94 | Object-Oriented Programming

 public static void main(String[] args){

 Rectangle r1, r2;

 r1 = new Rectangle(100, 200);

 r2 = r1;

 r1.height = 300;

 r1.width = 400;

 System.out.println("r1: width= " + r1.width + ", height= " +
r1.height);

 System.out.println("r2: width= " + r2.width + ", height= " +
r2.height);

 }

}

The output is as follows::

r1: width= 400, height= 300

r2: width= 400, height= 300

Here is a summary of what happens in the preceding program:

1.	 We create two variables, r1 and r2, of type Rectangle.

2.	 A new Rectangle object is assigned to r1.

3.	 The value of r1 is assigned to r2.

4.	 The width and height of r2 are changed.

5.	 The values of the two objects are finally printed.

References | 95

You might have expected the values of r1 and r2 to have different values. However, the
output says otherwise. This is because when we used r2 = r1 , we created a reference
from r2 to r1 instead of creating r2 as a new object copied from r1. That is, r2 points
to the same object that was pointed to by r1. Either variable can be used to refer to the
object and change its variables:

Figure 4.8: Representation of objects r1, r2

If you want r2 to refer to a new object, use the following code:

r1 = new Rectangle(100, 200);

r2 = new Rectangle(300, 400);

References in Java become particularly important when arguments are passed to
methods.

Note

There are no explicit pointers or pointer arithmetic in Java, as there is in C and C++.
By using references, however, most pointer capabilities are duplicated without
many of their drawbacks.

Activity 15: Understanding Inheritance and Polymorphism in Java

Scenario: Imagine we want our Animals class we created in Activity one to be more
object oriented. That way, it would be easier to maintain it and scale it in the future in
case our farm needs to.

Objective: We are going to create classes to inherit from our Animals class, implement
overloaded and overridden methods, and create an annotation to version our classes.

96 | Object-Oriented Programming

Aim: To understand how to inherit from a class, overload and override methods, and
create annotations in Java.

Procedure:

1.	 Open up the Animals project we created earlier.

2.	 In the project, create a new file named Cat.java in the src/ folder.

3.	 Open Cat.java and inherit from the Animals class.

4.	 In it, create a new instance of the Cat class and set the family to "Cat", the name to
"Puppy", ears to two, eyes to two, and legs to four. Don't redefine these methods
and fields – instead, use the inherited ones from the Animals class.

5.	 Print the family, name, ears, legs, and eyes. What is the output?

Note

The solution for this activity can be found on page 322.

Summary
In this lesson, we have learned that classes are blueprints from which we can create
objects, while objects are instances of a class and provide a specific implementation of
that class. A class can be public, private, or protected. A class has a default constructor
that takes no parameters. We can have user-defined constructors in Java. The this
keyword is used to refer to the current instance of a class.

We then learned that inheritance is a property where a subclass inherits the properties
of a superclass.

We went on to study overloading, polymorphism, annotation, and references in Java.

In the next lesson, we will have a look at the use of interfaces and the Object class in
Java.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Implement interfaces in Java

•	 Perform typecasting

•	 Utilize the Object class

•	 Work with abstract classes and methods

OOP in Depth

5

100 | OOP in Depth

Introduction
In the previous lesson, we looked at the basics of object-oriented programming, such as
classes and objects, inheritance, polymorphism, and overloading.

We saw how classes act as a blueprint from which we can create objects, and saw how
methods define the behavior of a class while fields hold the state.

We looked at how a class can acquire properties from another class through inheritance
to enable us to reuse code. Then, we learned how we can reuse a method name through
overloading – that is, as long as they have different signatures. Finally, we had a look at
how subclasses can redefine their own unique behavior by overriding methods from the
superclass.

In this lesson, we will delve deeper into the principles of object-oriented programming
and how to better structure our Java programs.

We will start with interfaces, which are constructs that allow us to define a generic
behavior that any class can implement. We will then learn about a concept called
typecasting, whereby we can change a variable from one type to another and back. In
the same manner, we will deal with primitive data types as objects by using wrapper
classes that are provided by Java. We will finish off with a detailed look at abstract
classes and methods, which is a way to let users who are inheriting your class to run
their own unique implementation.

In this lesson, we will walk through three activities by using the Animal class we created
in the previous lesson. We will also be using our Person class to demonstrate some of
these concepts.

Let's get started!

Interfaces
In Java, you can use interfaces to provide a set of methods that classes must implement
for them to be conformant.

Let's take the example of our Person class. We want to define a set of actions that define
the behavior of any person, regardless of their age or gender.

A few examples of these actions include sleeping, breathing, and moving/walking. We
can place all of these common actions in an interface and let any class that claims to be
a person implement them. A class that implements this interface is often referred to as
being of the type Person.

Interfaces | 101

In Java, we use the keyword interface to denote that the following block will be
an interface. All the methods in an interface are empty and are not implemented.
This is because any class that will implement this interface will provide its unique
implementation details. Therefore, an interface is essentially a group of methods with
no bodies.

Let's create an interface to define the behavior of a person:

public interface PersonBehavior {

 void breathe();

 void sleep();

 void walk(int speed);

}

This interface is called PersonBehavior and it contains three methods: one to breathe,
another one to sleep, and one to walk at a given speed. Every class that implements this
interface will have to also implement these three methods.

We use the implements keyword after a class name, followed by the interface name,
when we want to implement a given interface.

Let's see this with an example. We will create a new class called Doctor to represent
doctors. This class will implement the PersonBehavior interface:

public class Doctor implements PersonBehavior {

}

Because we have stated that we want to conform to the PersonBehavior interface, the
compiler will give us an error if we don't implement the three methods in the interface:

public class Doctor implements PersonBehavior {

 @Override

 public void breathe() {

 }

 @Override

 public void sleep() {

 }

 @Override

102 | OOP in Depth

 public void walk(int speed) {

 }

We use the @Override annotation to indicate that this method is from the interface.
Inside these methods, we are free to perform any kind of operations that are relevant to
our Doctor class.

In the same spirit, we can also create an Engineer class that implements the same
interface:

public class Engineer implements PersonBehavior {

 @Override

 public void breathe() {

 }

 @Override

 public void sleep() {

 }

 @Override

 public void walk(int speed) {

 }

}

In Lesson 1, Introduction to Java, we mentioned abstraction as one of the underlying
principles of OOP. Abstraction is a way for us to provide a consistent interface to our
classes.

Let's use a mobile phone as an example. With a mobile phone, you are able to call
and text your friends. When calling, you press the call button and immediately get
connected to a friend. That call button forms an interface between you and your friend.
We don't really know what happens when we press the button because all those details
are abstracted (hidden) from us.

Interfaces | 103

You will often hear the term API, which stands for Application Programming Interface.
It is a way for different software to speak to each other in harmony. An example is when
you want to log in to an app using Facebook or Google. The application will call the
Facebook or Google API. The Facebook API will then define the rules to be followed to
log in.

A class in Java can implement more than one interface. These extra interfaces are
separated by a comma. The class must provide implementations for all the methods it
promises to implement in the interfaces:

public class ClassName implements InterfaceA, InterfaceB, InterfaceC {

}

Use Case: Listeners

One of the most important uses of interfaces is creating listeners for conditions or
events in your programs. Basically, a listener notifies you of any state changes when
an action takes place. Listeners are also called callbacks – a term that stems from
procedural languages.

For example, an event listener could be called when a button is clicked or hovered over.

This kind of event-driven programming is popular for making Android apps using Java.

Imagine that we want to know when a person walks or sleeps so that we can perform
some other actions. We can achieve this by using an interface that listens for such
events. We will look at this in the following exercise.

Exercise 13: Implementing Interfaces

We are going to create an interface called PersonListener that listens for two events:
onPersonWalking and onPersonSleeping. When the walk(int speed) method is called, we
will dispatch the onPersonWalking event, and when sleep() is called, onPersonSleeping
will be called:

1.	 Create an interface called PersonListener and paste the following code inside it:

public interface PersonListener {
 void onPersonWalking();
 void onPersonSleeping();
}

104 | OOP in Depth

2.	 Open our Doctor class and add the PersonListener interface after the
PersonBehavior interface, separated by a comma:

public class Doctor implements PersonBehavior, PersonListener {

3.	 Implement the two methods in our PersonListener interface. When the doctor
walks, we will perform some actions and raise the onPersonWalking event to let
other listeners know that the doctor is walking. When the doctor sleeps, we shall
raise the onPersonSleeping event. Modify the walk() and sleep() methods to look
like this:

@Override
public void breathe() {

}
@Override
public void sleep() {
 //TODO: Do other operations here
 // then raise event
 this.onPersonSleeping();
}
@Override
public void walk(int speed) {
 //TODO: Do other operations here
 // then raise event
 this.onPersonWalking();
}
@Override
public void onPersonWalking() {
 System.out.println("Event: onPersonWalking");
}
@Override
public void onPersonSleeping() {
 System.out.println("Event: onPersonSleeping");
}

4.	 Add the main method to test our code by calling walk() and sleep():

public static void main(String[] args){
 Doctor myDoctor = new Doctor();
 myDoctor.walk(20);
 myDoctor.sleep();
}

Interfaces | 105

5.	 Run the Doctor class and see the output in the console. You should see something
like this:

Figure 5.1: Output of the Doctor class

The full Doctor class is as follows:

public class Doctor implements PersonBehavior, PersonListener {

 public static void main(String[] args){
 Doctor myDoctor = new Doctor();

 myDoctor.walk(20);
 myDoctor.sleep();
 }
 @Override
 public void breathe() {

 }
 @Override
 public void sleep() {
 //TODO: Do other operations here
 // then raise event
 this.onPersonSleeping();
 }
 @Override
 public void walk(int speed) {
 //TODO: Do other operations here
 // then raise event
 this.onPersonWalking();
 }
 @Override
 public void onPersonWalking() {
 System.out.println("Event: onPersonWalking");
 }
 @Override

106 | OOP in Depth

 public void onPersonSleeping() {
 System.out.println("Event: onPersonSleeping");
 }
}

Note

Since a class can implement more than one interface, we can use interfaces in Java
to simulate multiple inheritance.

Activity 16: Creating and Implementing Interfaces in Java

Scenario: In our animal farm from the previous lesson, we wish to have common actions
that all animals must possess, regardless of their type. We want to also know when an
animal has moved or made any sound. A movement can help us keep track of where
each animal is and the sound can be indicative of distress.

Objective: We are going to implement two interfaces: one that holds two actions that all
animals must possess, move() and makeSound(), and the other that listens for movement
and sound from the animals.

Aim: To understand how to create interfaces in Java and implement them.

These steps will help you complete this activity:

1.	 Open your Animals project from the previous lesson.

2.	 Create a new interface called AnimalBehavior.

3.	 In this, create two methods: void move() and void makeSound()

4.	 Create another interface called AnimalListener with onAnimalMoved() and
onAnimalSound() method.

5.	 Create a new public class called Cow and implement the AnimalBehavior and
AnimalListener interface.

6.	 Create instance variable sound and movementType in Cow class.

7.	 Override the move() such that the movementType is "Walking" and the
onAnimalMoved() method is called.

Typecasting | 107

8.	 Override the makeSound() such that movementType is "Moo" and the onAnimalMoved()
method is called.

9.	 Override the onAnimalMoved() and inAnimalMadeSound() methods.

10.	 Create a main() to test the code.

The output should be similar to the following:
Animal moved: Walking
Sound made: Move

Note

The solution for this activity can be found on page 323.

Typecasting
We have already seen how, when we write int a = 10, a is of integer data type, which
is usually 32 bits in size. When we write char c = 'a', c has a data type of character.
These data types were referred to as primitive types because they can be used to hold
simple information.

Objects also have types. The type of an object is often the class of that object. For
example, when we create an object such as Doctor myDoctor = new Doctor(), the
myDoctor object is of type Doctor. The myDoctor variable is often referred to as a
reference type. As we discussed earlier, this is because the myDoctor variable doesn't
hold the object itself. Rather, it holds the reference to the object in memory.

Typecasting is a way for us to change the class or interface from one type to another.
It's important to note that only classes or interfaces (together, these are called types)
that belong to the same superclass or implement the same interface, that is, they have a
parent-child relationship, can be cast or converted into each other.

108 | OOP in Depth

Let's go back to our Person example. We created the Student class, which inherits from
this class. This essentially means that the Student class is in the Person family and so is
any other class that inherits from the Person class:

Figure 5.2: Inheriting the subclass from the base class

We typecast in Java by using brackets before the object:

Student student = new Student();

Person person = (Person)student;

In this example, we have created an object of type Student called student. We then
typecast it to a Person by using the (Person)student statement. This statement labels
student as a Person type instead of Student type. This type of typecasting, where we
label the subclass as a superclass, is called upcasting. This operation doesn't change the
original object; it only labels it as a different type.

Upcasting reduces the number of methods we have access to. For example, the student
variable cannot access the methods and fields in the Student class anymore.

We convert student back to the Student type by performing downcasting:

Student student = new Student();

Person person = (Person)student;

Student newStudent = (Student)person;

Downcasting is the conversion of a superclass type into a subclass type. This operation
gives us access to the methods and fields in the subclass. For example, newStudent now
has access to all the methods in the Student class.

Typecasting | 109

For downcasting to work, the object must have originally been of the subclass type. For
example, the following operation is not possible:

Student student = new Student();

Person person = (Person)student;

Lecturer lecturer = (Lecturer) person;

If you try to run this program, you will get the following exception:

Figure 5.3: Exception message while downcasting

This is because person was not originally a Lecturer type, but rather a Student type. We
will talk more about exceptions in the upcoming lessons.

To avoid such kinds of exceptions, you can use the instanceof operator to first check
whether an object is of a given type:

if (person instanceof Lecturer) {

 Lecturer lecturer() = (Lecturer) person;

}

The instanceof operator returns true if person was originally of type Lecturer, or
returns false otherwise.

Activity 17: Using instanceof and Typecasting

On previous activity, you used interface to declare common methods around salary
and tax on the Employee interface. With the expansion of JavaWorks limited, sales-
people started to get commission. That means that now, you'll need to write a new
class: SalesWithCommission. This class will extends from Sales, which means it has all the
behavior that employees have but will also have an additional method: getCommission.
This new method returns the gross sales of this employee (which will be passed in the
constructor) times the sales commission, which is 15% for all.

As part of this activity, you'll also write a class that has a method that generates
employees. This will serve as the datasource for this and other activities. This
EmployeeLoader class will have one method: getEmployee(), which returns an Employee.
Inside this method, you can use any means to return a newly generated employee.
Using the java.util.Random class might help you to accomplish this and still get
consistency if you need it.

110 | OOP in Depth

With your data source and the new SalesWithCommission, you'll write an application that
will call the EmployeeLoader.getEmployee method a few times using a for loop. With each
generated employee, it will print their net salary and the tax they pay. It will also check
if the employee is an instance of SalesWithCommission, cast it and print his commission.

To complete this activity you'll need to:

1.	 Create a SalesWithCommission class that extends Sales. Add a constructor that
receives the gross sales as double and store it as a field. Also add a method called
getCommission which returns a double that is the gross sales times 15% (0.15).

2.	 Create another class that will work as a data source, generating employees. This
class has one method getEmployee() that will create an instance of one of the
implementations of Employee and return it. The method return type should be
Employee.

3.	 Write an application that calls getEmployee() repeatedly inside a for loop and
print the information about the Employee salary and tax. And if the employee is an
instance of SalesWithCommission, also print his commission.

Note

The solution for this activity can be found on page 325.

The Object Class | 111

The Object Class
Java provides a special class called Object, from which all classes implicitly inherit. You
don't have to manually inherit from this class because the compiler does that for you.
Object is the superclass of all classes:

Figure 5.4: Superclass Object

This means that any class in Java can be upcast to Object:

Object object = (Object)person;

Object object1 = (Object)student;

Likewise, you can downcast to the original class:

Person newPerson = (Person)object;

Student newStudent = (Student)object1;

You can use this Object class when you want to pass around objects whose type you
don't know. It's also used when the JVM wants to perform garbage collection.

112 | OOP in Depth

Autoboxing and Unboxing
Sometimes, we need to deal with primitive types in methods that only accept objects.
A good example of this is when we want to store integers in an ArrayList (which we
will discuss later). This class, ArrayList, only accepts objects, and not primitives.
Fortunately, Java provides all primitive types as classes. Wrapper classes can hold
primitive values and we can manipulate them as if they were normal classes.

An example of the Integer class, which can hold an int is as follows:

Integer a = new Integer(1);

We can also skip the new keyword and the compiler will implicitly wrap it for us:

Integer a = 1;

We can then use the object as if it was any other object. We can upcast it to Object and
then downcast it back to an Integer.

This operation of converting a primitive type into an object (reference type) is referred
to as autoboxing.

We can also convert the object back into a primitive type:

Integer a = 1;

int b = a;

Here, the b primitive is assigned the value of a, which is 1. This operation of converting
a reference type back to a primitive is called unboxing. The compiler performs
autoboxing and unboxing automatically for us.

In addition to Integer, Java also provides the following wrapper classes for the following
primitives:

Table 5.1: Table representing the wrapper classes for primitives

Autoboxing and Unboxing | 113

Activity 18: Understanding Typecasting in Java

Scenario: Let's understand typecasting concepts using our Animal classes we have been
working with.

Objective: We are going to create a test class for our Animal class, and upcast and
downcast the Cow and Cat classes.

Aim: Internalize the concepts of typecasting.

These steps will help you complete this activity:

Perform the following steps:

1.	 Open the Animals project.

2.	 Create a new class called AnimalTest and, inside it, create the main method

3.	 In the main() method create an object of the Cat and Cow classes.

4.	 Print the owner of the Cat object.

5.	 Upcast the object of Cat class to Animal and try to print the owner once more.
Notice the error.

6.	 Print the sound of the object of Cow class.

7.	 Upcast the object of Cow class to Animal and try to print the owner once more.
Notice the error.

8.	 Downcast the object of Animal class to the new object of Cat class and print the
owner again.

The output should be similar to this:

Figure 5.5: Output of the AnimalTest class

Note

The solution for this activity can be found on page 327.

114 | OOP in Depth

Abstract Classes and Methods
Earlier, we discussed interfaces and how they can be useful when we wish to have a
contract with our classes on the methods they have to implement. We then saw how we
can only cast classes that share the same hierarchy tree.

Java also allows us to have classes with abstract methods that all classes inheriting from
it must implement. Such a class is referred to as an abstract class and is denoted by
using the abstract keyword after the access modifier.

When we declare a class as abstract, any class inheriting from it must implement the
abstract methods in it. We cannot instantiate abstract classes:

public abstract class AbstractPerson {

 //this class is abstract and cannot be instantiated

}

Because abstract classes are still classes in the first place, they can have a logic and
state of their own. This gives them more advantages compared to interfaces whose
methods are empty. In addition, once we inherit from an abstract class, we can perform
typecasting along that class hierarchy.

Java also allows us to have abstract methods. Abstract methods do not contain a body,
and any class inheriting from their class must implement them too. In addition, any
class that contains at least one abstract method must also be declared as abstract.

We use the abstract keyword after the access modifier to declare a method abstract.

When we inherit from an abstract class, we have to implement all the abstract methods
in it:

public class SubClass extends AbstractPerson {

 //TODO: implement all methods in AbstractPerson

}

Activity 19: Implementing Abstract Classes and Methods in Java

Scenario: Imagine that you have been tasked by the local hospital to build a piece of
software to manage the different types of people who use the facility. You have to find a
way to represent the doctors, nurses, and patients.

Objective: We are going to create three classes: one that's abstract, to represent any
person, another one to represent the doctor, and finally, one to represent the patient.
All of the classes are going to inherit from the abstract person class.

Abstract Classes and Methods | 115

Aim: To understand these concepts of abstract classes and methods in Java.

These steps will help you complete the activity:

1.	 Create a new project called Hospital and open it.

2.	 Inside the src folder, create an abstract class called Person:

public abstract class Patient {

}

3.	 Create an abstract method that returns the type of person in the hospital. Name
this method String getPersonType(), returning a String:

public abstract String getPersonType();

We have finished our abstract class and method. Now, we will continue to inherit
from it and implement this abstract method.

4.	 Create a new class called Doctor that inherits from the Person class:

public class Doctor extends Patient {
}

5.	 Override the getPersonType abstract method in our Doctor class. Return the "Arzt"
string. This is German for doctor:

@Override
public String getPersonType() {
 return "Arzt";
}

6.	 Create another class called Patient to represent the patients in the hospital.
Similarly, make sure that the class inherits from Person and overrides the
getPersonType method. Return "Kranke". This is German for patient:

public class People extends Patient{
 @Override
 public String getPersonType() {
 return "Kranke";
 }
}

Now we have two classes, we will test our code using a third test class.

116 | OOP in Depth

7.	 Create a third class called HospitalTest. We will use this class to test the two
classes we created previously.

8.	 Inside the HospitalTest class, create the main method:

public class HospitalTest {
 public static void main(String[] args){

 }
}

9.	 Inside the main method, create an instance of Doctor and another instance of
Patient:

Doctor doctor = new Doctor();
People people = new People();

10.	 Try calling the getPersonType method for each of the objects and print it out to the
console. What is the output?

String str = doctor.getPersonType();
String str1 = patient.getPersonType();
System.out.println(str);
System.out.println(str1);

The output is as follows:

Figure 5.6: Output on calling getPersonType()

Note

The solution for this activity can be found on page 329.

Abstract Classes and Methods | 117

Activity 20: Use abstract class to Encapsulate Common Logic

JavaWorks keeps growing. Now that they have many employees, they noticed that
salary variation is not supported for the application you've built before. So far every
Engineer had to have the same salary as all others. Same with Managers, Sales and
Sales with commission people. To solve that, you're going to use an abstract class
that encapsulates the logic to calculate net salary, based on the tax. For that to work,
the abstract class will have a constructor that receives the gross salary. It will not
implement the getTax() method, delegating that to the subclasses. With new subclasses
for the generic employees that receive the gross salary as an argument for the
constructor.

You'll also add a new method to the EmployeeLoader, getEmployeeWithSalary(), that will
generate a new generic employee with a randomly generated gross salary.

And last, on your application, you'll do just like you did before, print the salary
information and tax, and if the employee is an instance of GenericSalesWithCommission,
also print his commission.

To complete this activity, you'll need to:

1.	 Create an abstract class GenericEmployee that has a constructor that receives the
gross salary and stores that in a field. It should implement the Employee interface
and have two methods: getGrossSalary() and getNetSalary(). The first will just
return the value passed into the constructor. The latter will return the gross salary
minus the result of calling getTax() method.

2.	 Create a new generic version of each type of employee: GenericEngineer,
GenericManager, GenericSales, and GenericSalesWithCommission. They all need
a constructor that receives gross salary and pass it to the super constructor.
They also need to implement the getTax() method, returning the correct
tax value for each class. Remember to also receive the gross sales on the
GenericSalesWithCommission class, and add the method that calculates the
commission.

118 | OOP in Depth

3.	 Add a new method getEmployeeWithSalary to your EmployeeLoader class. This
method will generate a random salary between 70,000 and 120,000 and assign to
the newly created employee before returning it. Remember to also provide a gross
sales when creating a GenericSalesWithCommission employee.

4.	 Write an application that calls the getEmployeeWithSalary method multiple times
from inside a for loop. This method will work like the one in the previous activity:
print the net salary and tax for all employees. If the employee is an instance of
GenericSalesWithCommission also print his commission.

Note

The solution for this activity can be found on page 331.

Summary
In this lesson, we have learned that interfaces are a way for us to define a set of
methods that all classes implementing them must provide specific implementations for.
Interfaces can be used to implement events and listeners in your code when a specific
action occurs.

We then learned that typecasting is a way for us to change a variable of one type to
another type, as long as they are on the same hierarchy tree or implement a common
interface.

We also looked at the use of the instanceof operator and the Object class in Java, and
learned the concepts of autoboxing, unboxing, abstract classes, and abstract methods
in Java.

In the next lesson, we will look at a few common classes and data structures that come
with Java.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Create and manipulate various data structures such as arrays

•	 Describe the fundamentals behind algorithms for programming

•	 Write simple sorting programs for arrays

•	 Input and perform operations on strings

Data Structures,
Arrays, and Strings

6

122 | Data Structures, Arrays, and Strings

Introduction
This is the last topic in our discussion on OOP. So far, we have already looked at classes
and objects and how we can use classes as blueprints to create multiple objects. We saw
how we can use methods to hold the logic of our classes and fields to hold the state.
We've discussed how classes can inherit some properties from other classes to allow
easy reusability of code.

We've also looked at polymorphism, or how a class can redefine the implementation of a
method inherited from the superclass; and overloading, or how we can have more than
one method using the same name, as long as they have different signatures. We've also
discussed functions or methods.

We've looked at typecasting and interfaces in our previous lesson and how typecasting
is a way for us to change an object from one type to another, as long as they are on the
same hierarchy tree. We talked about upcasting and downcasting. Interfaces, on the
other hand, are a way for us to define generic behaviors that our classes can provide
specific implementations of their own.

In this section, we will look at a few common classes that come with Java. These are
classes that you will find yourself using on a daily basis, and therefore it's important
that you understand them. We will also talk about data structures and discuss common
data structures that come with Java. Remember that Java is a wide language and that
this list will not be exhaustive. Do find time to look at the official Java specification to
learn more about the other classes you have at your disposal. Throughout this lesson,
we will be introducing a topic, giving sample programs to illustrate the concepts, and
then we'll finish with an exercise.

Data Structures and Algorithms
An algorithm is a set of instructions that should be followed to achieve an end goal.
They are specific to computing, but we often talk about algorithms to accomplish a
certain task in a computer program. When we write computer programs, we generally
implement algorithms. For example, when we wish to sort an array or list of numbers,
we usually come up with an algorithm to do so. It is a core concept in computer science
and important for any good programmer to understand. We have algorithms for sorting,
searching, graph problems, string processing, and many more. Java comes with a
number of algorithms already implemented for you. However, we still have the scope to
define our own.

Data Structures and Algorithms | 123

A data structure is a way to store and organize data in order to facilitate access and
modifications. An example of a data structure is an array used to hold several items of
the same type or a map used to hold key-value pairs. No single data structure works
well for all purposes, and so it is important to know their strengths and limitations. Java
has a number of predefined data structures for storing and modifying different kinds of
data types. We will also cover some of them in the coming sections.

Sorting different types of data is a common task in a computer program.

Arrays

We touched upon arrays in Lesson 3, Control Flow, when we were looking at looping,
but it's worth taking an even closer look because they are powerful tools. An array
is a collection of ordered items. It is used to hold several items of the same type. An
example of an array in Java could be {1, 2, 3, 4, 5, 6, 7}, which is holding the
integers 1 through 7. The number of items in this array is 7. An array can also hold
strings or other objects as follows:

{"John","Paul","George", "Ringo"}

We can access an item from an array by using its index. An index is the location of the
item in the array. Elements in an array are indexed from 0. That is, the first number is
at index 0, the second number is at index 1, the third number is at index 2, and so on. In
our first example array, the last number is at index 6.

For us to be able to access an element from the array, we use myArray[0] to access the
first item in myArray, myArray[1] to access the second item, and so on to myArray[6] to
access the seventh item.

Java allows us to define arrays of primitive types and objects such as reference types.

Arrays also have a size, which is the number of items in that array. In Java, when we
create an array, we must specify its size. This size cannot be changed once the array has
been created.

Figure 6.1: An empty array

124 | Data Structures, Arrays, and Strings

Creating and Initializing an Array

To create an array, you need to declare the name of the array, the type of elements it
will contain, and its size as follows:

int[] myArray = new int[10];

We use the square brackets [] to indicate an array. In this example, we are creating
an array of integers that holds 10 items, indexed from 0 to 9. We specify the number of
items so that Java can reserve enough memory for the elements. We also use the new
keyword to indicate a new array.

For example, to declare array of 10 doubles, use this:

double[] myArray = new double[10];

To declare array of 10 Boolean values, use this:

boolean[] myArray = new boolean[10];

To declare array of 10 Person objects, use this:

Person[] people = new Person[10];

You can also create an array and at the same time declare the items in the array
(initialization):

int[] myArray = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

Accessing Elements

To access array elements, we use the index enclosed in square brackets. For example,
to access the fourth element, we use myArray[3], to access the tenth element, we use
myArray[9].

Here's an example:

int first_element = myArray[0];

int last_element = myArray[9];

To get the length of the array, we use the length property. It returns an integer that is
the number of items in the array:

int length = myArray. length;

If the array has no items, length will be 0. We can use the length and a loop to insert
items into the array.

Data Structures and Algorithms | 125

Exercise 14: Creating an Array Using a Loop

It can be useful to use control flow commands to create long arrays. Here we will use a
for loop to create an array of numbers from 0-9.

1.	 Create a new class with DataStr as the class name and set up the main method as
follows:

public class DataStr {
public static void main(String[] args){
}

2.	 Create an array of integers of length 10 as follows:

int[] myArray = new int[10];

3.	 Initialize a for loop with a variable starting at zero, with loop incrementing one
with each iteration and the condition being less than the array length:

for (int i = 0; i < myArray.length; i++)

4.	 Insert item i into the array:

{
myArray[i] = i;
}

5.	 Use a similar loop construct to print out the loop:

for (int i = 0; i < myArray.length; i++){
System.out.println(myArray[i]);
}

The full code should look as follows:

public class DataStr {
 public static void main(String[] args){
 int[] myArray = new int[10];
 for (int i = 0; i < myArray.length; i++){
 myArray[i] = i;
 }
 for (int i = 0; i < myArray.length; i++){
 System.out.println(myArray[i]);
 }
 }
}

126 | Data Structures, Arrays, and Strings

Your output should be as follows:

Figure 6.2: Output of the DataStr class

In this exercise, we used the first for loop to insert items into myArray and the second to
print out the items.

As we discussed previously, we can replace the second for loop with a for-each loop,
which is much shorter and makes the code easier to read:

for (int i : myArray) {

System.out.println(i);

}

Java does automatic bound checking for us - if you have created an array of size N and
use an index whose value is less than 0 or greater than N-1, your program will terminate
with an ArrayOutOfBoundsException exception.

Data Structures and Algorithms | 127

Exercise 15: Searching for a Number in an Array

In this exercise, you will check whether the number entered by the user is present in
the array or not. To do this, perform the following steps:

1.	 Define a new class called NumberSearch and include the main method in it:

public class NumberSearch {
public static void main(String[] args){
}
}

2.	 Ensure that you import this package at the top, which is for reading values from
the input devices:

import java.util.Scanner;

3.	 Declare an array sample that store the integers 2, 4, 7, 98, 32, 77, 81, 62, 45, 71:

int [] sample = { 2, 4, 7, 98, 32, 77, 81, 62, 45, 71 };

4.	 Read a number from the user:

Scanner sc = new Scanner(System.in);
System.out.print("Enter the number you want to find: ");
int ele = sc.nextInt();

5.	 Check whether the ele variable matches any of the items in the array sample. To
do this we iterate through the loop and check whether each element of the array
matches the element entered by the user:

for (int i = 0; i < 10; i++) {
 if (sample[i] == ele) {
 System.out.println("Match found at element " + i);
 break;
}
else
 {
 System.out.println("Match not found");
 break;
 }
}

128 | Data Structures, Arrays, and Strings

Your output should be similar to this:

Figure 6.3: Output of the NumberSearch class

Activity 21: Finding the Smallest Number in an Array

In this activity, we will take an array of 20 unsorted numbers and loop through the array
to find the smallest number.

The steps are as follows:

1.	 Create a class called ExampleArray and create the main method.

2.	 Create an array made up of 20 floating points as follows:

14, 28, 15, 89, 46, 25, 94, 33, 82, 11, 37, 59, 68, 27, 16, 45, 24, 33,
72, 51

3.	 Create a for-each loop through the array and find the minimum element in the
array.

4.	 Print out the minimum float.

Note

The solution for this activity can be found on page 335.

Data Structures and Algorithms | 129

Activity 22: Calculator with Array of Operators

In this activity you'll change your calculator to be more dynamic and make it easier to
add new operators. For that, instead of making all possible operators a different field,
you'll add them into an array and use a for-loop to determine what operator to use.

To complete this activity you'll need to:

1.	 Create a class Operators that will contain the logic of determining what operator
to use based out of a String. In this class create a public constant field default_
operator that is going to be an instance of the Operators class. Then create another
constant field called operators of type array of Operators and initialize it with an
instance of each of the operators you have.

2.	 In the Operators class, add a public static method called findOperator that receives
the operator as a String and return an instance of Operators. Inside it iterate over
the possible operators array and, using the matches method for each operator,
return the selected operator, or the default one if it didn't match any of them.

3.	 Create a new CalculatorWithDynamicOperator class with three fields: operand1 and
operator2 as double and operator of type Operators.

4.	 Add a constructor that receives three parameters: operand1 and operand2 of type
double and operator as a String. In the constructor, instead of having an if-else to
select the operator, use the Operators.findOperator method to set the operator
field.

5.	 Add a main method where you call the Calculator class multiple times and print
the results.

Note

The solution for this activity can be found on page 336.

Two-Dimensional Arrays

The arrays we have looked so far are referred to as one-dimensional because all the
elements can be considered to be on one row. We can also declare arrays that have
both columns and rows, just like a matrix or grid. Multidimensional arrays are arrays of
one-dimensional arrays we saw earlier. That is, you can consider one of the rows as a
one-dimensional array and then the columns are multiple one-dimensional arrays.

130 | Data Structures, Arrays, and Strings

When describing a multidimensional array, we say the array is a M-by-N
multidimensional array to denote that the array has M rows each of N length, for
example, an array of 6 by 7:

Figure 6.4: Graphical representation of a multi-dimensional array

In java, to create a two-dimensional array, we use the double square brackets, [M]
[N]. This notation creates a M-by-N array. We can then refer to an individual item in
the array by using the notation [i] [j] to access the element in the ith row and jth
column.

To create an 8-by-10 multidimensional array of doubles we do the following:

double[][] a = new double[8][10];

Java initializes all the numeric types to zeros and the Booleans to false. We could also
loop through the array and initialize each item manually to a value of our choice:

double[][] a = new double[8][10];

for (int i = 0; i < 8; i++)

for (int j = 0; j < 10; j++)

a[i][j] = 0.0;

Data Structures and Algorithms | 131

Exercise 16: Printing a Simple Two-Dimensional Array

To print a simple two-dimensional array, perform the following steps:

1.	 Set up the main method in a new class file known as Twoarray:

public class Twoarray {
 public static void main(String args[]) {
 }
}

2.	 Define the arr array by adding elements to the array:

int arr[][] = {{1,2,3}, {4,5,6}, {7,8,9}};

3.	 Create a nested for loop. The outer for loop is to print the elements row-wise, and
the inner for loop is to print the elements column-wise:

 System.out.print("The Array is :\n");
 for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {
 System.out.print(arr[i][j] + " ");
 }
 System.out.println();
 }

4.	 Run the program. Your output should be similar to this:

Figure 6.5: Output of the Twoarray class

132 | Data Structures, Arrays, and Strings

Most of the rest of the operations with arrays remain pretty much the same
as with one-dimensional arrays. One important detail to remember is that in a
multidimensional array, using a[i] returns a row that is a one-dimensional array. You
have to use a second index to access the exact location you wish, a[i][j].

Note

Java also allows you to create higher-order dimensional arrays, but dealing with
them becomes complex. This is because our human brain can easily comprehend
three-dimensional arrays but higher-order ones become hard to visualize.

Exercise 17: Creating a Three-Dimensional Array

Here we will create a three-dimensional (x,y,z) array of integers and initialize each
element to the product of its row, column, and depth (x * y * z) indices.

1.	 Create a new class called Threearray and set up the main method:

public class Threearray
{
 public static void main(String args[])
 {
 }
}

2.	 Declare an arr array of dimension [2][2][2]:

int arr[][][] = new int[2][2][2];

3.	 Declare the variables for iteration:

int i, j, k, num=1;

Data Structures and Algorithms | 133

4.	 Create three for loops nested within each other, in order to write values into the
three-dimensional array:

for(i=0; i<2; i++)
 {
 for(j=0; j<2; j++)
 {
 for(k=0; k<2; k++)
 {
 arr[i][j][k] = no;
 no++;
 }
 }
}

5.	 Print the elements out of the array using the three for loops that are nested within
each other:

for(i=0; i<2; i++)
 {
 for(j=0; j<2; j++)
 {
 for(k=0; k<2; k++)
 {
 System.out.print(arr[i][j][k]+ "\t");
 }
 System.out.println();
 }
 System.out.println();
 }
}
}
}
}
}

134 | Data Structures, Arrays, and Strings

The full code should look like this:

public class Threearray
{
 public static void main(String args[])
 {
 int arr[][][] = new int[2][2][2];
 int i, j, k, num=1;

 for(i=0; i<2; i++)
 {
 for(j=0; j<2; j++)
 {
 for(k=0; k<2; k++)
 {
 arr[i][j][k] = num;
 num++;
 }
 }
 }

 for(i=0; i<2; i++)
 {
 for(j=0; j<2; j++)
 {
 for(k=0; k<2; k++)
 {
 System.out.print(arr[i][j][k]+ "\t");
 }
 System.out.println();
 }
 System.out.println();
 }
 }
}

Data Structures and Algorithms | 135

The output is as follows:

Figure 6.6: Output of the Threearray class

The Arrays Class in Java

Java provides the Arrays class, which provides static methods we can use with our
arrays. It is often easier to use this class because we have access to methods to sort,
search, and much more. This class is available in the java.util.Arrays package, so
before we work with it, place this line at the top of any file you want to use it:

import java.util.Arrays;

In the following code, we can see how to use the Arrays class and a few methods that
we have at our disposal. All the methods are explained after the snippet:

import java.util.Arrays;

class ArraysExample {

public static void main(String[] args) {

double[] myArray = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};

System.out.println(Arrays.toString (myArray));

Arrays.sort(myArray);

System.out.println(Arrays.toString (myArray));

Arrays.sort(myArray);

int index = Arrays.binarySearch(myArray,7.0);

System.out.println("Position of 7.0 is: " + index);

}

}

136 | Data Structures, Arrays, and Strings

This is the output:

Figure 6.7: Output of the ArraysExample class

In this program, we have three example uses of the Arrays class. In the first example,
we see how we can use Arrays.toString() to easily print out the elements of an array
without the need of the for loop we were using earlier. In the second example, we saw
how we can use Arrays.sort() to quickly sort an array. If we were to implement such
a method on our own, we would use many more lines and be prone to making a lot of
errors in the process.

In the last example, we sort the arrays and then search for 7.0 by using Arrays.
binarySearch(), which uses a searching algorithm called binary search.

Note

Arrays.sort() uses an algorithm called double-pivot quicksort to sort large
arrays. For smaller arrays, it uses a combination of Insertion sort and Merge sort.
It is better to trust that Arrays.sort() is optimized to each use case instead
of implementing your own sorting algorithm. Arrays.binarySearch() uses an
algorithm called binary search to look for an item in the array. It first requires that
the array be sorted, and that is why we called Arrays.sort() first. Binary search
splits the sorted array into two equal halves recursively until it can no longer divide
the array, at which point that value is the answer.

Data Structures and Algorithms | 137

Insertion sort

Sorting is one of the fundamental applications of algorithms in computer science.
Insertion sort is a classic example of a sorting algorithm, and although it is inefficient
it is a good starting point when looking at arrays and the sorting problem. The steps in
the algorithm are as follows:

1.	 Take the first element in the array and assume it is already sorted since it is only
one.

2.	 Pick the second element in the array. Compare it with the first element. If it is
greater that the first element, then the two items are already sorted. If it is smaller
than the first element, swap the two elements so that they are sorted.

3.	 Take the third element. Compare it with the second element in the already
sorted subarray. If smaller then swap the two. The compare it again with the first
element. If it is smaller, then swap the two again so that it is the first. The three
elements will now be sorted.

4.	 Take the fourth element and repeat this process, swapping if it smaller than its left
neighbor, otherwise leaving it where it is.

5.	 Repeat this process for the rest of the items in the array.

6.	 The resultant array will be sorted.

Example

Take the array [3, 5, 8, 1, 9]:

1.	 Let's take the first element and assume it is sorted: [3].

2.	 Take the second element, 5. Since it is greater than 3, we leave the array as it is:
[3, 5].

3.	 Take the third element, 8. It is greater than 5, so there's no swapping here either:
[3, 5, 8].

4.	 Take the fourth element, 1. Since it is smaller than 8, we swap 8 and 1 to have: [3,
5, 1, 8].

5.	 Since 1 is still smaller than 5, we swap the two again: [3, 1, 5, 8].

6.	 1 is still smaller than 3. We swap again: [1, 3, 5, 8].

138 | Data Structures, Arrays, and Strings

7.	 It is now the smallest.

8.	 Take the last element, 9. It is greater than 8, so there's no swapping.

9.	 The whole array is now sorted : [1, 3, 5, 8, 9].

Exercise 18: Implementing Insertion Sort

In this exercise, we will implement the insertion sort.

1.	 Create a new class called InsertionSort, and inside this class, create the main
method:

public class InsertionSort {
public static void main(String[] args){
}
}

2.	 Inside our main method, create a sample array of random integers and pass it to
our sort method. Use the following array, [1, 3, 354, 64, 364, 64, 3, 4, 74, 2, 46]:

int[] arr = {1, 3,354,64,364,64, 3,4 ,74,2 , 46};
System.out.println("Array before sorting is as follows: ");
System.out.println(Arrays.toString(arr));

3.	 After calling sort() with our array, use a foreach loop to print each of the items in
the sorted array with a space in a single line:

sort(arr);
 System.out.print("Array after sort looks as follows: ");
 for (int i : arr) {
 System.out.print(i + " ");
 }
 }
}

4.	 Create a public static method called sort() that takes an array of integers and
returns void. This is the method that will have our sorting algorithm:

public static void sort(int[] arr){
}

Inside the sort method, implement the algorithm illustrated earlier.

Data Structures and Algorithms | 139

5.	 Define the integer num as the length of the array in the sort() method:

int num = arr.length;

6.	 Create a for loop that executes until i has reached the length of the array. Inside
the loop, create the algorithm that compares the numbers: k will be an integer
defined by the index i, and j will be index i-1. Add a while loop inside the for loop
that switches the integers at i and i-1 with the following conditions: j is greater
or equal to 0 and the integer at index j is greater than k:

for (int i = 1; i < num; i++) {
 int k = arr[i];
 int j = i - 1;
 while (j>= 0 && arr[j] > k) {
 arr[j + 1] = arr[j];
 j = j - 1;
 }
 arr[j + 1] = k;
 }
}

The completed code looks as follows:

import java.util.Arrays;
public class InsertionSort {
 public static void sort(int[] arr) {
 int num = arr.length;
 for (int i = 1; i < num; i++) {
 int k = arr[i];
 int j = i - 1;
 while (j>= 0 && arr[j] > k) {
 arr[j + 1] = arr[j];
 j = j - 1;
 }
 arr[j + 1] = k;
 }
 }
 public static void main(String[] args) {
 int[] arr = {1, 3, 354, 64, 364, 64, 3, 4, 74, 2, 46};
 System.out.println("Array before sorting is as follows: ");
 System.out.println(Arrays.toString(arr));
 sort(arr);
 System.out.print("Array after sort looks as follows: ");
 for (int i : arr) {

140 | Data Structures, Arrays, and Strings

 System.out.print(i + " ");
 }
 }
}

The output is as follows:

Figure 6.8: Output of the InsertionSort class

Java makes it easy for us to deal with commonly used data structures such as lists,
stacks, queues, and maps. It comes with the Java collections framework that provides
easy-to-use APIs when dealing with such data structures. A good example is when
we want to sort the elements in an array or want to search for a particular element
in the array. Instead of rewriting such methods from scratch on our own, Java comes
with methods that we can apply to our collections, as long as they conform to the
requirements of the collections framework. The classes of the collections framework
can hold objects of any type.

We will now look at a common class in the collections framework called ArrayList.
Sometimes we wish to store elements but are not sure of the number of items we are
expecting. We need a data structure to which we can add as many items as we wish and
remove some when we need to. The arrays we have seen so far require us to specify the
number of items when creating it. After that, we cannot change the size of that array
unless we create a whole new array. An ArrayList is a dynamic list that can grow and
shrink as needed; they are created with an initial size and when we add or remove an
item, the size is automatically enlarged or shrank as needed.

Creating an ArrayList and Adding Elements

When creating an ArrayList, you need to specify the type of objects to be stored.
Array lists only support storage of reference types (that is, objects) and don't support
primitive types. However, since Java provides wrapper classes for all the primitive
types, you can use the wrapper classes to store the primitives in an ArrayList. To
append an item to the end of the list, we use the add() method with the object to be
added as a parameter. ArrayList also has a method to get the number of items in the list
called size(). The method returns an integer, which is the number of items in the list:

import java.util.ArrayList;

public class Person {

public static void main(String[] args){

Data Structures and Algorithms | 141

Person john=new Person();

//Initial size of 0

ArrayList<Integer> myArrayList = new ArrayList<>();

System.out.println("Size of myArrayList: "+myArrayList.size());

//Initial size of 5

ArrayList<Integer> myArrayList1 = new ArrayList<>(5);

myArrayList1.add(5);System.out.println("Size of myArrayList1: "+myArrayList1.
size());

//List of Person objectsArrayList<Person> people = new ArrayList<>();

people.add(john);System.out.println("Size of people: "+people.size());

 }

}

The output is as follows:

Figure 6.9: Output of the Person class

In the first example, we create an ArrayList of size 0 called myArrayList holding
Integer types. In the second example, we create an ArrayList of size 5 of Integer types.
Although the initial size is 5, when we add more items, the list will increase in size
automatically. In the last example, we create an ArrayList of Person objects. From these
three examples, the following should be adhered to when creating an array list:

1.	 Import the ArrayList class from the java.util package.

2.	 Specify the data type of the objects between <>.

3.	 Specify the name of the list.

4.	 Use the new keyword to create a new instance of ArrayList.

142 | Data Structures, Arrays, and Strings

Following are some ways to add elements to the ArrayList:

myArrayList.add(new Integer(1));

myArrayList1.add(1);

people.add(new Person());

In the first example, we create a new Integer object and add it to the list. The new
object will be appended to the end of the list. In the second line, we inserted 1 but
because ArrayList accepts only objects, the JVM will autobox the 1 to an integer
instance with a value of 1 instead. In the last example, we also create a new object of
the Person class and appended it to the list. We might also wish to insert the element
at a specific index instead of appending at the end of the list in the same class. Here we
specify the index to insert the object and the object to be inserted:

myArrayList1.add(1, 8);

System.out.println("Elements of myArrayList1: " +myArrayList1.toString());

The output is as follows:

Figure 6.10: Output after adding an element to the list

Note

Inserting an object at an index less that 0 or greater than the size of the array list
will result in an IndexOutOfBoundsException and your program will crash. Always
check the size of the list before specifying the index to insert.

Replacing and Removing Elements

ArrayList also allows us to replace an element at a specified location with a new
element. Append the following in the previous code and observe the output:

myArrayList1.set(1, 3);

System.out.println("Elements of myArrayList1 after replacing the element: "
+myArrayList1.toString());

Data Structures and Algorithms | 143

Here's the output:

Figure 6.11: List after replacing the element

Here we are replacing the element at index 2 with a new Integer object with a value of
3. This method also throws IndexOutOfBoundsException if we try to replace the element
at an index greater than the size of the list or an index below zero.

If you also wish to remove a single element or all of the elements, ArrayList supports
that too:

//Remove at element at index 1

myArrayList1.remove(1);

System.out.println("Elements of myArrayList1 after removing the element: "
+myArrayList1.toString());

//Remove all the elements in the list

myArrayList1.clear();

System.out.println("Elements of myArrayList1 after clearing the list: "
+myArrayList1.toString());

Here's the output:

Figure 6.12: List after clearing all elements

144 | Data Structures, Arrays, and Strings

To get an element at a specific index, use the get() method, passing in the index. The
method returns an object:

myArrayList1.add(10);

Integer one = myArrayList1.get(0);

System.out.println("Element at given index: "+one);

The output is as follows:

Figure 6.13: Output of the element at the given index

This method will also throw IndexOutOfBoundsException if the index passed is invalid.
To avoid the exception, always check the size of the list first. Consider the following
example:

Integer two = myArrayList1.get(1);

Figure 6.14: IndexOutOfBounds exception message

Exercise 19: Adding, Removing, and Replacing Elements in an Array

Arrays are basic, but useful ways of storing information. In this exercise we will look at
how to add and subtract elements in a list of students:

1.	 Import the ArrayList and List class for java.util:

import java.util.ArrayList;
import java.util.List;

2.	 Create a public class and the main method:

public class StudentList {
 public static void main(String[] args) {

Data Structures and Algorithms | 145

3.	 Define the students List as new ArrayList that contains strings:

List<String> students = new ArrayList<>();

4.	 Add the names of four students:

students.add("Diana");
students.add("Florence");
students.add("Mary");
students.add("Betty");

5.	 Print out the array and remove the last student:

System.out.println(students);
students.remove("Betty");

6.	 Print out the array:

System.out.println(students);

7.	 Replace the first student (at index 0):

students.set(0, "Jean");

8.	 Print out the array:

System.out.println(students);
}
}

The output is as follows:

Figure 6.15: Output of the StudentList class

Iterators

The collections framework also provides iterators that we can use to loop through the
elements of an ArrayList. Iterators are like pointers to the items in the list. We can
use iterators to see if there is a next element in the list and then retrieve it. Consider
iterators as loops for the collections framework. We can use the array.iterator()
object with hasNext() to loop through an array.

146 | Data Structures, Arrays, and Strings

Exercise 20: Iterating through an ArrayList

In this exercise, we will create an ArrayList of the cities in the world and use an iterator
to print out the cities in the whole ArrayList one at a time:

1.	 Import the ArrayList and the Iterator packages:

import java.util.ArrayList;
import java.util.Iterator;

2.	 Create a public class and the main method:

public class Cities {
public static void main(String[] args){

3.	 Create a new array and add the city names:

ArrayList<String> cities = new ArrayList<>();
cities.add("London");
cities.add("New York");
cities.add("Tokyo");
cities.add("Nairobi");
cities.add("Sydney");

4.	 Define an iterator containing strings:

Iterator<String> citiesIterator = cities.iterator();

5.	 Loop through the iterator with hasNext(), printing out each city with next():

while (citiesIterator.hasNext()){
String city = citiesIterator.next();
System.out.println(city);
}
}
}

The output is as follows:

Figure 6.16: Output of the Cities class

Data Structures and Algorithms | 147

In this class, we created a new ArrayList holding strings. We then inserted a few names
and created an iterator called citiesIterator. Classes in the collections framework
support the iterator() method, which returns an iterator to use with the collection.
The iterator has the hasNext() method, which returns true if there is another element in
the list after where we currently are, and a next() method that returns that next object.
next() returns an object instance and then implicitly downcasts it to a string because
our citiesIterator was declared to hold string types: Iterator<String> citiesIterator.

Figure 6.17: Working of next() and hasNext()

Instead of using iterators for looping, we can also use a normal for loop to achieve the
same goal:

for (int i = 0; i < cities.size(); i++){

String name = cities.get(i);

System.out .println(name);

}

The output is as follows:

Figure 6.18: Output of the Cities class using a for loop

148 | Data Structures, Arrays, and Strings

Here, we are using the size() method to check the size of the list and get() to retrieve
an element at a given index. There is no need to cast the object to string as Java already
knows we are dealing with a list of strings.

Similarly, we can use a for-each loop, which is more concise but achieves the same goal:

for (String city : cities) {

System.out.println(city);

}

The output is as follows:

Figure 6.19: Output of the Cities class using a for-each loop

Activity 23: Working with ArrayList

We have several students we wish to keep track in our program. However, we are not
sure of the exact number currently but expect the number to change as more and more
students use our program. We also wish to also be able to loop over our students and
print their names. We will create an ArrayList of objects and use an iterator to loop over
the ArrayList:

These steps will help you complete the activity:

1.	 Import ArrayList and Iterator from java.util.

2.	 Create a new class called StudentsArray.

3.	 In the main method, define an ArrayList of Student objects. Insert four student
instances, instantiated with the different kinds of constructors we created earlier.

4.	 Create an iterator for your list and print the name of each student.

Strings | 149

5.	 Finally, clear all the objects from the ArrayList.

The output will be as follows:

Figure 6.20: Output of the StudentsArray class

Note

ArrayList is an important class to know, as you will find yourself using it in your
day-to-day life. The class has more capabilities not covered here, such as swapping
two elements, sorting the items, and much more.

Note

The solution for this activity can be found on page 338.

Strings
Java has the string data type, which is used to represent a sequence of characters.
String is one of the fundamental data types in Java and you will encounter it in almost
all programs.

A string is simply a sequence of characters. "Hello World", "London", and "Toyota" are
all examples of strings in Java. Strings are objects in Java and not primitive types. They
are immutable, that is, once they are created, they cannot be modified. Therefore, the
methods we will consider in the following sections only create new string objects that
contain the result of the operation but don't modify the original string object.

150 | Data Structures, Arrays, and Strings

Creating a String

We use double quotes to denote a string, compared to single quotes for a char:

public class StringsDemo {

 public static void main(String[] args) {

 String hello="Hello World";

 System.out.println(hello);

 }

}

The output is as follows:

Figure 6.21: Output of the StringsDemo class

The hello object is now a string and is immutable. We can use delimiters in strings,
such as \n to represent a newline, \t to present a tab, or \r to represent a return:

String data = '\t'+ "Hello"+ '\n'+" World";

System.out.println(data);

The output is as follows:

Figure 6.22: Output using delimiters

We have a tab before Hello and then a newline before World, which prints World on the
next line.

Concatenation

We can combine more than one string literal in a process commonly referred to as
concatenation. We use the + symbol to concatenate two strings as follows:

String str = "Hello " + "World";

System.out.println(str);

The output is as follows:

Hello World

Strings | 151

Concatenation is often used when we want to substitute a value that will be calculated
at runtime. The code will look as follows:

String userName = getUserName(); // get the username from an external
location like database or input field

System.out.println(" Welcome " + userName);

In the first line, we get userName from a method that we haven't defined here. Then we
print out a welcome message, substituting the userName with userName we got earlier.

Concatenation is also important when we want to represent a string that spans more
than one line:

String quote = "I have a dream that " +

"all Java programmers will " +

"one day be free from " +

"all computer bugs!";

System.out.println(quote);

Here is the output:

Figure 6.23: Concatenated string

In addition to the + symbol, Java also provides the concat() method for concatenating
two string literals:

String wiseSaying = "Java programmers are " . concat("wise and
knowledgeable").concat(".");

System.out.println(wiseSaying);

Here is the output:

Figure 6.24: Concatenated string using concat()

152 | Data Structures, Arrays, and Strings

String Length and Characters

String provides the length() method to get the number of characters in a string. The
number of characters is the count of all the valid java characters, including newlines,
spaces, and tabs:

String saying = "To be or not to be, that is the question."

int num = saying.length();

System.out.println(num);

Here is the output:

4

To access a character at a given index, use the charAt(i). This method takes the index
of the character you want and returns a char of it:

char c = quote.charAt(7);

System.out.println(c);

Here is the output:

r

Calling charAt(i) with an index greater than the number of characters in
the string or a negative number will cause your program to crash with the
StringIndexOutOfBoundsException exception:

char d = wiseSaying.charAt(-3);

Figure 6.25: StringIndexOutOfBoundsException message

We can also convert a string to an array of chars by using the getChars() method. This
method returns an array of chars that we can use. We can convert the whole string or
part of the string:

char[] chars = new char [quote.length()];

quote.getChars(0, quote.length(), chars, 0);

System.out.println(Arrays.toString (chars));

Strings | 153

The output is as follows:

Figure 6.26: Characters array

Activity 24: Input a String and Output Its Length and as an Array

In order to check that names being inputted into a system aren't too long, we can
use some of the features mentioned previously to count the length of a name. In this
activity, you will write a program that will input a name and then export the length of
the name and the first initial.

The steps are as follows:

1.	 Import the java.util.Scanner package.

2.	 Create a public class called nameTell and a main method.

3.	 Use the Scanner and nextLine to input a string at the prompt "Enter your name:".

4.	 Count the length of the string and find the first character.

5.	 Print the output as follows:

Your name has 10 letters including spaces.
The first letter is: J

The output will be as follows:

Figure 6.27: Output of the NameTell class

Note

The solution for this activity can be found on page 340.

154 | Data Structures, Arrays, and Strings

Activity 25: Calculator Reads from Input

With all the calculator logic encapsulated we will write a command line calculator
where you give the operator, the two operands and it will show you the result. A
command line application like that starts with a while loop that never ends. Then reads
the input from the user and makes decisions based on that.

For this activity you'll write an application that has only two choices: exit or execute an
operation. If the user types Q (or q), the application will exit the loop and finish. Anything
else will be considered an operation. You'll use the Operators.findOperator method to
find and operator, then request to more inputs from the user. Each will be converted
to a double (using Double.parse or Scanner.nextDouble). Operate on them using the
Operator found and print the result to the console.

Because of the infinite loop, the application will start over, asking for another user
action.

To complete this activity you'll have to:

1.	 Create a new class called CommandLineCalculator with a main method in it.

2.	 Use an infinite loop to keep the application running until the user asks to exit.

3.	 Collect the user input to decide which action to execute. If the action is Q or q, exit
the loop.

4.	 If the action is anything else, find an operator and request two other inputs that
will be the operands covering them to double.

5.	 Call the operate method on the Operator found and print the result to the console.

Note

The solution for this activity can be found on page 341.

Conversion

Sometimes we might wish to convert a given type to a string so we can print it out,
or we might want to convert a string to a given type. An example is when we wish to
convert the string "100" to the integer 100, or convert the integer 100 to string "100".

Concatenating a primitive data type to a string using the + operator will return a string
representation of that item.

Strings | 155

For example, this is how to convert between an integer and a string:

String str1 = "100";

Integer number = Integer.parseInt(str1);

String str2 = number.toString();

System.out.println(str2);

The output is as follows:

100

Here we used the parseInt() method to get the integer value of the string, and then
used the toString() method to convert the integer back to a string.

To convert an integer to a string, we concatenate it with an empty String "":

int a = 100;

String str = "" + a;

The output is as follows:

100

Note

Every object in Java has a string representation. Java provides the toString()
method in the Object superclass, which we can override in our classes to provide a
string representation of our classes. String representations are important when we
want to print our class in string format.

Comparing Strings and Parts of Strings

The String class supports a number of methods for comparing strings and portions of
strings.

Comparing two strings for equality:

String data= "Hello";

String data1 = "Hello";

if (data == data1){

System. out .println("Equal");

}else{

System. out .println("Not Equal");

}

156 | Data Structures, Arrays, and Strings

The output is as follows:

Equal

Return true if this string ends with or begins with a given substring:

boolean value= data.endsWith("ne");

System.out.println(value);

boolean value1 = data.startsWith("He");

System.out.println(value);

The output is as follows:

False

True

StringBuilder

We have stated that strings are immutable, that is, once they are declared they
cannot be modified. However, sometimes we wish to modify a string. In such cases,
we use the StringBuilder class. StringBuilder is just like a normal string except it is
modifiable. StringBuilder also provides extra methods, such as capacity(), which
returns the capacity allocated for it, and reverse(), which reverses the characters in it.
StringBuilder also supports the same methods in the String class, such as length() and
toString().

Exercise 21: Working with StringBuilder

This exercise will append three strings to create one, then print out its length, capacity,
and reverse:

1.	 Create a public class called StringBuilderExample, then create a main method:

import java.lang.StringBuilder;
public class StringBuilder {

public static void main(String[] args) {

2.	 Create a new StringBuilder() object called stringbuilder:

StringBuilder stringBuilder = new StringBuilder();

Strings | 157

3.	 Append three phrases:

stringBuilder.append("Java programmers ");
stringBuilder.append("are wise ");
stringBuilder.append("and knowledgeable");

4.	 Print out the string using the \n as a line break:

System.out.println("The string is \n" + stringBuilder.toString());

5.	 Find the length of the string and print it:

int len = stringBuilder.length();
System.out.println("The length of the string is: " + len);

6.	 Find the capacity of the string and print it:

int capacity = stringBuilder.capacity();
System.out.println("The capacity of the string is: " + capacity);

7.	 Reverse the string and print it out using the line break:

stringBuilder.reverse();
 System.out.println("The string reversed is: \n" + stringBuilder);
}
}

Here is the output:

Figure 6.28: Output of StringBuilder class

158 | Data Structures, Arrays, and Strings

In this exercise, we created a new instance of StringBuilder with the default capacity
of 16. We then inserted a few strings and then printed out the entire string. We also got
the number of characters in the builder by using length(). We then got the capacity of
StringBuilder. The capacity is the number of characters allocated for StringBuilder.
It is usually higher than or equal to the length of the builder. We finally reversed all
the characters in the builder and then print it out. In the last print out, we didn't use
stringBuilder.toString() because Java implicitly does that for us.

Activity 26: Removing Duplicate Characters from a String

In order to create secure passkeys, we have decided that we need to create lines of
strings that do not contain duplicate characters. In this activity, you will be creating a
program that takes in a string, removes any duplicate characters, and then prints out
the result.

One way of doing this is to loop through all the characters of the string and for each
character, we loop through the string again, checking if the character already exists. If
we find a duplicate, we immediately remove it. This algorithm is a brute-force approach
and not the best when it comes to running time. In fact, its running time is exponential.

These steps will help you complete the activity:

1.	 Create a new class named Unique and inside it create a main method. Leave it
empty for now.

2.	 Create a new method removeDups called that takes and returns a string. This is
where our algorithm will go. This method should be public and static.

3.	 Inside the method, check whether the string is null, empty, or has a length of
1. If any of these cases are true, then just return the original string since there
checking is not needed.

4.	 Create a string called result that is empty. This will be unique string to be
returned.

5.	 Create for loop from 0 to the length of the string passed into the method.

6.	 Inside the for loop, get the character at the current index of the string. Name the
variable c.

7.	 Also create a boolean called isDuplicate and initialize it to false. When we
encounter a duplicate, we will change it to true.

8.	 Create another nested for loop from 0 to the length() of result.

9.	 Inside the for loop, also get the character at the current index of result. Name it d.

10.	 Compare c and d. If they are equal, then set isDuplicate to true and break.

Summary | 159

11.	 Close the inner for loop and go inside the first for loop.

12.	 Check if isDuplicate is false. If it is, then append c to result.

13.	 Go outside the first for loop and return the result. That concludes our algorithm.

14.	 Go back to our empty main method. Create a few test strings of the following:

aaaaaaa
aaabbbbb
abcdefgh
Ju780iu6G768

15.	 Pass the strings to our method and print out the result returned from the method.

16.	 Check the result. Duplicate characters should be removed in the returned strings.

The output should look like this:

Figure 6.29: Expected output of Unique class

Note

The solution for this activity can be found on page 342.

Summary
This lesson brings us to the end of our discussion on the core principles of object-
oriented programming. In this lesson, we have looked at data types, algorithms, and
strings.

We've seen how an array is an ordered collection of items of the same type. Arrays are
declared with square brackets, [], and their size cannot be modified. Java provides
the Arrays class from the collections framework that has extra methods we can use on
arrays.

We also saw the concept of Arraylist and string. Java provides the StringBuilder class,
which is basically a modifiable string. stringbuilder has length and capacity functions.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Use collections to process data

•	 Compare objects in different ways

•	 Sort collections of objects

•	 Use collections to build efficient algorithms

•	 Use the best-suited collection for each use case

The Java Collections
Framework and

Generics

7

162 | The Java Collections Framework and Generics

Introduction
In previous lessons, you learned how objects can be grouped together in arrays to
help you process data in batches. Arrays are really useful but the fact that they have a
static length makes them hard to deal with when loading an unknown amount of data.
Also, accessing objects in the array requires you to know the array's index, otherwise
traversing the whole array is necessary to find the object. You also learned briefly about
ArrayList, which behaves like an array that can dynamically change its size to support
more advanced use cases.

In this lesson, you'll learn how ArrayList actually works. You'll also learn about the Java
Collections Framework, which includes some more advanced data structures for some
more advanced use cases. As part of this journey, you'll also learn how to iterate on
many data structures, compare objects in many different ways, and sort collections in
an efficient way.

You'll also learn about generics, which is a powerful way of getting help from the
compiler on using collections and other special classes.

Reading Data from Files
Before we begin, let's go through some fundamentals that we're going to be using in the
next sections of this lesson.

Binary versus Text Files

There are many types of files in your computer: executable files, configuration files,
data files, and so on. Files can be split into two basic groups: binary and text.

Binary files are used when human interaction with the files will only be indirect, such
as executing an application (an executable file), or a spreadsheet file that loads inside
Excel. If you try to look inside these files, you'll see a bunch of unreadable characters.
This type of file is very useful because they can be made compact to take up less space
and be structured so that computers can read them quickly.

Text files, on the other hand, contain readable characters. If you open them with a text
editor, you can see what's in there. Not all of them are meant for humans to read and
some formats are almost impossible to understand. But the majority of text files can be
read and easily edited by humans.

Reading Data from Files | 163

CSV Files

A comma-separated value (CSV) file is a very common type of text file that is used to
transport data between systems. CSVs are useful because they are easy to generate and
easy to read. The structure of such a file is very simple:

•	 One record per line.

•	 The first line is the header.

•	 Each record is a long string where values are separated from others using a
comma (values can also be separated by other delimiters).

The following is a piece of a file that was extracted from the sample data we'll be using:

id,name,email

10,Bill Gates,william.gates@microsoft.com

30,Jeff Bezos,jeff.bezos@amazon.com

20,Marc Benioff,marc.benioff@salesforce.com

Reading Files in Java

Java has two basic sets of classes that are used to read files: Stream, to read binary
files, and Reader, to read text files. The most interesting part of how the io package is
designed is that Stream and Reader can be combined to incrementally add functionality
on top of each other. This capability is called piping because it resembles the process of
connecting multiple pipes to one another.

We're going to be using a simple example to explain these, along with the help of
FileReader and BufferedReader.

FileReader reads characters one at a time. BufferedReader can buffer these characters
to read one line at a time. That simplifies things for us when reading a CSV because we
can just create a FileReader instance, then wrap it with BufferedReader, and then read
line by line from the CSV file:

Figure 7.1: Illustration of the process of reading from a CSV file

164 | The Java Collections Framework and Generics

Exercise 22: Reading a CSV File

In this exercise, you'll use FileReader and BufferedReader to read lines from a CSV file,
split them, and process them like a record:

1.	 Create a file called ReadCSVFile.java and add a class with the same name, and add
a main method to it:

public class ReadCSVFile {
 public static void main(String [] args) throws IOException {

2.	 To start, you need to add a String variable that will get the name of the file to be
loaded from the command-line argument:

String fileName = args[0];

3.	 Then, you create a new FileReader and pipe it into BufferedReader inside a
try-with-resource, as in the following code:

FileReader fileReader = new FileReader(fileName);
try (BufferedReader reader = new BufferedReader(fileReader)) {

4.	 Now that you have a file open to read, you can read it line by line. BufferedReader
will give you a new line all the way to the end of the file. When the file ends, it will
return null. Because of that, we can declare a variable line and set it in the while
condition. Then, we need to immediately check whether it's null. We also need a
variable that will count the number of lines we read from the file:

String line;
int lineCounter = -1;
while ((line = reader.readLine()) != null) {

5.	 Inside the loop, you increment the line count and ignore line zero, which is the
header. That's why we initialized lineCounter with -1 instead of zero:

lineCounter++;
// Ignore the header
if (lineCounter == 0) {
 continue;
}

Reading Data from Files | 165

6.	 Finally, you split the line using the split method from the String class. That
method receives a separator, which in our case is a comma:

String [] split = line.split(",");
System.out.printf("%d - %s\n", lineCounter, split[1]);

Note

You can see how FileReader is passed into BufferedReader and then never
accessed again. That's because we only want the lines and we don't care about the
intermediate process of transforming characters into lines.

Congratulations! You wrote an application that can read and parse a CSV. Feel free to
dig deeper into this code and understand what happens when you change the initial
line count value.

The output is as follows:

1 - Bill Gates
2 - Jeff Bezos
3 - Marc Benioff
4 - Bill Gates
5 - Jeff Bezos
6 - Sundar Pichai
7 - Jeff Bezos
8 - Larry Ellison
9 - Marc Benioff
10 - Larry Ellison
11 - Jeff Bezos
12 - Bill Gates
13 - Sundar Pichai
14 - Jeff Bezos
15 - Sundar Pichai
16 - Marc Benioff
17 - Larry Ellison
18 - Marc Benioff
19 - Jeff Bezos
20 - Marc Benioff
21 - Bill Gates
22 - Sundar Pichai
23 - Larry Ellison
24 - Bill Gates

166 | The Java Collections Framework and Generics

25 - Larry Ellison
26 - Jeff Bezos
27 - Sundar Pichai

Building a CSV Reader

Now that you know how to read data from a CSV, we can start thinking about
abstracting that logic away into its own pipe. Just like BufferedReader allows you to read
a text file line-by-line, the CSV reader allows you to read a CSV file record by record. It
builds on top of the BufferedReader functionality and adds the logic of splitting the line
using a comma as the separator. The following diagram shows how our new pipeline will
look with the CSV reader:

Figure 7.2: CSVReader can be added to the chain to read records one by one

Exercise 23: Building a CSV Reader

In this exercise, we'll follow the piping pattern and build a simple CSVReader that we'll be
using throughout the rest of this lesson:

1.	 Create a new file called CSVReader.java and open it in your editor.

2.	 In this file, create a public class that is called CSVReader and implements the
Closeable interface:

public class CSVReader implements Closeable {

3.	 Add two fields, one field to store BufferedReader as final where we're going to
read from, and another to store the line count:

private final BufferedReader reader;
private int lineCount = 0;

Reading Data from Files | 167

4.	 Create a constructor that receives BufferedReader and set it to the field. This
constructor will also read and discard the first line of the passed-in reader, since
that is the header and we don't care about them in this lesson:

public CSVReader(BufferedReader reader) throws IOException {
 this.reader = reader;

 // Ignores the header
 reader.readLine();
}

5.	 Implement the close method by just calling the close method from the underlying
reader:

public void close() throws IOException {
 this.reader.close();
}

6.	 Just as BufferedReader has a readLine method, our CSVReader class will have a
readRecord method, which will read the line from BufferedReader and then return
that string, split by a comma. In this method, we'll keep track of how many lines we
have read so far. We also need to check whether the reader returned a line or not
since it can return null, which means it's finished reading the file and has no more
lines to give us. If that's the case, we'll just follow the same pattern and return null:

public String[] readRow() throws IOException {
 String line = reader.readLine();
 if (line == null) {
 return null;
 }
 lineCount++;

 return line.split(",");
}

Note

In a more elaborate implementation, we could store the header to expose extra
functionalities for the user of the class, such as fetch value by header name. We
could also do some tidying and validation on the line to ensure no extra spaces are
wrapping the values and that they contain the expected amount of values (same as
the header count).

168 | The Java Collections Framework and Generics

7.	 Expose linecount with a getter:

public int getLineCount() {
 return lineCount;
}

8.	 Now your new CSVReader is ready to be used! Create a new file called
UseCSVReaderSample.java, with a class of the same name and a main method:

public class UseCSVReaderSample {
 public static void main (String [] args) throws IOException {

9.	 Following the same pattern we used before to read the lines from the CSV, now
you can use your CSVReader class to read from the CSV file, adding the following to
your main method:

String fileName = args[0];
FileReader fileReader = new FileReader(fileName);
BufferedReader reader = new BufferedReader(fileReader);
try (CSVReader csvReader = new CSVReader(reader)) {
 String[] row;
 while ((row = csvReader.readRow()) != null) {
 System.out.printf("%d - %s\n", csvReader.getLineCount(), row[1]);
 }
}

Note

From the preceding snippet, you can see that your code is now much simpler. It's
focused on delivering the business logic (printing the second value with line count)
and doesn't care about reading a CSV. This is a great practical example of how to
create your readers to abstract away logic about processing the data coming from
files.

10.	 For the code to compile, you'll need to add the imports from the java.io package:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

Reading Data from Files | 169

The output is as follows:

1 - Bill Gates
2 - Jeff Bezos
3 - Marc Benioff
4 - Bill Gates
5 - Jeff Bezos
6 - Sundar Pichai
7 - Jeff Bezos
8 - Larry Ellison
9 - Marc Benioff
10 - Larry Ellison
11 - Jeff Bezos
12 - Bill Gates
13 - Sundar Pichai
14 - Jeff Bezos
15 - Sundar Pichai
16 - Marc Benioff
17 - Larry Ellison
18 - Marc Benioff
19 - Jeff Bezos
20 - Marc Benioff
21 - Bill Gates
22 - Sundar Pichai
23 - Larry Ellison
24 - Bill Gates
25 - Larry Ellison
26 - Jeff Bezos
27 - Sundar Pichai

Arrays

As you have already learned from previous lessons, arrays are really powerful, but their
static nature makes things difficult. Suppose you have a piece of code that loads users
from some database or CSV file. The amount of data that will come from the database or
file is unknown until you finish loading all the data. If you're using an array, you would
have to resize the array on each record read. That would be too expensive because
arrays can't be resized; they need to be copied over and over.

170 | The Java Collections Framework and Generics

The following is some code that illustrates resizing an array:

// Increase array size by one

// Create new array

User[] newUsers = new User[users.length + 1];

// Copy data over

System.arraycopy(users, 0, newUsers, 0, users.length);

// Switch

users = newUsers;

To be more efficient, you could initialize the array with a specified capacity and trim the
array after finishing reading all the records to ensure that it doesn't contain any extra
empty rows in it. You would also need to ensure that the array has enough capacity
while you're adding new records into it. If not, you'll have to make a new array with
enough room and copy data over.

Exercise 24: Reading Users from a CSV File into an Array

In this exercise, you'll learn how to use an array to store an unlimited amount of data
coming from a data source. In our case, we'll be using the same users CSV that we've
been using throughout the previous sections:

1.	 Create a file called User.java and add a class with the same name. This class
will have three fields: id, name, and email. It will also have a constructor that can
initialize it with all three values. We'll use this class to represent a User:

public class User {
 public int id;
 public String name;
 public String email;
 public User(int id, String name, String email) {
 this.id = id;
 this.name = name;
 this.email = email;
 }
}

Reading Data from Files | 171

2.	 At the beginning of the User class, add a static method that will create a user from
values coming as an array of strings. This will be useful when creating a User from
the values read from a CSV:

public static User fromValues(String [] values) {
 int id = Integer.parseInt(values[0]);
 String name = values[1];
 String email = values[2];
 return new User(id, name, email);
}

3.	 Create another file called IncreaseOnEachRead.java and add a class with the same
name and a main method that will pass the first argument from the command line
to another method called loadUsers. Then, print the number of users loaded, like
so:

public class IncreaseOnEachRead {
 public static final void main (String [] args) throws Exception {
 User[] users = loadUsers(args[0]);
 System.out.println(users.length);
 }
}

4.	 In this same file, add another method called loadUsers, which will return an array
of users and receive a String called fileToRead, which will be the path to the CSV
file to read:

public static User[] loadUsers(String fileToReadFrom) throws Exception {

5.	 In this method, start by creating an empty users array and returning it at the end:

User[] users = new User[0];
return users;

6.	 Between those two lines, add the logic to read the CSV record by record using
your CSVReader. For each record, increase the size of the array by one and then add
a newly created User to the last position on the array:

BufferedReader lineReader = new BufferedReader(new
FileReader(fileToReadFrom));
try (CSVReader reader = new CSVReader(lineReader)) {
 String [] row = null;
 while ((row = reader.readRow()) != null) {
 // Increase array size by one
 // Create new array
 User[] newUsers = new User[users.length + 1];

172 | The Java Collections Framework and Generics

 // Copy data over
 System.arraycopy(users, 0, newUsers, 0, users.length);
 // Swap
 users = newUsers;

 users[users.length - 1] = User.userFromRow(row);
 }
}

The output is as follows:

27

You now can read from the CSV file and have a reference to all users loaded from it.
This implements the approach of increasing the array on each record read. How would
you go about implementing the more efficient approach of initializing the array with
some capacity and increasing it as needed and trimming it at the end?

Activity 27: Read Users from CSV Using Array with Initial Capacity

In this activity you're going to read users from the CSV similar to how you did in the
previous exercise, but instead of growing the array on every read, create the array with
an initial capacity and grow it as necessary. At the end, you'll need to check if the array
has empty spaces left and shrink it to return an array with exact size as the number of
users loaded.

To complete this activity you'll need to:

1.	 Initialize an array with an initial capacity.

2.	 Read the CSV from the path passed in from the command line in a loop, create
users and add them to the array.

3.	 Keep track of how many users you loaded in a variable.

4.	 Before adding Users to the array, you'll need to check the size of the array and
grow it if necessary.

5.	 At the end, shrink the array as necessary to return the exact number of users
loaded.

Note

The solution for this activity can be found on page 345.

The Java Collections Framework | 173

The Java Collections Framework
When building complex applications, you need to manipulate collections of objects in
different ways. Initially, the core Java library was limited to only three options: Array,
Vector, and Hashtable. All of them are powerful in their own way, but with time, it
became clear that wasn't enough. People started building their own frameworks to deal
with more complex use cases such as grouping, sorting, and comparing.

The Java Collections Framework was added to Java Standard Edition to reduce
programming effort and improve the performance and interoperability of Java
applications by providing data structures and algorithms that are efficient and easy to
use. This set of interfaces and implementing classes were designed to provide an easy
way for Java developers to build APIs that could be shared and reused.

Vectors

Vectors solve the problem of arrays being static. They provide a dynamic and scalable
way of storing many objects. They grow as you add new elements, can be prepared to
receive large numbers of elements, and it is easy to iterate over elements.

To take care of the internal array without having to resize it unnecessarily, a vector
initializes it with some capacity and keeps track of what position the last element was
added to using a pointer value, which is just an integer that marks that position. By
default, the initial capacity is 10. When you add more than the capacity of the array, the
internal array is copied over to a new one that is bigger by some factor, leaving more
empty space open so that you can add extra elements. The copying process is just like
you did manually with the array in Exercise 24: Reading Users from a CSV File into an
Array. The following is an illustration of how that works:

Figure 7.3: Illustration of Vectors

174 | The Java Collections Framework and Generics

Using vectors was the way to get dynamic arrays in Java before the Java Collections
Framework. However, there were two major problems:

•	 Lack of a defined interface that was easy to understand and extend

•	 Fully synchronized, which means it is protected against multi-threaded code

After the Java Collections Framework, vectors were retrofitted to comply with the new
interfaces, solving the first problem.

Exercise 25: Reading Users from a CSV File into a Vector

Since a vector solves the problem of growing and shrinking as needed, in this exercise,
we'll rewrite the previous exercise, but instead of handling the size of the array, we'll
delegate to a vector. We'll also start building a UsersLoader class, which we'll share in all
the future exercises:

1.	 Create a file called UsersLoader.java and add a class with the same name in it:

public class UsersLoader {
}

2.	 You'll use this class to add the shared methods so that you can load users from
CSV files in future lessons. The first one you'll write is going to load users from a
CSV into a vector. Add a public static method that returns a Vector. In this method,
instantiate Vector and return it at the end:

private static Vector loadUsersInVector(String pathToFile)
 throws IOException {
 Vector users = new Vector();
 return users;
}

3.	 Between creating Vector and returning it, load the data from the CSV and add it to
Vector:

BufferedReader lineReader = new BufferedReader(new
FileReader(pathToFile));
try (CSVReader reader = new CSVReader(lineReader)) {
 String [] row = null;
 while ((row = reader.readRow()) != null) {
 users.add(User.fromValues(row));
 }
}

The Java Collections Framework | 175

4.	 Add the imports that are required for this file to compile:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.Vector;

5.	 Create a file called ReadUsersIntoVector.java and add a class with the same name
and a main method in it:

public class ReadUsersIntoVector {
 public static void main (String [] args) throws IOException {
 }
}

6.	 In the main method, similar to what we did in the array case, call the method that
loads users from a CSV into Vector and then print the size of Vector. In this case,
use the loadUsersInVector() method we created in the previous step:

Vector users = UserLoader.loadUsersInVector(args[0]);
System.out.println(users.size());

7.	 Add the imports for this file to compile:

import java.io.IOException;
import java.util.Vector;

The output is as follows:

27

Congratulations on finishing one more exercise! This time, you can see that your code is
much simpler since most of the logic of loading the CSV, splitting it into values, creating
a user, and resizing arrays is now abstracted away.

Activity 28: Reading a Real Dataset Using Vector

In this activity you'll download a CSV with income information from the United States
census and do some calculation over the values in the file.

To start, go to this page: https://github.com/TrainingByPackt/Java-Fundamentals/
tree/master/Lesson07/data. To download the CSV you can click on Adult_Data. It will
open the data file in the browser. Download the file and save it to some place in your
computer. The extension is irrelevant but you'll need to remember the name of the file
and the path.

https://github.com/TrainingByPackt/Java-Fundamentals/tree/master/Lesson07/data
https://github.com/TrainingByPackt/Java-Fundamentals/tree/master/Lesson07/data

176 | The Java Collections Framework and Generics

You can read more about the format of the data in the website or just by opening it as a
text file. Two things to keep in mind while working with this file:

•	 There's an extra empty line at the end of the file

•	 This file has no header line

Create an application that will calculate the minimum, maximum and average wage
in this file. After reading all rows, your application should print these results. To
accomplish this you'll need to:

1.	 Load all wages from the file into a Vector of integers using your CSVReader. You can
modify your CSVReader to support files without headers.

2.	 Iterate over the values in the Vector and keep track of three values: minimum,
maximum and sum.

3.	 Print the results at the end. Remember, the average is just the sum divided by the
size of the Vector.

Note

The solution for this activity can be found on page 347.

Iterating over Collections

When working with arrays, you have two ways of iterating over them: you can use a for
loop with an index:

for (int i = 0; i < values.length; i++) {

 System.out.printf("%d - %s\n", i, values[i]);

}

You can also iterate using a for-each loop, where you don't have access to the index of
the element:

for (String value : values) {

 System.out.println(value);

}

The Java Collections Framework | 177

When you need to iterate over a vector, you can use the loop with an index, just like an
array:

for (int i = 0; i < values.size(); i++) {

 String value = (String) values.get(i);

 System.out.printf("%d - %s\n", i, value);

}

You can also use Vector in a for-each loop, just like an array:

for (Object value : values) {

 System.out.println(value);

}

This works because Vector implements Iterable. Iterable is a simple interface that tells
the compiler that the instance can be used in a for-each loop. In fact, you could change
your CSVReader to implement Iterable and then use it in a for-each loop, just like in the
following code:

try (IterableCSVReader csvReader = new IterableCSVReader(reader)) {

 for (Object rowAsObject : csvReader) {

 User user = User.fromValues((String[]) rowAsObject);

 System.out.println(user.name);

 }

}

Iterable is a very simple interface; it has only one method that you need to implement:
iterator(). That method returns an iterator. An iterator is another simple interface that
only has two methods to implement:

•	 hasNext(): Returns true if the iterator still has elements to return.

•	 next(): Fetches the next record and returns it. It will throw an exception if
hasNext() returns false before calling this.

An iterator represents a simple way of getting things out of a collection. But it also has
another method that is important in some more advanced contexts, remove(), which
removes the current element that was just fetched from calling next().

178 | The Java Collections Framework and Generics

This remove method is important because when you're iterating on a collection, you
cannot modify it. This means that if you write a for-each loop to read elements from
the vector and then inside this loop you call remove(Object) to remove an element from
it, ConcurrentModificationException would be thrown. So, if you want to iterate over
a collection using a loop and in this loop you need to remove an element from vector,
you'll have to use an iterator.

You must be thinking, "why would it be designed to work like this?" Because Java is a
multi-threaded language. You won't learn how to create threads or use them in this
book because it's an advanced topic. But the idea behind multi-threading is that a piece
of data in memory can be accessed by two pieces of code at the exact same time. This is
possible because of the multi-core capabilities of modern computers. With collections
and arrays, you have to be very careful when working on multi-threaded applications.
The following is an illustration of how that happens:

Figure 7.4: Illustration of how ConcurrentModificationException occurs

The Java Collections Framework | 179

ConcurrentModificationException is more common than we expect. The following is a
sample for loop using an iterator that avoids this problem:

for (Iterator it = values.iterator(); it.hasNext();) {

 String value = (String) it.next();

 if (value.equals("Value B")) {

 it.remove();

 }

}

Activity 29: Iterating on a Vector of Users

Now that you have a method to load all users from the CSV file, and you know how to
iterate on a vector, write an application that prints the names and emails of all users in
the file. To complete this activity, you'll need to follow these steps:

1.	 Create a new Java application that loads data from a CSV file in a vector. The file
will be specified from the command line.

2.	 Iterate over the users in the vector and print a string that is a concatenation of
their names and emails.

Note

The solution for this activity can be found on page 349.

Hashtable

Arrays and vectors are great when dealing with many objects that are to be processed
in sequence. But when you have a group of objects that need to be indexed by a key, for
example, some kind of identification, then they become cumbersome.

180 | The Java Collections Framework and Generics

Enter hashtables. They are a very old data structure that was created to solve exactly
this problem: given a value, quickly identifying it and finding it in an array. To solve this,
hash tables use a hashing function to uniquely identify objects. From that hash, they can
use another function (normally a remainder of a division) to store the values in an array.
That makes the process of adding an element to the table deterministic and fetching it
very fast. The following is an illustration of the process of how a value gets stored in a
hashtable:

Figure 7.5: The process behind storing and fetching a value from a hash table

A hashtable uses an array to internally store an entry, which represents a key-value pair.
When you put a pair in the hashtable, you provide the key and the value. The key is used
to find where in the array the entry will be stored. Then, an entry holding the key and
value is created and stored in the position specified.

To fetch the value, you pass in the key from which the hash is calculated and the entry
can be quickly found in the array.

An interesting feature you get for free from this process is de-duplication. Because
adding a value with the same key will generate the same hash, when you do that, it will
overwrite whatever was stored in there previously.

The Java Collections Framework | 181

Just as with vectors, the Hashtable class was added to Java before the Collections
Framework. It suffered from the same two problems that vectors suffered from: lack
of defined interfaces and being fully synchronized. It also breaks the Java naming
convention by not following CamelCase for word separation.

Also, as with vectors, after the introduction of the Collections Framework, hashtables
was retrofitted to comply with the new interfaces, making them a seamless part of the
framework.

Exercise 26: Writing an Application that Finds a User by Email

In this exercise, you'll write an application that reads the users from a specified CSV file
into a hashtable, using their email as a key. They then receive an email address from the
command line and search for it in the hashtable, printing its information or a friendly
message if this isn't found:

1.	 In your UsersLoader.java file, add a new method that will load users into a
hashtable using the email as a key. Create a Hashtable at the beginning and return
it at the end:

public static Hashtable loadUsersInHashtableByEmail(String pathToFile)
 throws IOException {
 Hashtable users = new Hashtable();
 return users;
}

2.	 Between creating Hashtable and returning it, load the users from the CSV and put
them in Hashtable using email as the key:

BufferedReader lineReader = new BufferedReader(new
FileReader(pathToFile));
try (CSVReader reader = new CSVReader(lineReader)) {
 String [] row = null;
 while ((row = reader.readRow()) != null) {
 User user = User.fromValues(row);
 users.put(user.email, user);
 }
}

3.	 Import Hashtable so that the file compiles correctly:

import java.util.Hashtable;

182 | The Java Collections Framework and Generics

4.	 Create a file called FindUserHashtable.java and add a class with the same name
and add a main method:

public class FindUserHashtable {
 public static void main(String [] args) throws IOException {
 }
}

5.	 In your main method, load the users into a Hashtable using the method we created
in the previous steps and print the number of users found:

Hashtable users = UsersLoader.loadUsersInHashtableByEmail(args[0]);
System.out.printf("Loaded %d unique users.\n", users.size());

6.	 Print some text to inform the user that you're waiting for them to type in an email
address:

System.out.print("Type a user email: ");

7.	 Read the input from the user by using Scanner:

try (Scanner userInput = new Scanner(System.in)) {
 String email = userInput.nextLine();

8.	 Check whether the email address is in Hashtable. If not, print a friendly message
and exit the application:

if (!users.containsKey(email)) {
 // User email not in file
 System.out.printf("Sorry, user with email %s not found.\n", email);
 return;
}

9.	 If found, print some information about the user that was found:

User user = (User) users.get(email);
System.out.printf("User with email '%s' found!", email);
System.out.printf(" ID: %d, Name: %s", user.id, user.name);

10.	 Add the necessary imports:

import java.io.IOException;
import java.util.Hashtable;
import java.util.Scanner;

The Java Collections Framework | 183

This is the output in the first case:

Loaded 5 unique users.
Type a user email: william.gates@microsoft.com
User with email 'william.gates@microsoft.com' found! ID: 10, Name: Bill
Gates

This is the output in the second case:

Loaded 5 unique users.
Type a user email: randomstring
Sorry, user with email randomstring not found.

Congratulations! In this exercise, you used Hashtable to quickly find a user by email
address.

Activity 30: Using a Hashtable to Group Data

One very common usage of Hashtable, is to group records based on some key. In this
activity you'll use this to calculate the minimum, maximum and average wages from the
file downloaded on the previous activity.

If you haven't already, go to this page: https://github.com/TrainingByPackt/Java-
Fundamentals/tree/master/Lesson07/data. To download the CSV you can click on
Adult_Data. As explained before, this file contains income data from the United States
census.

There are many attributes that are associated with each wage. For this exercise,
you'll group the records by the education attribute. Then, as you did before, print the
minimum, maximum and average wages, but now, for each grouped set wages.

To complete this activity you'll need to:

1.	 Load the adult.data CSV file using the CSVReader. This time, you'll load the data
into a Hashtable where the keys are Strings and the values are Vectors of integers.
The key is going to be the education attribute and in the vector, you'll store all the
wages associated with that education.

2.	 With all the wages grouped inside the Hashtable, now you can iterate over the
entries, key-value pairs, and do the same calculation you did in the previous
activity.

https://github.com/TrainingByPackt/Java-Fundamentals/tree/master/Lesson07/data
https://github.com/TrainingByPackt/Java-Fundamentals/tree/master/Lesson07/data

184 | The Java Collections Framework and Generics

3.	 For each entry, print the minimum, maximum and average wages for each
education level found in the file.

Note

The solution for this activity can be found on page 351.

Generics
Classes that work with other classes in a generic way, like Vector, didn't have a way to
explicitly tell the compiler that only one type was accepted. Because of that, it uses
Object everywhere and runtime checks like instanceof and casting were necessary
everywhere.

To solve this problem, Generic was introduced in Java 5. In this section you'll
understand better the problem, the solution and how to use it.

What was the Problem?

When declaring an array, you tell the compiler what type of data goes inside the array. If
you try to add something else in there, it won't compile. Look at the following code:

// This compiles and work

User[] usersArray = new User[1];

usersArray[0] = user;

// This wouldn't compile

// usersArray[0] = "Not a user";

/* If you uncomment the last line and try to compile, you would get the
following error: */

File.java:15: error: incompatible types: String cannot be converted to User

 usersArray[0] = "Not a user";

 ^

Generics | 185

Let's say you try to do something similar with Vector, like the following:

Vector usersVector = new Vector();

usersVector.add(user); // This compiles

usersVector.add("Not a user"); // This also compiles

The compiler will not help you at all. The same thing goes for Hashtable:

Hashtable usersTable = new Hashtable();

usersTable.put(user.id, user); // This compiles

usersTable.put("Not a number", "Not a user"); // This also compiles

This also occurs when fetching data. When fetching from an array, the compiler knows
what type of data is in there, so you don't need to cast it:

User userFromArray = usersArray[0];

To fetch data from a collection, you need to cast data. A simple example is adding the
following code after adding the two elements to the previous usersVector:

User userFromVector = (User) usersVector.get(1);

It will compile, but it will throw a ClassCastException at runtime:

Exception in thread "main" java.lang.ClassCastException: java.lang.String
cannot be cast to User

This was a big source of bugs for a long time in the Java world. And then generics came
along and changed everything.

Generics is a way for you to tell the compiler that a generic class will only work with a
specified type. Let's have a look at what this means:

•	 Generic class: A generic class is a class that has a generic functionality which
works with different types, like a Vector, that can store any type of object.

•	 Specified type: With generics, when you instantiate a generic class, you specify
what type that generic class will be used with. For example, you can specify that
you only want to store users in your Vector.

•	 Compiler: It is important to highlight that a generic is a compile time-only feature.
There's no information about generic type definition at runtime. At runtime,
everything behaves like it was before generics.

186 | The Java Collections Framework and Generics

Generic classes have a special declaration that exposes how many types it requires.
Some generic classes require multiple types, but most only require one. In the Javadocs
for generic classes, there's a special angle brackets arguments list that specifies how
many type parameters it requires, such as in <T, R>. The following is a screenshot of the
Javadoc for java.util.Map, which is one of the interfaces in the Collections Framework:

Figure 7.6: Screenshot of the Javadoc for java.util.Map, where it shows the generic type declaration

How to Use Generics

To use generics, when declaring an instance of a generic class, you specify what type
will be used for that instance using angle brackets. The following is how you declare a
vector that only handles users:

Vector<User> usersVector = new Vector<>();

For a hashtable, you need to specify the types for the key and value. For a hashtable that
would store users with their IDs as keys, the declaration would look as follows:

Hashtable<Integer, User> usersTable = new Hashtable<>();

Just declaring the generic types with the correct parameters will solve the problems
we described earlier. For example, let's say you are declaring a vector so that it only
handles users. You would try and add a String to it, as in the following code:

usersVector.add("Not a user");

However, this would result in a compilation error:

File.java:23: error: no suitable method found for add(String)

 usersVector.add("Not a user");

 ^

Generics | 187

Now that the compiler ensures that nothing except users will be added to the vector,
you can fetch data from it without having to cast it. The compiler will automatically
convert the type for you:

// No casting needed anymore

User userFromVector = usersVector.get(0);

Exercise 27: Finding a User by Text in a Name or Email

In this exercise, you'll write an application that reads users from a CSV file into a vector
like you did before. You'll then be asked for a string that will be used to filter the users.
The application will print some information about all the users that contained the
passed-in string in their name or email:

1.	 Open your UsersLoader.java file and set all the methods to use generic versions
of collections. Your loadUsersInHashtableByEmail should look as follows (only
showing the lines that have changed):

public static Hashtable<String, User> loadUsersInHashtableByEmail(String
pathToFile)
 throws IOException {
 Hashtable<String, User> users = new Hashtable<>();
 // Unchanged lines
}

Your loadUsersInVector should look as follows (only showing lines that have
changed):

public static Vector<User> loadUsersInVector(String pathToFile) throws
IOException{
 Vector<User> users = new Vector<>();
 // Unchanged lines
}

Note:

You don't have to change other places where you called these methods because
using them as the non-generic version still works.

188 | The Java Collections Framework and Generics

2.	 Create a file named FindByStringWithGenerics.java and add a class with the same
name and a main method, like so:

public class FindByStringWithGenerics {
 public static void main (String [] args) throws IOException {
 }
}

3.	 Add a call to the loadUsersInVector method to your main method, storing the value
in a vector with the specified generic type. Print the number of users loaded:

Vector<User> users = UsersLoader.loadUsersInVector(args[0]);
System.out.printf("Loaded %d users.\n", users.size());

4.	 After that, ask the user to type a string and store that in a variable after
transforming it to lowercase:

System.out.print("Type a string to search for: ");
// Read user input from command line
try (Scanner userInput = new Scanner(System.in)) {
 String toFind = userInput.nextLine().toLowerCase();
}

5.	 Inside the try-with-resource block, create a variable to count the number of users
found. Then, iterate over the users from the vector we loaded previously and
search for the string in the email and name for each user, making sure to set all
strings to lowercase:

int totalFound = 0;
for (User user : users) {
 if (user.email.toLowerCase().contains(toFind)
 ||user.name.toLowerCase().contains(toFind)) {
 System.out.printf("Found user: %s",user.name);
 System.out.printf(" Email: %s\n", user.email);
 totalFound++;
 }
}

6.	 Finally, if totalFound is zero, meaning no users were found, print a friendly
message. Otherwise, print the number of users you found:

if (totalFound == 0) {
 System.out.printf("No user found with string '%s'\n", toFind);
} else {
 System.out.printf("Found %d users with '%s'\n", totalFound, toFind);
}

Generics | 189

Here's the output of the first case:

Loaded 27 users.
Type a string to search for: will
Found user: Bill Gates Email: william.gates@microsoft.com
Found user: Bill Gates Email: william.gates@microsoft.com
Found user: Bill Gates Email: william.gates@microsoft.com
Found user: Bill Gates Email: william.gates@microsoft.com
Found user: Bill Gates Email: william.gates@microsoft.com
Found 5 users with 'will'

Here's the output of the second case:

Loaded 27 users.
Type a string to search for: randomstring
No user found with string 'randomstring'

Congratulations! Now you understand how generics can help you write safe and easy
code using your collections.

Sorting and Comparing

In our day-to-day lives, we compare things all the time: cold/hot, short/tall, thin/thick,
big/small. Objects can be compared using different spectrums. You can compare them
by color, size, weight, volume, height, width, and so on. When comparing two objects,
you're normally interested in finding which one is more something (or less something)
than the other or whether they are equal on whatever measure you're using.

There are two basic scenarios where comparing objects is important: finding the
maximum (or minimum) and sorting.

When finding the maximum or minimum, you compare all objects with each other and
then pick the winner in whatever regard you were looking at. Everything else can be
ignored. You don't need to keep track of the others, as long as you can be sure you're
not infinitely comparing the same two objects over and over again.

Sorting, on the other hand, is more complicated. You have to keep track of all the
elements that you have compared so far and you also need to make sure that you keep
them sorted along the way.

The Collections Framework includes a few interfaces, classes, and algorithms that can
help you with all of this.

190 | The Java Collections Framework and Generics

Comparables and Comparators

In Java, there is an interface that describes how objects can be compared to each other.
The java.lang.Comparable interface is a generic interface that has only one method that
needs to be implemented: compareTo(T). From the Javadocs, compareTo should return
"a negative integer, zero, or a positive integer as this object is less than, equal to, or
greater than the specified object".

To understand how it works, let's take a String as an example. String implements java.
lang.Comparable<String>, which means you can compare two strings, like so:

"A".compareTo("B") < 0 // -> true

"B".compareTo("A") > 0 // -> true

If the first object on the comparison is "less" than the second, then it will return a
negative number (it can be any number and the size means nothing). If both are the
same, then it will return zero. If the first is more than the second, then it will return a
positive number (again, size means nothing).

That's all well and good until you stumble onto something such as the following:

"a".compareTo("B") < 0 // -> false

When you go to read the String Javadoc, its compareTo method says that it "compares
two strings lexicographically". This means that it uses the character code to check
which string comes first. The difference here is that the character codes have all the
uppercase letters first, then all the lowercase ones. Because of that, "A" comes after "B",
since B's character code is before A's.

But what if we want to compare strings alphabetically and not lexicographically? As
mentioned before, objects can be compared in many different spectrums. Because of
that, Java provides another interface that can be used to compare two objects: java.
util.Comparator. Classes can implement a comparator using the most common use
case, like numbers can be compared using their natural order. Then, we can create
another class that implements Comparator to compare objects using some other custom
algorithm.

Generics | 191

Exercise 28: Creating a Comparator that Compares Strings Alphabetically

In this exercise, you'll create a class that implements java.util.Comparator<String> and
can be used to compare strings alphabetically, and not lexicographically:

1.	 Create a file called AlphabeticComparator.java and add a class with the same name
that implements java.util.Comparator<String> (don't forget the import):

import java.util.Comparator;

public class AlphabeticComparator implements Comparator<String> {
 public int compare(String first, String second) {
 }
}

2.	 In the compareTo method, you just turn both strings into lowercase and then
compare them:

return first.toLowerCase().compareTo(second.toLowerCase());

3.	 Create a new file called UseAlphabeticComparator.java and add a class with the
same name with a main method in so that you can test your new comparator:

public class UseAlphabeticComparator {
 public static void main (String [] args) {
 }
}

4.	 Now instantiate your class and write some test cases to make sure that your class
is working as expected:

AlphabeticComparator comparator = new AlphabeticComparator();
System.out.println(comparator.compare("A", "B") < 0); // -> true
System.out.println(comparator.compare("B", "A") > 0); // -> true
System.out.println(comparator.compare("a", "B") < 0); // -> true
System.out.println(comparator.compare("b", "A") > 0); // -> true
System.out.println(comparator.compare("a", "b") < 0); // -> true
System.out.println(comparator.compare("b", "a") > 0); // -> true

192 | The Java Collections Framework and Generics

The output is as follows:

true
true
true
true
true
true

Congratulations! You wrote your first comparator. Now, let's move on and see what else
you can do with Comparables and Comparators.

Sorting

When you have collections of objects, it's very common to want to sort them in some
way or other. Being able to compare two objects is the basis for all sorting algorithms.
Now that you know how to compare objects, it's time to use that to add sorting logic to
your applications.

There are many sorting algorithms out there, each one with its own strengths and
weaknesses. For simplicity, we'll discuss only two: bubble sort, because of its simplicity,
and merge sort, because of its stable performance, which is why it was picked by the
Java core implementers.

Bubble Sort

The most naive sorting algorithm is bubble sort, but it's also the simplest to understand
and implement. It works by iterating over each element and comparing it with the next
element. If it finds two elements that are not sorted, it swaps them and moves on to the
next. When it gets to the end of the array, it checks how many elements were swapped.
It continues this cycle until the number of swapped elements in a cycle is zero, which
means that the whole array or collection has been sorted.

Generics | 193

The following is an illustration of how sorting an array with seven elements using
bubble sort would happen:

Figure 7.7: Illustration showing how bubble sort works

Bubble sort is very space efficient since it doesn't need any extra arrays or a place to
store variables. However, it uses a lot of iterations and comparisons. In the example
from the illustration, there's a total of 30 comparisons and 12 swaps.

194 | The Java Collections Framework and Generics

Merge Sort

Bubble sort works, but as you may have noticed, it is really naive and it feels like there
are a lot of wasted cycles. Merge sort, on the other hand, is much more efficient and is
based on the divide-and-conquer strategy. It works by recursively splitting the array/
collection in half until you end up with multiple pairs of one element. Then, it merges
them back together while sorting at the same time. You can see how this works in the
following illustration:

Figure 7.8: Illustration of the merge sort algorithm

Generics | 195

In comparison to bubble sort, the number of comparisons for merge sort is much
smaller – only 13 for the illustrated example. It uses more memory space since every
merge step needs an extra array to store the data that is being merged.

One good thing that is not explicit in the preceding illustration is that merge sort has
stable performance since it will always execute the same amount of steps; it doesn't
matter how shuffled or sorted the data is. Compared to bubble sort, the number of
swaps can get very high if you get a situation where the array/collection is sorted
backwards.

Stability is very important for a core library such as the Collections Framework, and
that's why merge sort was the algorithm that was picked as the implementation for
sorting in the java.util.Collections utility class.

Activity 31: Sorting Users

Write three user comparators: one to compare by ID, one to compare by name, and one
to compare by email. Then, write an application that loads the unique users and prints
the users sorted by a field that was picked from an input from the command line. To
complete this activity, you will need to follow these steps:

1.	 Write three classes that implement java.util.Comparator<User>. One that
compares by ID, one that compares by name, and one that compares by email.

2.	 Load the users from the CSV using the method that returns a Hashtable instance
so that you have a collection with unique users.

3.	 Load the values from Hashtable into a vector so that you can keep them in a
specified order.

4.	 Read input from the command line to decide what field will be used to sort.

5.	 Use the correct comparator to sort the vector using the java.util.Collections
sort method.

6.	 Print the users.

Note

The solution for this activity can be found on page 354.

196 | The Java Collections Framework and Generics

Data Structures

The most fundamental part of building applications is processing data. The way
you store the data is influenced by the way you'll need to read and process it. Data
structures define the way you store data. Different data structures optimize for
different use cases. So far, we have mentioned two ways of accessing data:

•	 Sequentially, as with an array or vector

•	 Key-value pairs, as with a hashtable

Note

In the following sections, we'll discuss the basic data structure of interfaces that
have been added to the Collections Framework and how they differ from each
other. We'll also dive deeper into each implementation and the use cases they
solve.

Collection
This is the most generic interface that is the base for all collections except Map. The
documentation describes it as representing a collection of objects called elements.
It declares the basic interface for all collections with the following most important
methods:

•	 add(Element): Adds an element to the collection

•	 clear(): Removes all elements from the collection

•	 contains(Object): Checks whether an object is in the collection

•	 remove(Object): Removes the specified element from the collection, if present

•	 size(): Returns the number of elements stored in the collection

Collection | 197

List

The list interface represents a sequential collection of elements that can grow
indefinitely. Elements in a list can be accessed by their index, which is the position that
they were put in, but can change if elements are added between other elements.

When iterating over a list, the order that the elements will be fetched in is deterministic
and will always be based on the order of their indexes, just like an array.

As we mentioned previously, Vector was retrofitted to support the Collections
Framework and it implements the list interface. Let's take a look at the other
implementations that are available.

List extends Collection, so it inherits all the methods we mentioned previously and
adds some other important methods, mostly associated with position-based access:

•	 add(int, Element): Adds an element at the specified position

•	 get(int): Returns the element at the specified position

•	 indexOf(Object): Returns the index of the object or -1 if not present in the
collection

•	 set(int, Element): Replaces the element at the specified position

•	 subList(int, int): Creates a sublist from the original list

ArrayList

Just like Vector, ArrayList wraps an array and takes care of scaling it as needed,
behaving just like a dynamic array. The major difference between the two is that vectors
are fully synchronized. This means that they protect you from concurrent access
(multi-threaded applications). It also means that on non-concurrent applications, which
occurs in the majority of the cases, Vector is slower because of the locking mechanisms
that are added to it. For that reason, it is recommended that you use ArrayList, unless
you really need a synchronized list.

As we mentioned previously, for all purposes, ArrayList and Vector can be used
interchangeably. Their functionality is the same and both implement the same
interfaces.

198 | The Java Collections Framework and Generics

LinkedList

LinkedList is an implementation of List that does not store elements in an underlying
array, like ArrayList or Vector. It wraps each value in another object called a node. A
node is an internal class that contains two references to other nodes (the next node
and the previous node) and the value being stored for that element. This type of list is
known as a double-linked list because each node is linked twice, once in each direction:
from the previous to the next and from the next to the previous.

Internally, LinkedList stores a reference to the first and last nodes, so it can only
traverse the list starting from the beginning or the end. It is not good for random or
position-based access as with arrays, ArrayLists, and vectors, but it is good when adding
an undetermined number of elements very fast.

LinkedList also stores a variable that keeps track of the size of the list. That way, it
doesn't have to traverse the list every time to check the size.

The following illustration shows how LinkedList is implemented:

Figure 7.9: How LinkedList works under the hood

Collection | 199

Map

When you need to store elements associated with keys, you use Maps. As we saw
previously, Hashtable is a powerful mechanism for indexing objects by some key,
and after the addition of the Collections Framework, Hashtable was retrofitted to
implement Map.

The most fundamental property of maps is that they cannot contain duplicate keys.

Maps are powerful because they allow you to see the dataset from three different
perspectives: keys, values, and key-value pairs. After adding your elements to a map,
you can iterate over them from any of those three perspectives, giving you extra
flexibility when fetching data from it.

The most important methods in the Map interface are as follows:

•	 clear(): Remove all keys and values from the map

•	 containsKey(Object): Check whether the key is present in the map

•	 containsValue(Object): Check whether the value is present in the map

•	 entrySet(): Return a set of entries with all the key-value pairs in the map

•	 get(Object): Return the value associated with the specified key if present

•	 getOrDefault(Object, Value): Return the value associated with the specified key if
present, otherwise return the specified value

•	 keySet(): A set containing all keys in the map

•	 put(Key, Value): Add or replace a key-value pair

•	 putIfAbsent(Key, Value): Same as the previous method, but won't replace if the
key is already present

•	 size(): The number of key-value pairs in this map

•	 values(): Return a collection with all the values present in this map

200 | The Java Collections Framework and Generics

HashMap

Just like Hashtable, HashMap implements a hash table to store the entries of key-value
pairs, and it works exactly the same way. Just as Vector is to ArraySet, Hashtable is so
to HashMap. Hashtable existed before the Map interface, so HashMap was created as a
non-synchronous implementation of the hash table.

As we mentioned before, hash tables, and consequently HashMap, are very fast to find
elements by key. They are great to use as an in-memory cache where you load data
that's been keyed by some field, like you did in Exercise 26: Writing an Application that
Finds a User by Email.

TreeMap

TreeMap is an implementation of Map that can keep key-value pairs sorted by key or by a
specified comparator.

As the name implies, TreeMap uses a tree as the underlying storage mechanism. Trees
are very special data structures that are used to keep data sorted as insertions happen
and at the same time, fetch data with very few iterations. The following illustration
shows what a tree looks like and how a fetch operation can quickly find an element,
even in very large trees:

Figure 7.10: A tree data structure being traversed to fetch an element

Collection | 201

Trees have nodes that represent the branches. Everything starts from a root node and
expands into multiple branches. At the ends of the leaf nodes, there are nodes with no
children. TreeMap implements a specific type of tree called a red-black tree, which is a
binary tree, so each node can have only two children.

LinkedHashMap

The name of the LinkedHashMap class is a bit cryptic because internally it uses two data
structures to support some use cases that HashMap didn't support: a hash table and
a linked list. The hash table is used to quickly add and fetch elements from the map.
The linked list is used when iterating over the entries by whatever means: key, value,
or key-value pair. This gives it the ability to iterate over the entries in a deterministic
order, which is whatever order they were inserted in.

Set

The main characteristic of sets is that they contain no duplicate elements. Sets are
useful when you want to collect elements and at the same time eliminate duplicate
values.

Another important characteristic about sets is that the order that you fetch elements
from them varies based on the implementation. This means that if you want to eliminate
duplicates, you have to think about how you're going to read them afterward.

All set implementations in the Collections Framework are based on their corresponding
Map implementation. The only difference is that they handle the values in the set as the
keys in the map.

HashSet

By far the most common of all the sets, HashSet uses a HashMap as the underlying
storage mechanism. It stores its elements in a random order, based on the hashing
function used in HashMap.

TreeSet

Backed by a TreeMap, TreeSet is really useful when you want to store unique elements
sorted by their natural order (comparables) or using a comparator.

LinkedHashSet

Backed by LinkedHashMap, LinkedHashSet will keep the insertion order and remove
duplicates as you add them to the set. It has the same advantages as LinkedHashSet:
fast insertion and fetching like HashSet, and fast iteration like LinkedList.

202 | The Java Collections Framework and Generics

Exercise 29: Using TreeSet to Print Sorted Users

In Activity 31: Sorting Users, you wrote three comparators that can be used to sort
users. Let's use them and TreeSet to make an application that prints the sorted users in
a much more efficient way:

1.	 Add a method to your UsersLoader class that can load the users into Set:

public static void loadUsersIntoSet(String pathToFile, Set<User> usersSet)
 throws IOException {
 FileReader fileReader = new FileReader(pathToFile);
 BufferedReader lineReader = new BufferedReader(fileReader);
 try(CSVReader reader = new CSVReader(lineReader)) {
 String [] row = null;
 while ((row = reader.readRow()) != null) {
 usersSet.add(User.fromValues(row));
 }
 }
}

2.	 Import Set as follows:

java.util.Set;

3.	 Create a new file called SortUsersTreeSet.java and add a class with the same name
and add a main method:

public class SortUsersTreeSet {
 public static void main (String [] args) throws IOException {
 }
}

4.	 Read from the command line what field we'll sort by:

Scanner reader = new Scanner(System.in);
System.out.print("Type a field to sort by: ");
String input = reader.nextLine();
Comparator<User> comparator;
switch(input) {
 case "id":
 comparator = new ByIdComparator();
 break;
 case "name":
 comparator = new ByNameComparator();
 break;
 case "email":

Collection | 203

 comparator = new ByEmailComparator();
 break;
 default:
 System.out.printf("Sorry, invalid option: %s\n", input);
 return;
}
System.out.printf("Sorting by %s\n", input);

5.	 Create a TreeSet of users using the specified comparator, load the users into it
with your new method, and then print the loaded users to the command line:

TreeSet<User> users = new TreeSet<>(comparator);
UsersLoader.loadUsersIntoSet(args[0], users);
for (User user : users) {
 System.out.printf("%d - %s, %s\n", user.id, user.name, user.email);
}

Here's the output of the first case:

Type a field to sort by: address
Sorry, invalid option: address

Here's the output of the second case

Type a field to sort by: email
Sorting by email
30 - Jeff Bezos, jeff.bezos@amazon.com
50 - Larry Ellison, lawrence.ellison@oracle.com
20 - Marc Benioff, marc.benioff@salesforce.com
40 - Sundar Pichai, sundar.pichai@google.com
10 - Bill Gates, william.gates@microsoft.com

Here's the output of the third case

Type a field to sort by: id
Sorting by id
10 - Bill Gates, william.gates@microsoft.com
20 - Marc Benioff, marc.benioff@salesforce.com
30 - Jeff Bezos, jeff.bezos@amazon.com
40 - Sundar Pichai, sundar.pichai@google.com
50 - Larry Ellison, lawrence.ellison@oracle.com

204 | The Java Collections Framework and Generics

Here's the output of the fourth case

Type a field to sort by: name
Sorting by name
10 - Bill Gates, william.gates@microsoft.com
30 - Jeff Bezos, jeff.bezos@amazon.com
50 - Larry Ellison, lawrence.ellison@oracle.com
20 - Marc Benioff, marc.benioff@salesforce.com
40 - Sundar Pichai, sundar.pichai@google.com

Congratulations! In this exercise, you used TreeSet to sort and eliminate duplicate
elements while loading them from the CSV file, all at the same time.

Queue

Queues are a special data structure that respect the First In, First Out (FIFO) pattern.
This means that it keeps the elements in order of insertion and can return the elements
starting from the first inserted one while adding elements to the end. That way,
new work can be enqueued at the end of the queue while work to be processed gets
dequeued from the front. The following is an illustration of this process:

Figure 7.11: A queue that stores work to be processed

mailto:sundar.pichai@google.com

Collection | 205

In the Collections Framework, a queue is represented by the java.util.Queue interface.
To enqueue an element, you can use add(E) or offer(E). The first will throw an
exception if the queue is full, while the second will just return true or false, telling you
whether the operation was successful or not. It also has methods to dequeue elements
or just check what's at the front of the queue. remove() will return and remove the
element at the front or throw an exception if the queue is empty. poll() will return the
element and remove it or return null if the queue is empty. element() and peek() work
the same way, but only return the element without removing it from the queue, the first
throwing an exception and the latter returning null if the queue is empty.

java.util.Deque is an interface that extends java.util.Queue with extra methods that
allow elements to be added, removed, or peeked at on both sides of the queue.

java.util.LinkedList is an implementation of java.util.Queue and java.util.Deque that
also implements java.util.List.

java.util.ArrayDeque

The implementation of Queue and Deque uses an array as the underlying data store.
The array grows automatically to support the data that's added to it.

java.util.PriorityQueue

The implementation of Queue uses a heap to keep elements in sort order. The order
can be given by the element if it implements java.lang.Comparable or by a passed-in
comparator. A heap is a specialized type of tree that keeps elements sorted, similar to
TreeMap. This implementation of queue is great for processing elements that need to be
processed in some priority.

Exercise 30: Fake Email Sender

In this exercise, you will simulate the process of sending emails to users using one
processor. For this, you'll write two applications: one that simulates sending the email
and one that reads from the CSV and invokes the first one for each user. The constraint
that forces you to use a queue is that only one process can run at a time. This means
that while the users are loaded from the CSV, you'll enqueue them and send emails
whenever possible:

1.	 Create a file called EmailSender.java with a class and a main method in it. To
simulate sending the email, the class will sleep for a random amount of time, up to
one second:

System.out.printf("Sending email to %s...\n", args[0]);
Thread.sleep(new Random().nextInt(1000));
System.out.printf("Email sent to %s!\n", args[0]);

206 | The Java Collections Framework and Generics

2.	 Create another file called SendAllEmails.java with a class and a main method.

public class SendAllEmails {

3.	 Add a static field called runningProcess. This will represent the send email process
that is running:

private static Process runningProcess = null;

4.	 Create a static method that will try to initiate the process of sending an email by
dequeuing an element from the queue, if the process is available:

private static void sendEmailWhenReady(ArrayDeque<String> queue)
 throws Exception {
 // If running, return
 if (runningProcess != null && runningProcess.isAlive()) {
 System.out.print(".");
 return;
 }

 System.out.print("\nSending email");
 String email = queue.poll();
 String classpath = System.getProperty("java.class.path");
 String[] command = new String[]{
 "java", "-cp", classpath, "EmailSender", email
 };
 runningProcess = Runtime.getRuntime().exec(command);
}

5.	 In the main method, create an ArrayDeque of strings that will represent the queue
of emails to send to:

ArrayDeque<String> queue = new ArrayDeque<>();

6.	 Open the CSV to read each row from it. You can do this by using CSVReader:

FileReader fileReader = new FileReader(args[0]);
BufferedReader bufferedReader = new BufferedReader(fileReader);
try (CSVReader reader = new CSVReader(bufferedReader)) {
 String[] row;
 while ((row = reader.readRow()) != null) {
 User user = User.fromValues(row);
 }
}

Collection | 207

7.	 With the user loaded, we can add its email to the queue and try to send an email
immediately:

queue.offer(user.email);
sendEmailWhenReady(queue);

8.	 Because reading from a file is, in general, very fast, we'll simulate a slow read by
adding some sleep time:

Thread.sleep(100);

9.	 Outside the try-with-resources block, that is, after we've finished reading all users
from the file, we need to ensure we drain the queue. For that, we can use a while
loop that runs while the queue is not empty:

while (!queue.isEmpty()) {
 sendEmailWhenReady(queue);

 // Wait before checking again
 Thread.sleep(100);
}

Note

In this case, it is important to not use 100% of the CPU while you sleep. This is very
common when processing elements from a queue, like in this case.

10.	 Now you can just wait for the last send email process to finish, following a similar
pattern: check and wait while sleeping:

while (runningProcess.isAlive()) {
 System.out.print(".");
 Thread.sleep(100);
}
System.out.println("\nDone sending emails!");

Congratulations! You wrote an application that simulates the sending of emails using
constrained resources (one process only). This application is ignoring the fact that users
are duplicated in the file. It also ignores the output of the send email process. How
would you implement a duplicate send detector and avoid that issue? How do you think
the output of the send process affects the decision of duplicate avoidance?

208 | The Java Collections Framework and Generics

Properties of Collections

When picking a data structure to solve a problem, you'll have to consider the following
things:

•	 Ordering - If order is important when accessing the data, what order the data will
be accessed?

•	 Uniqueness - Does it matter if you have the same element multiple times inside
the collection? How do you define uniqueness?

•	 Nullables - Can values be null? If mapping key to values, is the null key valid? Does
it make sense to use null in either?

Use the following table to determine what collection better suits your use case:

Table 7.1: Table representing the properties on collections

Note

"Sorted naturally" means that it will sort based on the element (or key) if the
element implements Comparable or using a passed-in comparator.

Summary | 209

Summary
When developing applications, processing data is one of the most fundamental tasks.
In this lesson, you learned how to read and parse data from files so that you're able to
process them as part of your application. You also learned how to compare objects so
that you can sort them in different ways.

As part of processing data, you learned how to store data using basic and advanced data
structures. Knowing how to efficiently process data is very important so that you avoid
resource contention scenarios such as running out of memory, or requiring too much
processing or time to execute the task at hand. A big part of processing data efficiently
is about picking the right data structures and algorithms for the right problems. All the
new tools that you have added to your belt will help you make the correct decisions
when building your Java applications.

In the next lesson, we will have a look at some advanced data structures.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Implement a linked list

•	 Implement a Binary Search Tree

•	 Use enumerations to handle constants better

•	 Explain the logic behind uniqueness in HashSet

Advanced Data
Structures in Java

8

212 | Advanced Data Structures in Java

Introduction
In the previous lessons, you learned about various data structures in Java, such as lists,
sets, and maps. You also learned about how to iterate on the many data structures,
compare objects in many different ways; and sort these collections in an efficient way.

In this lesson, you will learn the implementation details of advanced data structures
such as linked lists and binary search trees. As we progress, you'll also learn about a
powerful concept called enumerations and explore how to use them effectively instead
of constants. At the end of the lesson, you will gain an understanding of the magic and
mystery behind equals() and hashCode().

Implementing a Custom Linked List
A list has two implementations:

•	 ArrayList: This is implemented using arrays as the underlying data structure. It
comes with the same limitations as arrays.

•	 Linked List: Elements in linked lists are distributed across the memory, contrary
to in an array, where they are contiguous.

Disadvantages of ArrayList

Disadvantages of ArrayList are as follows:

•	 Though ArrayList is dynamic and the size need not be mentioned during creation.
However as the size of arrays is fixed, therefore ArrayLists often need to be
implicitly resized when more elements are added to the list. Resizing follows the
procedure of creating a new array and adding all the elements of the previous
array into a new array.

•	 Inserting a new element at the end of the ArrayList is often faster than adding in
between, however, it's expensive when elements are added in between the list,
because room has to be created for the new elements, and to create room existing
elements have to shift.

•	 Deleting the last element of the ArrayList is often faster, however, it's expensive
when elements are deleted in between, because the element has to be adjusted,
shifting elements to the left.

Implementing a Custom Linked List | 213

Advantages of Linked List over Arrays

The following are the advantages of linked lists over arrays:

•	 Dynamic sizing, as the size is not fixed, there are no resizing problems. Every node
holds a reference to the next.

•	 Adding and deleting elements at random places within a linked list, is much
simpler as compared to vectors and arrays.

In this topic, you will learn how to build a custom linked list for specific purposes.
By doing this, we will appreciate the power of linked list and understand the
implementation details as well.

Here is a diagrammatic representation of a linked list:

Figure 8.1: Representation of a linked list

Dynamic memory allocation is a popular application of linked lists. Other applications
of linked lists include implementation of data structures such as stacks, various
implementations of queues, graphs, trees and so on.

Exercise 31: Adding Elements to a Linked list

Let's create a simple linked list that allows us to add integers, and print the elements in
the list:

1.	 Create a class SimpleIntLinkedList as follow:

public class SimpleIntLinkedList
{

2.	 Create another class Node that represents each element in a linked list. Each node
will have data (an Integer value) that it needs to hold; and it will have a reference to
the next Node. Implement getters and setter for the data and the next variable:

static class Node {
Integer data;
Node next;
Node(Integer d) {
data = d;

214 | Advanced Data Structures in Java

next = null;
}
Node getNext() {
return next;
}
void setNext(Node node) {
next = node;
}
Object getData() {
return data;
}
}

3.	 Implement the add(Object item) method so that any item/object can be added
into this list. Construct a new Node object by passing the newItem = new Node(item)
item. Start with the head node, and move towards the end of the list, visiting each
node. In the last node, set the next node as our newly created node (newItem).
Increment the index by invoking incrementIndex() to keep track of the index:

// appends the specified element to the end of this list.
 public void add(Integer element) {
 // create a new node
 Node newNode = new Node(element);
 //if head node is empty, create a new node and assign it to Head
 //increment index and return
 if (head == null) {
 head = newNode;
 return;
 }

 Node currentNode = head;

 while (currentNode.getNext() != null) {
 currentNode = currentNode.getNext();
 }
 // set the new node as next node of current
 currentNode.setNext(newNode);

 }

Implementing a Custom Linked List | 215

4.	 Implement a toString() method to represent this object. Starting from the head
node, iterate all the nodes until the last node is found. On each iteration, construct
a string representation of an Integer stored in each node. The representation will
look similar to this: [Input1,Input2,Input3]

 public String toString() {
 String delim = ",";
 StringBuffer stringBuf = new StringBuffer();
 if (head == null)
 return "LINKED LIST is empty";

 Node currentNode = head;
 while (currentNode != null) {
 stringBuf.append(currentNode.getData());
 currentNode = currentNode.getNext();
 if (currentNode != null)
 stringBuf.append(delim);
 }
 return stringBuf.toString();
 }

5.	 Create a member attribute of type Node (pointing to the head node) for the
SimpleIntLinkedList. In the main method, create an object of SimpleIntLinkedList
and add five integers one after the other (13, 39, 41, 93, 98) into it respectively.
Print the SimpleIntLinkedList object.

Node head;
public static void main(String[] args) {
 SimpleLinkedList list = new SimpleLinkedList();
 list.add(13);
 list.add(39);
 list.add(41);
 list.add(93);
 list.add(98);
 System.out.println(list);
 }
}

The output will be as follows:

[13, 39, 41, 93, 98]

216 | Advanced Data Structures in Java

Activity 32: Creating a Custom Linked List in Java

In our exercise, we created a Linked list that could take Integer values. As an activity,
let's create a custom linked list that can take any object into it and display all the
elements added to the list. Additionally, let's add two more methods to get and remove
the values from the linked list.

These steps will help you complete this activity:

1.	 Create a class name SimpleObjLinkedList and create a member attribute of type
Node (pointing to the head node). Add a member attribute of type int (pointing to
the current index or position in a node)

2.	 Create a class Node that represents each element in a Linked List. Each node
will have an object that it needs to hold and it will have the reference to the next
Node. The LinkedList class will have a reference to the head node and will be able
to traverse to the next Node by using Node.getNext(). Because head is the first
element, we could traverse to the next element by moving next in the current
node. Like this, we could traverse till the last element of the list.

3.	 Implement the add(Object item) method so that any item/object could be added
to this list. Construct a new Node object by passing the newItem = new Node(item)
item. Starting at the head node, crawl to the end of the list. In the last node, set the
next node as our newly created node (newItem). Increment the index.

4.	 Implement the get(Integer index) method to retrieve the item from the list based
on the index. Index must not be less than 0. Write logic to crawl to the specified
index and identify the node and return the value from the node.

5.	 Implement the remove(Integer index) method to remove the item from the list
based on the index. Write logic to crawl to the one node before the specified
index and identify the node. In this node, set the next as getNext().Return true if
the element was found and deleted. If element not found, return false.

6.	 Implement a toString() method to represent this object. Starting from head Node,
iterate all the nodes until the last node is found. On each iteration construct a
string representation of the object stored in each node.

Implementing Binary Search Tree | 217

7.	 Write a main method and add create an object of SimpleObjLinkedList and add five
Strings one after the other ("INPUT-1", "INPUT-2", "INPUT-3", "INPUT-4","INPUT-5")
into it respectively. Print the SimpleObjLinkedList object. In the main method,
get the item from the list using get(2) and print the value of the item retrieved,
also remove the item from the list remove(2) and print the value of the list. One
element should have been deleted from the list.

The output will be as follows:

[INPUT-1 ,INPUT-2 ,INPUT-3 ,INPUT-4 ,INPUT-5]
INPUT-3
[INPUT-1 ,INPUT-2 ,INPUT-3 ,INPUT-5]

Note

The solution for this activity can be found on page 356.

Drawbacks of Linked List

The drawbacks of linked lists are as follows:

•	 The only way to access elements is starting from the first element, and moving
sequentially; accessing an element at random is not possible.

•	 Searching is slow.

•	 Linked lists require extra space in the memory.

Implementing Binary Search Tree
We already had a brief look at trees in Lesson 7, The Java Collections Framework and
Generics let's look at a special implementation of trees known as binary search trees
(BSTs).

To understand BSTs, let's take a look at what binary tree is. A tree in which each node in
the tree has at most two child nodes, is a binary tree.

218 | Advanced Data Structures in Java

A BST is a special implementation of a binary tree, where the left-child node is always
less than or equal to the parent node, and the right-child node is always greater than or
equal to the parent node. This unique structure of the binary search tree makes it easier
to add, delete, and search for elements of the tree. The following diagram represents a
BST:

Figure 8.2: Representation of a binary search tree

The applications of binary search tree are as follows:

•	 To implement a dictionary.

•	 To implement multilevel indexing in a database.

•	 To implement a searching algorithm.

Exercise 32: Creating a Binary Search Tree in Java

In this exercise, we will create a binary search tree and implement left and right
traversal.

1.	 Create a BinarySearchTree class with a Node class in it. The Node class should have
two elements pointing to its left and right node.

//Public class holding the functions of Entire Binary Tree structure
public class BinarySearchTree
{
 private Node parent;
 private int data;
 private int size = 0;
 public BinarySearchTree() {
 parent = new Node(data);
 }

Implementing Binary Search Tree | 219

private class Node {
 Node left; //points to left node
 Node right; //points to right node
 int data;

 //constructor of Node
 public Node(int data) {
 this.data = data;
 }
}

2.	 We will create a add(int data) function, which will check whether the parent node
is empty. If it is empty, it will add the value to the parent node. If the parent node
has data, we need to create a new Node(data) and find the right node (according to
the BST rule) to attach this new node.

To help find the right node, a method, add(Node root, Node newNode), has been
implemented to use the recursive logic to go deeper and find the actual node to
which this new node should belong.

As per BST rules, if the root data is greater than the newNode data, then newNode has
to be added to the left Node. Again, recursively check whether it has child nodes,
and the same logic of BST applies until it reaches the leaf node to add a value. If
the root data is less than the newNode data, newNode has to be added to the right
node. Again, recursively check whether it has child nodes, and the same logic of
BST applies until it reaches the leaf node to add a value:

/**
* This is the method exposed as public for adding elements into the Tree.
 * it checks if the size == 0 and then adds the element into parent
node. if
 * parent is already filled, creates a New Node with data and calls the
 * add(parent, newNode) to find the right root and add it to it.
 * @param data
 */
 public void add(int data) {
 if (size == 0) {
 parent.data = data;
 size++;
 } else {
 add(parent, new Node(data));
 }
 }
/**

220 | Advanced Data Structures in Java

 * Takes two params, root node and newNode. As per BST, check if the root
 * data is > newNode data if true: newNode has to be added in left Node
 * (again recursively check if it has child nodes and the same logic of
BST
 * until it reaches the leaf node to add value) else: newNode has to be
 * added in right (again recursively check if it has child nodes and the
 * same logic of BST until it reaches the leaf node to add value)
*
 * @param root
 * @param newNode
 */
 private void add(Node root, Node newNode) {
 if (root == null) {
 return;
 }
 if (newNode.data < root.data) {
 if (root.left == null) {
 root.left = newNode;
 size++;
 } else {
 add(root.left, newNode);
 }
 }
 if ((newNode.data > root.data)) {
 if (root.right == null) {
 root.right = newNode;
 size++;
 } else {
 add(root.right, newNode);
 }
 }
 }

3.	 Create a traverseLeft() function to traverse and print all the values of the BST in
the left-hand side of the root node:

 public void traverseLeft() {
 Node current = parent;
 System.out.print("Traverse the BST From Left : ");
 while (current.left != null && current.right != null) {
 System.out.print(current.data + "->[" + current.left.data + "
" + current.right.data + "] ");
 current = current.left;

Implementing Binary Search Tree | 221

 }
 System.out.println("Done");
 }

4.	 Create a traverseRight() function to traverse and print all the values of the BST on
the right-hand side of the root node:

 public void traverseRight() {
 Node current = parent;
 System.out.print("Traverse the BST From Right");
 while (current.left != null && current.right != null) {
 System.out.print(current.data + "->[" + current.left.data + "
" + current.right.data + "] ");
 current = current.right;
 }
 System.out.println("Done");
 }

5.	 Let's create an example program to test the functionality of the BST:

 /**
 * Main program to demonstrate the BST functionality.
 * - Adding nodes
 * - finding High and low
 * - Traversing left and right
 * @param args
 */
 public static void main(String args[]) {

 BinarySearchTree bst = new BinarySearchTree();

 // adding nodes into the BST
 bst.add(32);
 bst.add(50);
 bst.add(93);
 bst.add(3);
 bst.add(40);
 bst.add(17);
 bst.add(30);
 bst.add(38);
 bst.add(25);
 bst.add(78);
 bst.add(10);
 bst.traverseLeft();

222 | Advanced Data Structures in Java

 bst.traverseRight();
}
 }

The output is as follows:

Traverse the BST From Left : 32->[3 50] Done
Traverse the BST From Right32->[3 50] 50->[40 93] Done

Activity 33: Implementing the Methods in the BinarySearchTree Class to Find

the Highest and Lowest Value in the BST

1.	 Create a method, getLow(), that implements a while loop to iteratively check
whether the parent node has any left children, and returns the node with no left
child in the left BST as the lowest value.

2.	 Create a method, getHigh(), that implements a while loop to iteratively check if
the parent node has any right children, and returns the node with no right child in
the right BST as the highest value.

3.	 In the main method, add elements to the binary search tree, using the add method
implemented earlier and call the getLow() and the getHigh() methods to identify
the highest and the lowest values.

The output will be as follows:

Lowest value in BST :3
Highest value in BST :93

Note

The solution for this activity can be found on page 360.

Enumerations
Enumeration in Java (or enum) is a special type in Java whose fields consist of constants.
It is used to impose compile-time safety.

Enumerations | 223

For example, consider the days of the week, they are a set of fixed constants, therefore
we can have an enum defined:

public enum DayofWeek {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

}

Now we can simply check if a variable that stores a day is part of the declared enum. We
can also declare enums for non-universal constants, such as:

public enum Jobs {

 DEVELOPER, TESTER, TEAM LEAD, PROJECT MANAGER

}

This will enforce the job-type to be the constants declared in the Jobs enum. Here's an
example enum holding currencies:

public enum Currency {

 USD, INR, DIRHAM, DINAR, RIYAL, ASD

}

Exercise 33: Using Enum to Store Directions

We will create an enum and will find values and compare enums.

1.	 Create a class EnumExample and in the main method. Get and print the enum using
the value as enum. Get and print enum using the values as String:

public class EnumExample
{
 public static void main(String[] args)
 {
 Direction north = Direction.NORTH;
 System.out.println(north + " : " + north.no);
 Direction south = Direction.valueOf("SOUTH");
 System.out.println(south + " : " + south.no);

 }
}

224 | Advanced Data Structures in Java

2.	 Let's create a enum holding directions with an integer value representing the
directions:

public enum Direction
 {
 EAST(45), WEST(90), NORTH(180), SOUTH(360);
 int no;

Direction(int i){
 no =i;
 }
 }

The output is as follows:

NORTH : 180
SOUTH : 360

Activity 34: Using an Enum to Hold College Department Details

Let's build a full-fledged enum to hold college departments and their numbers (BE
("Bachelor of Engineering", 100)).

Perform the following steps:

1.	 Create a DeptEnum enum using the enum keyword. Add two private attributes (String
deptName and int deptNo) to hold the values to be kept in the enum.

2.	 . Override a constructor to take an acronym and deptNo and place it in the member
variables. Add enum constants adhering to the constructor.

3.	 Add getter methods for deptName and deptNo.

Enumerations | 225

4.	 Let's write a main method and sample program to demonstrate the use of enums:

Output will be as follows:

BACHELOR OF ENGINEERING : 1
BACHELOR OF ENGINEERING : 1
BACHELOR OF COMMERCE : 2
BACHELOR OF SCIENCE : 3
BACHELOR OF ARCHITECTURE : 4
BACHELOR : 0
true

Note

The solution for this activity can be found on page 362.

Activity 35: Implementing Reverse Lookup

Write an application that takes in a value of

1.	 Create an enum App, that declares constants BE, BCOM, BSC and BARC, along with
their full forms and department numbers.

2.	 Also declare two private variables accronym and deptNo.

3.	 Create a parameterized constructor and assign the variables accronym and deptNo
with values passed as arguments.

4.	 Declare a public method getAccronym() that returns the variable accronym and a
public method getDeptNo() that returns the variable deptNo.

5.	 Implement reverse look up that takes in the course name, and searches the
corresponding acronym in the App enum.

6.	 Implement the main method, and run the program.

226 | Advanced Data Structures in Java

Your output should be similar to:

BACHELOR OF SCIENCE : 3
BSC

Note

The solution for this activity can be found on page 363.

Set and Uniqueness in Set
In this topic, we are going to learn the logic behind a set that finds the uniqueness of an
object being added and understand the importance of two object-level methods.

The magic lies in two methods of the Object class

•	 hashCode()

•	 equals()

Basic Rules for the equals() and hashCode() Methods

•	 Two objects can be identical only when the value returned using the hashcode()
method is identical and the equal() method returns true.

•	 If the two objects return the same hashCode() value, it doesn't necessarily mean
both objects are the same (as hash values may collide with other objects as well).
In that case, it's necessary to find the equality by calling equals() and verifying the
identity.

•	 We can't use hashCode() alone to find out the equality; we need to use equals() as
well to do this. However, hashCode() alone is enough to find the inequality. If the
hashCode() returns different values, it's safe to consider the objects different.

Adding an Object to a Set

Though many things happen when we add an object into a set, we will just look at
details related to our subject of study:

•	 The method first calls the hashCode() method on that object and gets the hashCode,
then Set compares it to the hashCode of other objects and checks whether any
object matches that hashCode.

Set and Uniqueness in Set | 227

•	 If none of the objects in the set match the hashCode of the added object, then we
can be 100% confident that no other object is available with the same identity.
A newly added object will be added safely to the set (without needing to check
equals()).

•	 If any of the objects match the hashCode of the object added, it means it might be
an identical object added (as hashCode may be the same for two different objects).
In this case, to confirm the suspicion, it will use the equals() method to see if the
objects are really equal. If equal, the newly added object will not be rejected, else
newly added objected will be rejected.

Exercise 34: Understanding the Behavior of equals() and hashCode()

Let's create a new class and walk through the behavior of Set before implementing
equals() and hashCode():

1.	 Create a Student class with three attributes: Name (String), Age (int), and Year of
passing (int). Also create getters and setters for these private members:

/**
 * Sample Class student containing attributes name, age and yearOfPassing
 *
 */
import java.util.HashSet;
class Student {
 private String name;
 private Integer age;
 private Integer yearOfPassing;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }
 public int getYearOfPassing() {
 return yearOfPassing;
 }

228 | Advanced Data Structures in Java

 public void setYearOfPassing(int releaseYr) {
 this.yearOfPassing = releaseYr;
 }
}

2.	 Write a sample class, HashCodeExample, to demonstrate the set behavior. In the
main method, create three objects of Students with different names and other
details (Raymonds, Allen, and Maggy):

/**
 * Example class demonstrating the set behavior
 * We will create 3 objects and add into the Set
 * Later will create a new object resembling same as one of the 3 objects
created and added into the set
*/
public class HashCodeExample {
 public static void main(String[] args) {
 Student m = new Student();
 m.setName("RAYMONDS");
 m.setAge(20);
 m.setYearOfPassing(2011);

 Student m1 = new Student();
 m1.setName("ALLEN");
 m1.setAge(19);
 m1.setYearOfPassing(2010);

 Student m2 = new Student();
 m2.setName("MAGGY");
 m2.setAge(18);
 m2.setYearOfPassing(2012);
}
}

3.	 Create a HashSet to hold these students' objects (set). Add the three objects, one
after the other, to the HashSet. Then, print the values in the HashSet:

 HashSet<Student> set = new HashSet<Student>();
 set.add(m);
 set.add(m1);
 set.add(m2);
 //printing all the elements of Set
System.out.println("Before Adding ALLEN for second time : ");
 for (Student mm : set) {

Set and Uniqueness in Set | 229

 System.out.println(mm.getName() + " " + mm.getAge());
 }

4.	 In the main method, create another Student object resembling one of the three
objects created (for example: let's create a student, similar to Allen). Add this newly
created Student object to the HashSet in which three students have already been
added(set). Then, print the values in the HashSet. You will notice that Allen has
been added into the set twice (which means duplicates were not handled in the
Set):

 //creating a student similar to m1 (name:ALLEN, age:19,
yearOfPassing:2010)
 Student m3 = new Student();
 m3.setName("ALLEN");
 m3.setAge(19);
 m3.setYearOfPassing(2010);

//this Student will be added as hashCode() and equals() are not
implemented
 set.add(m3);
 // 2 students with same details (ALLEN 19 will be noticed twice)
System.out.println("After Adding ALLEN for second time: ");
 for (Student mm : set) {
 System.out.println(mm.getName() + " " + mm.getAge());
 }

The output is as follows:

Before Adding ALLEN for second time :
RAYMONDS 20
MAGGY 18
ALLEN 19

After Adding ALLEN for second time:
RAYMONDS 20
ALLEN 19
MAGGY 18
ALLEN 19

Allen has indeed been added to the set twice (which means duplicates have not been
handled in the Set yet). It needs to be handled in Student class.

230 | Advanced Data Structures in Java

Exercise 35: Overriding equals() and hashCode()

Let's override equals() and hashCode() for Student and see how the behavior of Set
changes after this:

1.	 In the Students class, let's override the equals() method by checking each
attribute of the Student object (name, age, and yearOfPassing are of equal
importance to verify the identity). The equals() method in the Object level takes
Object as an argument. To override the method, we need to provide logic with
which we compare the self-attribute (this) to the object o argument. The logic
of equality here is that two students are said be identical if, and only if, their name,
age, and yearOfPassing is the same:

 @Override
 public boolean equals(Object o) {
 Student m = (Student) o;
 return m.name.equals(this.name) &&
 m.age.equals(this.age) &&
 m.yearOfPassing.equals(this.yearOfPassing);
 }

2.	 In the Student class, let's override the hashCode() method. The basic requirement
is it should return the same integer for identical objects. One simple way to
implement hashCode is taking the hashCode of each attribute in the object and
summing it up. The rationale behind this is, if the name, age, or yearOfPassing is
different, then hashCode will return different values, and it will be evident that no
two objects are the same:

@Override
 public int hashCode() {
 return this.name.hashCode() +
 this.age.hashCode() +
 this.yearOfPassing.hashCode();
 }

3.	 Let's run the main method of HashCodeExample to demonstrate the behavior of the
set after overriding equals() and hashCode() in the Student object.

public class HashCodeExample {

 public static void main(String[] args) {

 Student m = new Student();
 m.setName("RAYMONDS");
 m.setAge(20);

Set and Uniqueness in Set | 231

 m.setYearOfPassing(2011);

 Student m1 = new Student();
 m1.setName("ALLEN");
 m1.setAge(19);
 m1.setYearOfPassing(2010);

 Student m2 = new Student();
 m2.setName("MAGGY");
 m2.setAge(18);
 m2.setYearOfPassing(2012);

 Set<Student> set = new HashSet<Student>();
 set.add(m);
 set.add(m1);
 set.add(m2);

 //printing all the elements of Set
System.out.println("Before Adding ALLEN for second time : ");
 for (Student mm : set) {
 System.out.println(mm.getName() + " " + mm.getAge());
 }
 //creating a student similar to m1 (name:ALLEN, age:19,
yearOfPassing:2010)
 Student m3 = new Student();
 m3.setName("ALLEN");
 m3.setAge(19);
 m3.setYearOfPassing(2010);

//this element will not be added if hashCode and equals methods are
implemented
 set.add(m3);
System.out.println("After Adding ALLEN for second time: ");
 for (Student mm : set) {
 System.out.println(mm.getName() + " " + mm.getAge());
 }

 }
}

232 | Advanced Data Structures in Java

The output is as follows:

Before Adding ALLEN for second time:
ALLEN 19
RAYMONDS 20
MAGGY 18

After Adding ALLEN for second time:
ALLEN 19
RAYMONDS 20
MAGGY 18

After adding hashCode() and equals(), our HashSet has the intelligence to identify and
remove duplicates.

If we don't override equals() and hashCode(), JVM assigns a unique hash code value
to each object when they are created in memory, and if developers don't override the
hashcode method, then there is no guarantee that the two objects return the same hash
code value.

Summary
In this lesson, we learned what a BST is and the steps to implement the basic
functionalities of a BST in Java. We also learned a technique to traverse a BST to
the right and left. We looked at the use of enums over constants and gained an
understanding of the types of problems they solve. We also built our own enums and
wrote code to fetch and compare the values of enums.

We also learned how HashSet is able to identify duplicates and looked at the significance
of overriding equals() and hashCode(). Also, we learned how to correctly implement
equals() and hashCode().

Learning Objectives

By the end of this lesson, you will be able to:

•	 Use exception-throwing libraries

•	 Use exception handling effectively

•	 Acquire and release resources in a way that respects exceptions without creating leaks

•	 Implement best practices to incorporate exceptions in Java

Exception Handling

9

236 | Exception Handling

Introduction
Exception handling is a powerful mechanism for handling erroneous cases that occur
while our code is running. It enables us to focus on the main execution of the program
and separate the error-handling code from the expected execution path. The Java
language forces programmers to write exception-handling code for library methods,
and IDEs such as IntelliJ, Eclipse, and so on help us generate the boilerplate code
necessary. However, without proper guidance and understanding, standard exception
codes may result in more harm than good. This lesson is a practical introduction to
exceptions that will push you to contemplate various aspects of exception handling, and
will provide a number of rules of thumb that may be helpful when you are dealing with
exceptions in your programming life.

Motivation behind Exceptions
When we are creating programs, we usually focus on expected scenarios. For example,
we will get the data from somewhere, we will extract certain information from the data
that we assume to be there, we will send it to somewhere else, and so on. We would
like our code to be readable, so that members of our team can clearly understand the
business logic and can spot mistakes that we may make. However, in practice, our
assumptions may not hold and there can be deviations from expected scenarios. For
example, we may not be able to get data because of a problem with the network or the
disk. We may receive data that does not fit our assumptions. Or, we may not be able
to send data because of similar problems. We have to create programs that behave
gracefully in unexpected situations. For example: we should enable the user to retry on
a broken network connection. Exceptions are the way we handle such situations in Java
without making our code too complex.

As programmers, we have to write code that will run well in various unexpected
situations. However, we also want our code to be clean and understandable. These two
goals can often compete with each other.

We would like to write code that reads clearly, as follows:

Do step 1

Do step 2

Do step 3

Done

Motivation behind Exceptions | 237

This reflects an optimistic scenario, in which nothing unexpected occurs. However, it is
often the case that unexpected situations occur. The user's internet connection may be
down, a web resource may be down, the client may run out of memory, a disk error may
occur, and so on. Unless we write code that anticipates these problems, our programs
may crash when such problems arise. It would be quite difficult to anticipate every kind
of problem that may happen. Even if we simplify things and treat most errors the same
way, we still may have to carry out many checks on our code. For example: we may have
to write code that looks more like this:

Do step 1

If there was a problem with step 1,

 Handle the error, stop

Else

 Do step 2

 If there was a problem with step 2,

 Handle the error, stop

 Else

 Do step 3

 If there was a problem with step 3

 Handle the error, stop

 Else

Done

You can come up with alternative code structures, but once you incorporate the
extra code to handle errors at every step, your code becomes less readable, less
understandable, and less maintainable. If you do not include such error-handling code,
your programs may result in unwanted situations such as crashes.

238 | Exception Handling

Here is a function in C that handles errors similar to our preceding pseudo code.

int other_idea()

{

 int err = minor_func1();

 if (!err)

 err = minor_func2();

 if (!err)

 err = minor_func3();

 return err;

}

When you code using primitive languages such as C, you inevitably feel strong
tension between readability and completeness. Luckily, in most modern programming
languages, we have exception handling capabilities that reduce this tension. Your code
can both be readable and can handle errors at the same time.

The main language construct behind exception handling is the try-catch block. The
code you put after the try is executed line by line. If any of the lines result in an error,
the rest of the lines in the try block are not executed and the execution goes to the
catch block, giving you a chance to handle the error gracefully. Here, you receive an
exception object that contains detailed information about the problem. However, if no
error happens in the try block, the catch block is never executed.

Here, we modify our initial example to handle errors using the try-catch block instead
of many if statements:

Try

Do step 1

Do step 2

Do step 3

Catch error

 Handle error appropriately

Done

Motivation behind Exceptions | 239

In this version, our code is placed between the try and catch keywords. Our code is
free from error-handling code that would otherwise prevent readability. The default
expected path of the code is quite clear: step 1, step 2, and step 3. However, if an error
happens, the execution moves to the catch block immediately. There, we receive
information about what the problem was in the form of an exception object and we are
given a chance to handle the error gracefully.

Most of the time, you will have code pieces that depend on one another. So, if an error
happens in one of the steps, you usually do not want to execute the rest of the steps,
since they depend on the success of that earlier step. You can use try-catch blocks
creatively to denote code dependencies. For example: in the following pseudo code,
there are errors in steps 2 and step 5. The steps that successfully get executed are steps
1 and 4. Since step 4 and later steps are independent of the success of the first three
steps, we were able to denote their dependencies with two separate try - catch blocks.
The error in step 2 prevented the execution of step 3, but not step 4:

Try

Do step 1

Do step 2 - ERROR

Do step 3

Catch error

 Handle error appropriately

Done

Try

Do step 4

Do step 5 - ERROR

Do step 6

Catch error

 Handle error appropriately

Done

If there is an exception and you do not catch it, the error will be propagated to the
caller. If this is your application, you should never let errors propagate out of your
code, to prevent your app from crashing. However, if you are developing a library that is
called by other code, letting errors propagate to the caller is sometimes a good idea. We
will discuss this in more detail later.

240 | Exception Handling

Exercise 36: Introducing Exceptions

Now let's actually see exceptions in action. One of the canonical exceptions is to try to
divide a number by zero. Here, we will use it to create exceptions and verify our pseudo
code from earlier:

1.	 Create a new Main class and add the main method as follows:

public class Main {
 public static void main(String[] args) {

2.	 Write code to print the result of the division of two numbers. Add the try – catch
block to handle the exceptions:

try {
System.out.println("result 1: " + (2 / 2));
System.out.println("result 2: " + (4 / 0));
System.out.println("result 3: " + (6 / 2));
 } catch (ArithmeticException e) {
System.out.println("---- An exception in first block");
}
try {
System.out.println("result 4: " + (8 / 2));
System.out.println("result 5: " + (10 / 0));
System.out.println("result 6: " + (12 / 2));
} catch (ArithmeticException e) {
System.out.println("---- An exception in second block");
}
}
}

Run the code and verify that the output looks like the following:

result 1: 1
---- An exception in block 1
result 4: 4
---- An exception in block 2

Motivation behind Exceptions | 241

Note that results 2 and 5 contain division operations in which we divide a number by
zero, which results in an exception. This way, we are intentionally creating exceptions
in these two lines to see how execution progresses in the case of exceptions. Here is a
breakdown of the expected execution:

•	 Result 1 should print well.

•	 During result 2's execution we should get an exception, which should prevent
result 2 from printing.

•	 Because of the exception, execution should jump to the catch block, which should
prevent result 3 from printing.

•	 Result 4 should print well.

•	 Just like result 2, during result 5's execution we should get an exception, which
should prevent result 5 from printing.

•	 Similarly, because of the exception, the execution should jump to the catch block,
which should prevent result 6 from printing.

With the help of the two try-catch blocks, we should skip results 3 and 6 because of
the exceptions on results 2 and 5. This should leave only results 1 and 4, which will be
executed successfully.

This shows that our preceding discussion was correct. Also, to verify the execution
order, place a breakpoint in the result 1 line and click step over to watch how execution
progresses step by step with the try - catch block.

With the help of exceptions and the try-catch block, we are able to write code that
focuses more on the expected default execution path, while ensuring that we handle
unexpected error cases and can recover or fail gracefully, depending on the severity of
the error.

An Inevitable Introduction to Exceptions

Practically, most newbie Java developers meet with exceptions when they call an
exception-throwing method from a library. Such a method can specify that it throws
an exception using the throws statement. When you call this kind of method, your code
will not compile unless you write code that does something about the exception that
the method may throw.

242 | Exception Handling

So, as a newbie Java developer, all you wanted was to call a method and now you are
forced to do something about an exception that it may throw. Your IDE can generate
code that takes care of the exception. However, default generated code is usually
not the best. A newbie with no guidance and the powers of IDE code generation can
create code that is quite bad. In this section, you will be guided on how best to use
IDE-generated exception-handling code.

Let's say you wrote the following code to open and read a file:

import java.io.File;

import java.io.FileInputStream;

public class Main {

 public static void main(String[] args) {

 File file = new File("./tmp.txt");

 FileInputStream inputStream = new FileInputStream(file);

 }

}

Currently, your code will not compile and your IDE underlined the FileInputStream
constructor in red. This is because it may throw an exception, as specified in its source
code:

public FileInputStream(File file) throws FileNotFoundException {

At this point, your IDE usually tries to be helpful. When you move the caret on to
FileInputStream and hit Alt + Enter in IntelliJ, for example, you will see two quick-fix
options: Add exception to method signature and Surround with try/catch. These
correspond to the two options you have when dealing with specified exceptions, which
we will learn about later in more depth. Here's what the first option converts your code
into:

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class Main {

 public static void main(String[] args) throws FileNotFoundException {

 File file = new File("input.txt");

 FileInputStream inputStream = new FileInputStream(file);

Motivation behind Exceptions | 243

 }

}

Now your main function also specifies that it can throw an exception. Such an
exception causes the program to exit immediately, which may or may not be what you
want. If this was a function that you give others as a library, this change would prevent
their code from compiling, unless they, in turn, did something about the specified
exception, just like you. Again, this may or may not be what you want to do.

If you selected "Surround with try/catch", which was the second option that IntelliJ
provided, here is what your code would become:

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class Main {

 public static void main(String[] args) {

 File file = new File("input.txt");

 try {

 FileInputStream inputStream = new FileInputStream(file);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 }

}

In this example, we are writing code to handle the exception ourselves. This feels more
appropriate; we are taking responsibility and writing code to do something about the
exception. However, the code in its current form does more harm than good. First of
all, it does not actually do anything useful with the exception; it just catches it, prints
information about it to stdout, and continues the execution as if nothing happened.
Especially in a project that is not a console application (like most Java programs),
printing to the logs is hardly useful.

244 | Exception Handling

If we cannot find this file to open, we should think cleverly about what we can do.
Should we ask the user to look for the file? Should we download it from the internet?
Whatever we do, taking a note in an obscure log file and sweeping the problem under
the rug is probably one of the worst ways to handle the problem. If we cannot do
anything useful, maybe not handling the exception and letting our caller deal with it
would be a more honest way of dealing with the problem.

Notice that there is no silver bullet, or one-size-fits-all suggestion here. Every
exceptional case, every application, every context, and every user base is different, and
we should come up with an exception handling strategy that fits the current situation
best. However, if all you are doing is e.printStackTrace(), you are probably doing
something wrong.

Exercise 37: Using an IDE to Generate Exception-Handling Code

In this exercise, we will have a look at generating exception handling code using an IDE:

1.	 Create a new Java console project in IntelliJ. Import File and the FileInputStream
class:

import java.io.File;
import java.io.FileInputStream;

2.	 Create a class called Main and add the main() method:

public class Main {
 public static void main(String[] args) {

3.	 Open the file as follows:

File file = new File("input.txt");
FileInputStream fileInputStream = new FileInputStream(file);

4.	 Read the file as follows:

int data = 0;
while(data != -1) {
data = fileInputStream.read();
System.out.println(data);
 }
 fileInputStream.close();
 }
}

Note that, in four places, IntelliJ underlines our code in red. These are functions
that specify throwing an exception. This prevents your code from executing.

Motivation behind Exceptions | 245

5.	 Go to the first issue (FileInputStream), press Alt + Enter, and select "Add exception
to method signature". This is how your code should look now:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class Main {
 public static void main(String[] args) throws FileNotFoundException {
 File file = new File("input.txt");
 FileInputStream fileInputStream = new FileInputStream(file);

 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 }
}

We specified that our main function can throw FileNotFoundException, but this was
not enough as this is not the exception type that the other functions throw. Now
go to the first remaining issue (read), press Alt + Enter, and select "Add exception
to method signature" once again. This is how your code should look now:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class Main {
 public static void main(String[] args) throws IOException {
 File file = new File("input.txt");
 FileInputStream fileInputStream = new FileInputStream(file);

 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }

 fileInputStream.close();

246 | Exception Handling

 }
}

Now let's run our code. Unless you created an input.txt in the meantime, this is
what you should see as an output:

Exception in thread "main" java.io.FileNotFoundException: input.txt (The
system cannot find the file specified)
at java.io.FileInputStream.open0(Native Method)
at java.io.FileInputStream.open(FileInputStream.java:195)
at java.io.FileInputStream.<init>(FileInputStream.java:138)
at Main.main(Main.java:9)

The exception propagated out of our main function and the JVM caught it and
logged into the console.

Two things happened here. First, fixing the problem for read() was enough to
eliminate all problems from the code, since both read and close throw the same
exception: IOException, which is listed in the throws statement in the main
function's declaration. However, the FileNotFoundException exception that we had
listed there disappeared. Why?

This is because exception classes are in a hierarchy and IOException is an ancestor
class of FileNotFoundException. Since every FileNotFoundException is also an
IOException, specifying IOException was enough. If these two classes were not
related in that way, IntelliJ would list the possible thrown exceptions as a comma-
separated list.

6.	 Now let's provide the input.txt to our program. You can create the input.txt
anywhere in your hard drive and provide a full path in the code; however, we will
use a simple approach: IntelliJ runs your program inside the main project folder.
Right-click on your project's src folder and click Show in Explorer. Now you
should see the contents of the folder that contains the src folder; this is the root
of your project folder. Create an input.txt file here and write the text "abc" in it. If
you run your program again, you should see an output similar to this:

97
98
99
-1

Motivation behind Exceptions | 247

7.	 Specifying the exceptions was one way to make our program work. Another would
be to catch them. Let's try that now. Go back to the following version of your file;
you can use undo repeatedly to do that:

import java.io.File;
import java.io.FileInputStream;

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = new FileInputStream(file);

 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 }
}

8.	 Now move the caret on to FileInputStream, hit Alt + Enter, and select "Surround
with try/catch". Here is how your code should look:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

248 | Exception Handling

 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 }
}

Notice what happened here. Instead of simply wrapping the line with a try/
catch block, it actually separated the creation of the reference variable from the
exception-generating constructor call. This is mainly because fileInputStream is
used later in the code and moving it inside the try/catch block would prevent it
from being visible to those usages. This is actually a common pattern; you declare
the variable before the try/catch block, handle any issues with its creation, and
make it available for later, if necessary.

9.	 The current code has a problem: if the FileInputStream inside the try/catch block
fails, the fileInputStream will continue to be null. After the try/catch block, it will
be dereferenced and you will get a null reference exception. You have two options:
either you place all usages of the object in the try/catch block, or you check the
reference for null. Here is the first of the two options:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);

 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

Motivation behind Exceptions | 249

 }
}

10.	 We moved the code inside the try/ catch block to make sure we don't dereference
fileInputStream while null. However, we still have red underlines under read() and
close(). Alt + Enter on read() gives you a couple of options, the first of which is to
add a catch clause:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);
 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Now we have fixed all of the issues with our code and we can actually run it.
Notice that the second catch clause is placed after the first, because IOException
is a parent class of FileNotFoundException. If their order was the other way
around, exceptions of type FileNotFoundException would actually be caught by the
IOException catch block instead.

250 | Exception Handling

11.	 Here is the second of the two options, not placing all the code inside the first try:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 if (fileInputStream != null) {
 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 }
 }
}

We run the second part of the code if the fileInputStream is not null. This way,
we prevent the second part from running if creating the FileInputStream was
not successful. It does not make a lot of sense to write it separately like this, but
it would make sense if there was other code in between that is unrelated. You
cannot put everything in the same try block, and in a later code, you may have to
depend on that try block's success. A simple null check such as this is useful in
that sense.

12.	 Our code still has issues, though. Let's Alt + Enter on the read() and close(), and
select Surround with try/catch:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class Main {
 public static void main(String[] args) {

Motivation behind Exceptions | 251

 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 if (fileInputStream != null) {
 int data = 0;
 while(data != -1) {
 try {
 data = fileInputStream.read();
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println(data);
 }
 try {
 fileInputStream.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

It is not good practice to use code like this. Although the quick fixes with Alt +
Enter usually serve us quite well, in this example, they resulted in horrible code.
This code here implies that your stream may sometimes fail. In that case, those
failures should be ignored and we should keep trying to read from the stream.
Also, the stream may fail to close, which we should also ignore. This would be a
very rare scenario and this code is not good. It's not readable at all either, with
many try/catch blocks.

13.	 A better way would be to place the whole block in a try/catch. In this case, we
are giving up after the first error, which is a simpler and usually more correct
approach:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

252 | Exception Handling

public class Main {
 public static void main(String[] args) {
 File file = new File("input.txt");
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(file);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 if (fileInputStream != null) {
 try {
 int data = 0;
 while(data != -1) {
 data = fileInputStream.read();
 System.out.println(data);
 }
 fileInputStream.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

To create this code, we did not rely on IntelliJ's quick fix with Alt + Enter. Since it's quite
good usually, you may think that the code it creates is correct. However, you have to use
your judgement, and sometimes correct the code it creates, as in this example.

Now you have experienced the quick and dirty handling of exceptions using the help
of an IDE. The skills you gained in this section should guide you when you are on a
deadline and help you avoid pitfalls when using autogenerated exception code using an
IDE.

Motivation behind Exceptions | 253

Exceptions versus Error Codes

Recall the C code example that we gave earlier:

int other_idea()

{

 int err = minor_func1();

 if (!err)

 err = minor_func2();

 if (!err)

 err = minor_func3();

 return err;

}

There are a number of drawbacks to the method of handling errors used here. In this
code, all we are trying to do is call three functions. However, for each function call,
we are passing around values to track error states and using if statements for each
function call if there was an error. Furthermore, the return value of the function is the
error state—you are not allowed to return a value of your choosing. All this extra work
dilutes the original code and makes it difficult to understand and maintain.

Another limitation of this approach is that a single integer value may not represent the
error sufficiently. Instead, we may want to have more details about the error, when it
happened, about which resource, and so on.

Before exception handling, this was how programmers had to code to ensure the
completeness of their programs. Exception handling brings a number of benefits.
Consider this alternate Java code:

int otherIdea() {

 try {

 minorFunc1();

 minorFunc2();

 minorFunc3();

 } catch (IOException e) {

 // handle IOException

254 | Exception Handling

 } catch (NullPointerException e) {

 // handle NullPointerException

 }

}

Here, we have the three function calls without any error-related code polluting them.
These are placed in a try/catch block and error handling is done separately from the
original code in the catch blocks. This is more desirable for the following reasons:

•	 We do not have to have an if statement for each function call. We can group the
exception handling in one place. It does not matter which function raised the
exception; we catch all of them in one single place.

•	 There is not only one kind of problem that can happen in a function. Each function
can raise more than one kind of exception. These can be handled in separate catch
blocks, whereas, without exception handling, this would have required multiple if
statements per function.

•	 The exception is represented by an object, not a single integer value. While an
integer can tell us which kind of problem it was, an object can tell us much more:
the call stack at the time of exception, the related resource, the user-readable
explanation about the problem, and so on, can all be provided along with the
exception object. This makes it much easier to act appropriately to exceptions
compared to a single integer value.

Exercise 38: Exceptions Versus Error Codes

To complete the discussion about exceptions versus error codes, let's experience both
and see which one is simpler to deal with. In this exercise, we have a class with two
different kinds of functions, with two functions in each kind. The thFunction1() and
thFunction2() are functions that can throw exceptions upon errors. ecFunction1() and
ecFunction2() are functions that return a value that indicates whether there was an
error. We are using random numbers to simulate that errors occur sometimes:

1.	 Import the IOException and Random classes as follows:

import java.io.IOException;
import java.util.Random;

2.	 Create a class called Main with an instance of the Random class:

public class Main {
 Random rand = new Random();

Motivation behind Exceptions | 255

3.	 Create the thFunction1() and thFunction2() functions, which throw an
IOException as follows:

void thFunction1() throws IOException {
 System.out.println("thFunction1 start");
 if (rand.nextInt(10) < 2) {
 throw new IOException("An I/O exception occurred in
thFunction1");
 }
 System.out.println("thFunction1 done");
 }

 void thFunction2() throws IOException, InterruptedException {
 System.out.println("thFunction2 start");
 int r = rand.nextInt(10);
 if (r < 2) {
 throw new IOException("An I/O exception occurred in
thFunction2");
 }
 if (r > 8) {
 throw new InterruptedException("An interruption occurred in
thFunction2");
 }
 System.out.println("thFunction2 done");
 }

4.	 Declare three variables with final values as follows:

private static final int EC_NONE = 0;
private static final int EC_IO = 1;
private static final int EC_INTERRUPTION = 2;

5.	 Create two functions, ecFunction1() and ecFunction2(), as follows:

int ecFunction1() {
System.out.println("ecFunction1 start");
if (rand.nextInt(10) < 2) {
return EC_IO;
}
System.out.println("thFunction1 done");
return EC_NONE;
}
int ecFunction2() {
System.out.println("ecFunction2 start");

256 | Exception Handling

int r = rand.nextInt(10);
if (r < 2) {
return EC_IO;
}
if (r > 8) {
return EC_INTERRUPTION;
}
System.out.println("ecFunction2 done");
 return EC_NONE;
}

6.	 Create callThrowingFunctions() as follows:

private void callThrowingFunctions() {
try {
thFunction1();
thFunction2();
} catch (IOException e) {
System.out.println(e.getLocalizedMessage());
e.printStackTrace();
} catch (InterruptedException e) {
System.out.println(e.getLocalizedMessage());
e.printStackTrace();
}
}

7.	 Create a method called callErrorCodeFunctions() as follows:

private void callErrorCodeFunctions() {
int err = ecFunction1();
if (err != EC_NONE) {
if (err == EC_IO) {
System.out.println("An I/O exception occurred in ecFunction1.");
}
}
err = ecFunction2();
switch (err) {
case EC_IO:
System.out.println("An I/O exception occurred in ecFunction2.");
break;
case EC_INTERRUPTION:

Motivation behind Exceptions | 257

System.out.println("An interruption occurred in ecFunction2.");
break;
}
}

8.	 Add the main method as follows:

 public static void main(String[] args) {

 Main main = new Main();

 main.callThrowingFunctions();

 main.callErrorCodeFunctions();

 }

}

In our main function, we are first calling the throwing functions, followed by the
error code functions.

Run this program a couple of times to observe how errors are handled in each
case. Here is an example of an error caught using exception handling:

thFunction1 start
thFunction1 done
thFunction2 start
An interruption occurred in thFunction2
java.lang.InterruptedException: An interruption occurred in thFunction2
 at Main.thFunction2(Main.java:24)
 at Main.callThrowingFunctions(Main.java:58)
 at Main.main(Main.java:88)
ecFunction1 start
thFunction1 done
ecFunction2 start
thFunction2 done

Note that thFunction2 was started, but not completed. The exception that it threw
contained information about thFunction2. The shared catch block did not have to
know where this exception was coming from; it simply caught the exception. This
way, a single exception-catching block was able to handle multiple function calls.
The exception object that was thrown by thFunction2 and was caught by the catch
block is able to transfer detailed information about the problem (for example,
the stack trace). This leaves the default expected execution path clean, and the
exception-catching block can deal with the problem in a meticulous way.

258 | Exception Handling

On the other hand, take a look at this sample execution output:

thFunction1 start
thFunction1 done
thFunction2 start
thFunction2 done
ecFunction1 start
An I/O exception occurred in ecFunction1.
ecFunction2 start
ecFunction2 done

In ecFunction1, an unexpected error occurred. This was signaled simply by an
error code value that was returned from this function. Note that this function
could not have returned any other value; employee number, whether something
is active, and so on, are some examples of things that a function might return.
Using error codes returned from functions in this way prohibits passing such
information in the return value.

Furthermore, since the error is represented simply by a number, we are not able to get
detailed information in the error-handling code. We also have to have error-handling
code for each function call, as we would not have a way of differentiating between error
locations otherwise. This creates code that is much more complicated and verbose than
it should be.

Play with the code further, run it many times, and observe its behavior. This should give
you a better understanding of exceptions versus error codes and why exceptions are
superior.

Activity 36: Handling Mistakes in Numeric User Input

Now we will make use of exception handling in a real-world scenario. We will create
a console application in which we ask for three whole numbers from the user, add
them together, and print the result. If the user does not enter non-numeric text or a
fractional number, we will ask the user to provide a whole number instead. We will do
this for each number separately—a mistake in the third number will only require us to
re-enter the third number and our program will remember the first two numbers just
fine.

Exception Sources | 259

These steps will help you complete this activity:

1.	 Start with an empty Java console project. Place the following code in it, which
reads input from the keyboard and prints it back after the user hits the Enter key.

2.	 Use this as a starting point and convert the input to a number using the Integer.
parseInt() function.

3.	 Notice that the IDE did not warn us about a possible exception, unlike what we
had in the earlier examples. This is because there are two types of exceptions,
which we will learn about in an upcoming topic. For now, be aware that
Integer.parseInt() can raise java.lang.NumberFormatException. Using the
things we learned before wrap this line with a try/catch block that expects
NumberFormatException.

4.	 Now place this in a while loop. It should loop while we do not have a valid whole
number (integer) input from the user. Once we have such a value, the while loop
should not loop anymore. If the user does not enter a valid whole number, print
out an appropriate message to the user. Do not print out a raw exception message
or a stack trace. This way, we insist that we get a whole number from the user and
will not give up until we get a whole number.

5.	 Using this strategy, get three whole numbers in and sum them up. The program
should ask again and again if you do not provide a valid whole number for any of
the inputs. Print the result to the console.

Note

The solution for this activity can be found on page 365.

Exception Sources
When an exceptional case occurs in code, an exception object is thrown by the source
of the problem, which is in turn caught by one of the callers in the call stack. The
exception object is an instance of one of the exception classes. There are many such
classes, which represent various types of problems. In this topic, we will take a look
at different types of exceptions, get to know some of the exception classes from Java
libraries, learn how to create our own exceptions, and see how to throw them.

260 | Exception Handling

In the previous topic, we first played with IOException. Then, in the activity, we played
with NumberFormatException. There was a difference between these two exceptions. The
IDE would force us to handle IOException and would not compile our code otherwise.
However, it did not care whether we caught NumberFormatException or not, it would
still compile and run our code. The difference was in the class hierarchy. While both of
them are descendants of the Exception class, NumberFormatException is a descendant of
RuntimeException, a subclass of Exception:

Figure 9.1: Hierarchy of the RuntimeException class

The preceding figure shows a simple class hierarchy. Any class that is a descendant of
Throwable can be thrown and caught as an exception. However, Java provides a special
treatment for the descendants of Error and RuntimeException classes. We'll explore
these further in the upcoming sections.

Checked Exceptions

Any descendant of Throwable that is not a descendant of Error or RuntimeException falls
in the category of checked exceptions. For example: IOException, which we used in the
previous topic, is a checked exception. The IDE forced us to either catch it or to specify
that we throw it in our function.

To be able to throw a caught exception, your function has to specify that it throws the
exception.

Exception Sources | 261

Throwing a Checked Exception

Create a new project and paste the following code:

import java.io.IOException;

public class Main {

 private static void myFunction() {

 throw new IOException("hello");

 }

 public static void main(String[] args) {

 myFunction();

 }

}

Here, we created a function and wanted it to throw an IOException. However, our IDE
will not let us do that because this is a checked exception. Here is the type hierarchy of
it:

Figure 9.2: Hierarchy of the IOException class

262 | Exception Handling

Since IOException is a descendant of Exception, it is a checked exception and every
function that throws a checked exception has to specify it. Move the caret to the error
line, hit Alt + Enter, and select "Add exception to method signature". Here's how the
code will look:

import java.io.IOException;

public class Main {

 private static void myFunction() throws IOException {

 throw new IOException("hello");

 }

 public static void main(String[] args) {

 myFunction();

 }

}

Notice that our code still has a problem. We will continue dealing with it in the next
exercise.

Another requirement of checked exceptions is that if you call a method that specifies
a checked exception, you have to either catch the exception or specify that you also
throw that exception. This is also known as "the catch or specify rule."

Exercise 39: Working with catch or Specify

Let's have a look at throwing checked exceptions and calling methods that throw them.
You should have the project already open:

1.	 If you do not have the preceding example in your IDE, create a project and add the
following code:

import java.io.IOException;
public class Main {

 private static void myFunction() throws IOException {
 throw new IOException("hello");
 }

Exception Sources | 263

 public static void main(String[] args) {
 myFunction();
 }
}

Notice that the line with myFunction() is underlined in red, because this line is
calling a checked exception and we are not doing anything about that potential
exception. We either need to specify that we also throw it, or we need to catch
and handle it. IntelliJ can help us do either of these. Move the caret over the
myFunction1() line and hit Alt + Enter.

2.	 Select Add exception to method signature, to successfully specify that we throw
the exception. Here is the code that this generates:

import java.io.IOException;
public class Main {

 private static void myFunction() throws IOException {
 throw new IOException("hello");
 }

 public static void main(String[] args) throws IOException {
 myFunction();
 }
}

As you can see, this compiles and runs just fine. Now undo (Ctrl + Z) and hit Alt+
Enter again to get the options back.

3.	 Alternatively, if we select Surround with try/catch, we'll successfully catch the
exception. Here is the code that it generates:

import java.io.IOException;
public class Main {
 private static void myFunction() throws IOException {
 throw new IOException("hello");
 }

 public static void main(String[] args) {
 try {
 myFunction();
 } catch (IOException e) {

264 | Exception Handling

 e.printStackTrace();
 }
 }
}

While this compiles and runs, remember that simply printing information about it
is not the greatest way to handle an exception.

In these exercises, we saw how to throw checked exceptions and how to call methods
that throw them.

Unchecked Exceptions

Recall the top of the exception class hierarchy:

Figure 9.3: Hierarchy of the RuntimeException class

Here, the exception classes that are descendants of RuntimeException are called
runtime exceptions. The descendants of Error are called errors. Both of these are called
unchecked exceptions. They do not need to be specified, and if they are specified, they
do not need to be caught.

Unchecked exceptions represent things that may happen more unexpectedly compared
to checked exceptions. The assumption is that you have the option to ensure that they
will not be thrown; therefore, they do not have to be expected. However, you should do
your best to handle them if you have a suspicion that they may be thrown.

Exception Sources | 265

Here is the hierarchy of NumberFormatException:

Figure 9.4: Hierarchy of the NormalFormatException class

Since it is a descendant of RuntimeException, it is a runtime exception, therefore an
unchecked exception.

Exercise 40: Using Methods That Throw Unchecked Exceptions

In this exercise, we will write some code that throws a runtime exception:

1.	 Create a project in IntelliJ and paste in the following code:

public class Main {
public static void main(String[] args) {
int i = Integer.parseInt("this is not a number");
}
}

266 | Exception Handling

Note that this code is trying to parse a string as an integer, but the string clearly
does not contain an integer. As a result, a NumberFormatException will be thrown.
However, since this is an unchecked exception, we do not have to catch or specify
it. This is what we see when we run the code:

Exception in thread "main" java.lang.NumberFormatException: For input
string: "this is not a number"
 at java.lang.NumberFormatException.
forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at Main.main(Main.java:6)

2.	 Since we did not catch it, the NumberFormatException got thrown from the main
function and crashed the application. Instead, we could catch it and print a
message about it as follows:

public class Main {
public static void main(String[] args) {
try {
int i = Integer.parseInt("this is not a number");
} catch (NumberFormatException e) {
System.out.println("Sorry, the string does not contain an integer.");
}
}
}

Now, when we run the code, we get an output that shows that we are aware of the
situation:

Sorry, the string does not contain an integer.

Although catching unchecked exceptions is optional, you should make sure you catch
them in order to create code that is complete.

It's practically the same case for errors, which are descendants of the Error class. In the
following section, we talk about the semantic differences between runtime exceptions
and errors.

Exception Class Hierarchy

Any object that can be thrown as an exception is an instance of a class that is derived
from the Throwable class. Any class that derives from Error or RuntimeException is
treated as an unchecked exception, while any other class that derives from Throwable
is a checked exception. Therefore, which exception class you use determines the
mechanics (checked versus unchecked) of exception handling.

Exception Sources | 267

Beyond the mechanics of exception handling, the choice of exception class also
carries semantic information. For example: if a library method encounters a case
in which a file that was supposed to be in the hard drive is missing, it would throw
an instance of FileNotFoundException. If there was a problem in a string that was
supposed to contain a numeric value, the method that you give that string to would
throw a NumberFormatException. The Java class library contains a number of exception
classes that fit most unexpected situations. The following is a subset of classes in this
hierarchy:

Figure 9.5: Subset of classes in hierarchy

268 | Exception Handling

If you read through this list, you will notice that there are a lot of exception types for
various occasions.

Browsing the Exception Hierarchy

In IntelliJ, open any Java project or create a new one. Anywhere in your code, create a
Throwable reference variable as follows:

Throwable t;

Now move the caret over Throwable and press Ctrl + H. The hierarchy window should
open with the Throwable class in focus. It should look like this:

Figure 9.6: Hierarchy of Throwable class

Now expand Error and Exception, and read through the list of classes. These are various
throwable classes defined in various libraries that your code has access to. As you can
see, there is quite a broad list of exceptions to choose from. Next to each exception
class, there is the package that it belongs to in parentheses. As a rule of thumb, if you
are going to throw an exception yourself, you should try to use exceptions that are in
the libraries that you are also using. For example: importing com.sun.jmx.snmp.IPAcl just
so that you can use the ParseException defined in it is not a good thing to do.

Now you have a better idea about the existing exception classes that are in the Java
Class Library and what your choice of exception class communicates to the users of
your code.

Throwing Exceptions and Custom Exceptions

As a programmer, you will write methods that you or others will call. Inevitably, there
will be things that go wrong in your code in undesirable situations. You should throw
exceptions in those cases that are instances of appropriate exception classes.

Exception Sources | 269

To throw an exception, first, you need to create an instance of a class that is an
ancestor of Throwable. Then, you populate that instance and use the throw keyword
to throw it. Then, the throwable instance will travel up the call stack and pop entries
until it meets a try/catch block with a catch statement that matches the type of this
Throwable or is a subclass of it. The throwable is given to that catch block as the caught
exception, and the execution continues from there.

Exercise 41: Throwing an Exception

In this exercise, we will use existing exception classes for our exceptions:

1.	 Create a new Java project and add the following code, which has a function that
expects a string of length one that contains a single digit and prints it. If the string
is empty, it will throw an IllegalArgumentException. If the string contains anything
other than a single digit, it will throw a NumberFormatException. Since these are
unchecked exceptions, we did not have to specify them:

public class Main {
public static void useDigitString(String digitString) {
if (digitString.isEmpty()) {
throw new IllegalArgumentException("An empty string was given instead of a
digit");
}
if (digitString.length() > 1) {
throw new NumberFormatException("Please supply a string with a single
digit");
}
}
}

2.	 Now we will call this function and handle the exceptions that it throws. We will
intentionally call another function that calls this, and will have catch blocks in two
different places to demonstrate exception propagation. The full code will look as
follows:

public class Main {
 public static void useDigitString(String digitString) {
 if (digitString.isEmpty()) {
 throw new IllegalArgumentException("An empty string was given
instead of a digit");
 }

 if (digitString.length() > 1) {
 throw new NumberFormatException("Please supply a string with a

270 | Exception Handling

single digit");
 }

 System.out.println(digitString);
 }

 private static void runDigits() {
 try {
 useDigitString("1");
 useDigitString("23");
 useDigitString("4");
 } catch (NumberFormatException e) {
 System.out.println("A number format problem occurred: " +
e.getMessage());
 }

 try {
 useDigitString("5");
 useDigitString("");
 useDigitString("7");
 } catch (NumberFormatException e) {
 System.out.println("A number format problem occured: " +
e.getMessage());
 }
 }

3.	 Add the main() method as follows:

 public static void main(String[] args) {
 try {
 runDigits();
 } catch (IllegalArgumentException e) {
 System.out.println("An illegal argument was provided: " +
e.getMessage());
 }
 }

}

Exception Sources | 271

Notice that, from main, we call runDigits, which in turn calls useDigitString.
The main function catches IllegalArgumentException and runDigits catches
NumberFormatException. Although we throw all the exceptions in useDigitString, they
are caught in different places.

Exercise 42: Creating Custom Exception Classes

In the previous exercise, we used existing exception classes for our exceptions.
NumberFormatException sounded appropriate but IllegalArgumentException was a bit of
an odd choice. Also, they are both unchecked exceptions; perhaps we would like to have
checked ones instead. Therefore, existing exception classes are not suitable for our
needs. We can create our own exception classes in this situation. Let's continue on the
same course as the previous exercise:

1.	 Let's say that we are happy with NumberFormatException, but we want an
EmptyInputException that is a checked exception. We can extend Exception to do
that:

class EmptyInputException extends Exception {
}

2.	 If we had extra information to place in this exception, we could have added fields
and a constructor for that purpose. However, in our case, we just want to signal
that the input was empty; no other information is necessary for the caller. Now
let's fix our code so that our function throws EmptyInputException instead of
IllegalArgumentException:

class EmptyInputException extends Exception {
}
public class Main {

 public static void useDigitString(String digitString) throws
EmptyInputException {
 if (digitString.isEmpty()) {
 throw new EmptyInputException();
 }

 if (digitString.length() > 1) {
 throw new NumberFormatException("Please supply a string with a
single digit");
 }

272 | Exception Handling

 System.out.println(digitString);
 }

 private static void runDigits() throws EmptyInputException {
 try {
 useDigitString("1");
 useDigitString("23");
 useDigitString("4");
 } catch (NumberFormatException e) {
 System.out.println("A number format problem occured: " +
e.getMessage());
 }

 try {
 useDigitString("5");
 useDigitString("");
 useDigitString("7");
 } catch (NumberFormatException e) {
 System.out.println("A number format problem occured: " +
e.getMessage());
 }
 }

3.	 Add the main() method as follows:

 public static void main(String[] args) {
 try {
 runDigits();
 } catch (EmptyInputException e) {
 System.out.println("An empty string was provided");
 }
 }

}

Exception Sources | 273

Notice that this made our code much simpler—we did not even have to write a
message, as the name of the exception clearly communicates the problem. Here is
the output:

1
A number format problem occured: Please supply a string with a single
digit
5
An empty string was provided

Now you know how to throw exceptions and create your own exception class if existing
exception classes are insufficient.

Activity 37: Writing Custom Exceptions in Java.

We will write a program for an admission system for a roller coaster ride. For each
visitor, we will get their name and age from the keyboard. Then, we will print out the
name of the visitor and that they are riding the roller coaster.

Since roller coasters are only for adults, we will reject visitors that are younger than 15
years old. We will handle the rejection using a custom exception: TooYoungException.
This exception object will contain the name and the age of the visitor. When we catch
the exception, we will print an appropriate message that explains why they were
rejected.

We will continue to accept visitors until the name is empty.

To achieve this, perform the following steps:

1.	 Create a new class and enter RollerCoasterWithAge as the class name.

2.	 Also create an exception class, TooYoungException.

3.	 Import the java.util.Scanner package.

4.	 In main(), create an infinite loop.

5.	 Get the user's name. If it is an empty string, break out of the loop.

6.	 Get the user's age. If it is lower than 15, throw a TooYoungException with this name
and age.

7.	 Print the name as "John is riding the roller coaster".

8.	 Catch the exception and print an appropriate message for it.

274 | Exception Handling

9.	 Run the main program.

The output should be similar to the following:

Enter name of visitor: John
Enter John's age: 20
John is riding the roller coaster.
Enter name of visitor: Jack
Enter Jack's age: 13
Jack is 13 years old, which is too young to ride.
Enter name of visitor:

Note

The solution for this activity can be found on page 366.

Exception Mechanics
In the previous topics, we threw and caught exceptions and got a feel for how
exceptions work. Now let's revisit the mechanics to make sure we got everything right.

How try/catch Works

The try/catch statement has two blocks: the try block and the catch block, as shown
here:

try {

 // the try block

} catch (Exception e) {

 // the catch block, can be multiple

}

The try block is where your main execution path code goes. You optimistically write
your program here. If an exception happens in any of the lines in the try block, the
execution stops at that line and jumps to the catch block:

try {

 // line1, fine

 // line2, fine

 // line3, EXCEPTION!

 // line4, skipped

Exception Mechanics | 275

 // line5, skipped

} catch (Exception e) {

 // comes here after line3

}

The catch block catches throwables if they can be assigned to the exception reference
it contains (Exception e, in this case). So, if you have an exception class here that is high
up in the exception hierarchy (such as Exception), it will catch all exceptions. This will
not catch errors, which is usually what you want.

If you want to be more specific about the types of exceptions that you catch, you can
provide an exception class that is lower in the hierarchy.

Exercise 43: Exception Not Caught Because It Cannot Be Assigned to a

Parameter in the catch Block

1.	 Create a new project and add the following code:

public class Main {

 public static void main(String[] args) {
 try {
 for (int i = 0; i < 5; i++) {
 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 }
 }

}

Note that this code will not even compile. The code throws an exception, but
the catch clause expects an InstantiationException, which is a descendant of
Exception, to which exception instances cannot be assigned. Therefore, the
exception is neither caught, nor thrown.

276 | Exception Handling

2.	 Specify an exception so that the code can compile as follows:

public class Main {
 public static void main(String[] args) throws Exception {
 try {
 for (int i = 0; i < 5; i++) {
 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 }
 }

}

When we run the code, we see that we are not able to catch the exception that we
threw:

line 0
line 1
line 2
line 3
Exception in thread "main" java.lang.Exception: EXCEPTION!
 at Main.main(Main.java:8)

Sometimes, you catch one type of a specific exception, but your code can throw other
types of exceptions as well. You can provide multiple catch blocks in this case. The
exception types being caught can be in different places in the class hierarchy. The first
catch block of whose parameter the thrown exception can be assigned to is executed.
So, if two exception classes have an ancestor relationship, the descendant's catch
clause has to go before the ancestor's catch clause; otherwise, the ancestor would catch
the descendant's exceptions as well.

Exercise 44: Multiple catch Blocks and Their Order

In this exercise, we will have a look at multiple catch blocks in a program and their
order of execution. Let's continue with the previous exercise:

1.	 Go back to the initial form of the code:

public class Main {
 public static void main(String[] args) {
 try {
 for (int i = 0; i < 5; i++) {

Exception Mechanics | 277

 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 }
 }
}

2.	 When we hit Alt + Enter on Exception to add a catch clause for it, it is added after
the existing one, which is correct:

public class Main {
 public static void main(String[] args) {
 try {
 for (int i = 0; i < 5; i++) {
 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

}

3.	 If the thrown exception is an InstantiationException, it will be caught by the first
catch. Otherwise, if it is any other exception, it will be caught by the second. Let's
try reordering the catch blocks:

public class Main {
 public static void main(String[] args) {
 try {
 for (int i = 0; i < 5; i++) {
 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (Exception e) {
 e.printStackTrace();
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 }

278 | Exception Handling

 }

}

Now our code will not even compile because instances of InstantiationException
can be assigned to Exception e, and they will be caught by the first catch block.
The second block will never be called—ever. The IDE is smart to catch this problem
for us.

Another property of exceptions is that they travel up the call stack. Every function that
is called essentially returns the execution to its caller, until one of them is able to catch
the exception.

Exercise 45: Exception Propagation

In this exercise, we will go through an example in which we have multiple functions
calling one another:

1.	 We throw the exception from the deepest method, which is caught by one of the
methods higher in the call stack:

public class Main {
 private static void method3() throws Exception {
 System.out.println("Begin method 3");
 try {
 for (int i = 0; i < 5; i++) {
 System.out.println("line " + i);
 if (i == 3) throw new Exception("EXCEPTION!");
 }
 } catch (InstantiationException e) {
 System.out.println("Caught an InstantiationException");
 }
 System.out.println("End method 3");
 }

 private static void method2() throws Exception {
 System.out.println("Begin method 2");
 method3();
 System.out.println("End method 2");
 }

 private static void method1() {
 System.out.println("Begin method 1");
 try {

Exception Mechanics | 279

 method2();
 } catch (Exception e) {
 System.out.println("method1 caught an Exception!: " +
e.getMessage());
 System.out.println("Also, below is the stack trace:");
 e.printStackTrace();
 }
 System.out.println("End method 1");
 }

2.	 Add the main() method as follows:

 public static void main(String[] args) {
 System.out.println("Begin main");
 method1();
 System.out.println("End main");
 }

}

When we run the code, we get this output:

Begin main
Begin method 1
Begin method 2
Begin method 3
line 0
line 1
line 2
line 3
method1 caught an Exception!: EXCEPTION!
Also, below is the stack trace:
java.lang.Exception: EXCEPTION!
 at Main.method3(Main.java:8)
 at Main.method2(Main.java:18)
 at Main.method1(Main.java:25)
 at Main.main(Main.java:36)
End method 1
End main

280 | Exception Handling

Notice that method 2 and method 3 do not run to completion, while method 1 and
main do. Method 2 throws the exception; method 3 does not catch it and lets it
propagate up. Finally, method 1 catches it. Method 2 and method 3 abruptly return
the execution to the method higher in the call stack. Since method 1 and main do
not let an exception propagate up, they are able to run to completion.

There is one more feature of the catch block that we should talk about. Let's say we
would like to catch two specific exceptions but not others, but we will do the exact
same thing in their catch blocks. In this case, we are able to combine the catch blocks
of these exceptions with a pipe character. This feature was introduced in Java 7 and will
not work in Java 6 and below.

Multiple Exception Types in One Block

We have dealt with a single type of exception in one block of code. Now we will have a
look at multiple exception types in one block.

Consider the following code:

import java.io.IOException;

public class Main {

public static void method1() throws IOException {

System.out.println(4/0);

}

public static void main(String[] args) {

try {

System.out.println("line 1");

method1();

System.out.println("line 2");

} catch (IOException|ArithmeticException e) {

System.out.println("An IOException or a ArithmeticException was thrown.
Details below.");

e.printStackTrace();

}

}

}

Exception Mechanics | 281

Here, we have a catch block that can catch either an IOException or an
ArithmeticException using the catch block with multiple exception types. When we run
the code, we see that the ArithmeticException that we caused is successfully caught:

line 1

An IOException or a ArithmeticException was thrown. Details below.

java.lang.ArithmeticException: / by zero

 at Main.method1(Main.java:6)

 at Main.main(Main.java:12)

If the exception was an IOException, it would be caught the same way.

Now you know more about the mechanics of a try/catch block, exception propagation,
multiple catch blocks, and multiple exceptions in a block.

Activity 38: Dealing with Multiple Exceptions in a Block

Remember that we wrote a program for an admission system for a roller coaster ride
earlier? This time, we will also take the visitor's height into account. For each visitor, we
will get their name, age, and height from the keyboard. Then, we will print out the name
of the visitor and that they are riding the roller coaster.

Since roller coasters are only for adults of a certain height, we will reject visitors that
are younger than 15 years old or shorter than 130 cm. We will handle the rejection using
custom exceptions: TooYoungException and TooShortException. These exception objects
will contain the name and the relevant property of the person (age or height). When we
catch the exception, we will print an appropriate message that explains why they were
rejected.

We will continue to accept visitors until the name is empty.

To achieve this, perform the following steps:

1.	 Create a new class and enter RollerCoasterWithAgeAndHeight as the class name.

2.	 Also create two exception classes, TooYoungException and TooShortException.

3.	 Import the java.util.Scanner package.

4.	 In main(), create an infinite loop.

5.	 Get the user's name. If it is an empty string, break out of the loop.

6.	 Get the user's age. If it is lower than 15, throw a TooYoungException with this name
and age.

282 | Exception Handling

7.	 Get the user's height. If it is lower than 130, throw a TooShortException with this
name and age.

8.	 Print the name as "John is riding the roller coaster."

9.	 Catch the two types of exceptions separately. Print appropriate messages for each.

10.	 Run the main program.

The output should be similar to the following:

Enter name of visitor: John
Enter John's age: 20
Enter John's height: 180
John is riding the roller coaster.
Enter name of visitor: Jack
Enter Jack's age: 13
Jack is 13 years old, which is too young to ride.
Enter name of visitor: Jill
Enter Jill's age: 16
Enter Jill's height: 120
Jill is 120 cm tall, which is too short to ride.
Enter name of visitor:

Note

The solution for this activity can be found on page 368.

What Are We Supposed to Do in a Catch Block?

When you catch an exception, you are supposed to do something about it. The ideal
case is that you can find a strategy that recovers from the error and can resume the
execution. However, sometimes you cannot do this and may choose to specify in your
function that you let this exception propagate using a throws statement. We saw these
in the previous topic.

However, in some cases, you may be in a position to add more information to the
exception that you will propagate to your caller. For example: let's say that you called a
method to parse the user's age and it threw a NumberFormatException. If you simply let
it propagate to your caller, your caller will not know that this was related to the user's
age. Perhaps adding this information to the exception before propagating it up would be
beneficial. You can do this by catching the exception, wrapping it in another exception
as the cause, and throwing that exception to your caller. This is also called "chaining
exceptions."

Exception Mechanics | 283

Exercise 46: Chained Exceptions

In this exercise, we will have a look at the workings of chained exceptions:

1.	 Create a new project and add this code:

public class Main {
public static int parseUsersAge(String ageString) {
return Integer.parseInt(ageString);
}
public static void readUserInfo() {
int age = parseUsersAge("fifty five");
}
public static void main(String[] args) {
readUserInfo();
}
}

Notice that trying to parse "fifty five" as an integer will result in a
NumberFormatException. We are not catching it and letting it propagate. Here is the
output we get as a result:

Exception in thread "main" java.lang.NumberFormatException: For input
string: "fifty five"
 at java.lang.NumberFormatException.
forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at Main.parseUsersAge(Main.java:4)
 at Main.readUserInfo(Main.java:8)
 at Main.main(Main.java:12)

Note that the exception's output does not give any indication that this problem
was related to the user's age.

2.	 Catch the exception and chain it to add this information about age:

public class Main {
public static int parseUsersAge(String ageString) {
return Integer.parseInt(ageString);
}
public static void readUserInfo() throws Exception {
try {

284 | Exception Handling

int age = parseUsersAge("fifty five");
} catch (NumberFormatException e) {
throw new Exception("Problem while parsing user's age", e);
}
}

3.	 Add the main() method as follows:

public static void main(String[] args) throws Exception {
readUserInfo();
}
}

In this case, here is the output that we get:

Exception in thread "main" java.lang.Exception: Problem while parsing
user's age
 at Main.readUserInfo(Main.java:11)
 at Main.main(Main.java:16)
Caused by: java.lang.NumberFormatException: For input string: "fifty five"
 at java.lang.NumberFormatException.
forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at Main.parseUsersAge(Main.java:4)
 at Main.readUserInfo(Main.java:9)
 ... 1 more

Note that this contains information about the age. This is an exception that has another
exception as the cause. If you want, you can get it using the e.getCause() method and
act accordingly. When simply logged, it prints the exception details in order.

finally Block and Their Mechanics

The try/catch block is very useful in catching exceptions. However, here is a common
scenario in which it may have some shortcomings. In our code, we would like to acquire
some resources. We are responsible for releasing the resources when we are done with
them. However, a naive implementation may result in a file being left open when an
exception happens.

Exception Mechanics | 285

Exercise 47: Leaving a File Open as a Result of an Exception

In this exercise, we will deal with the finally block:

1.	 Let's say we will read the first line of a file and print it. We can code this as follows:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
public class Main {
private static void useTheFile(String s) {
System.out.println(s);
throw new RuntimeException("oops");
}

2.	 Add the main() method as follows:

public static void main(String[] args) throws Exception {
try {
BufferedReader br = new BufferedReader(new FileReader("input.txt"));
System.out.println("opened the file");
useTheFile(br.readLine());
br.close();
System.out.println("closed the file");
} catch (Exception e) {
System.out.println("caught an exception while reading the file");
}
}
}

Note that the useTheFile function raises an exception before we had a chance to
close the file. When we run it, we get this result:

opened the file
line 1 from the file
caught an exception while reading the file

Note that we do not see a "closed the file" output because the execution could
never get past the useTheFile() call. After catching the exception, even though we
do not have access to the BufferedReader reference, the operating system is still
holding the file resources. We just leaked a resource. If we do this many times in a
loop, our application may crash.

286 | Exception Handling

3.	 You may try to devise various solutions to this resource-leaking problem. For
example: you may duplicate the file-closing code and paste it to the catch block.
Now you have it both in the try and in the catch blocks. If you have multiple catch
blocks, all of them should have it as follows:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
public class Main {
private static void useTheFile(String s) {
System.out.println(s);
throw new RuntimeException("oops");
}
public static void main(String[] args) throws Exception {
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader("input.txt"));
System.out.println("opened the file");
useTheFile(br.readLine());
br.close();
System.out.println("closed the file");
} catch (IOException e) {
System.out.println("caught an I/O exception while reading the file");
br.close();
System.out.println("closed the file");
} catch (Exception e) {
System.out.println("caught an exception while reading the file");
br.close();
System.out.println("closed the file");
}
}
}

4.	 The preceding code is correct, but it has code duplication, which makes it hard to
maintain. Instead, you may think that you can close the file after the catch block in
one single place:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
public class Main {
private static void useTheFile(String s) {
System.out.println(s);

Exception Mechanics | 287

throw new RuntimeException("oops");
}
public static void main(String[] args) throws Exception {
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader("input.txt"));
System.out.println("opened the file");
useTheFile(br.readLine());
} catch (IOException e) {
System.out.println("caught an I/O exception while reading the file");
throw new Exception("something is wrong with I/O", e);
} catch (Exception e) {
System.out.println("caught an exception while reading the file");
}
br.close();
System.out.println("closed the file");
}
}

While this is almost correct, it is missing one possibility. Note that we are throwing
an exception in the first catch block now. That will bypass the code after the catch
blocks and the file will still be left open.

5.	 Therefore, what we need to do is to ensure that the file closing code will run
no matter what happens. The try / catch/ finally block is the solution to this
problem. It is like the try/ catch block, with an extra finally block that executes
after we are done with the block, no matter what happens. Here is the solution
with the finally block:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
public class Main {
private static void useTheFile(String s) {
System.out.println(s);
throw new RuntimeException("oops");
}
public static void main(String[] args) throws Exception {
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader("input.txt"));
System.out.println("opened the file");
useTheFile(br.readLine());

288 | Exception Handling

} catch (IOException e) {
System.out.println("caught an I/O exception while reading the file");
throw new Exception("something is wrong with I/O", e);
} catch (Exception e) {
System.out.println("caught an exception while reading the file");
} finally {
br.close();
System.out.println("closed the file");
}
}
}

This new version closes the file whether there was an exception raised or not, or
if another exception was raised after an exception was originally caught. In each
case, the file-closing code in the finally block is executed and the file resource is
released by the operating system appropriately.

There is still one problem with this code. The problem is, an exception might be
raised while we are opening the file in the BufferedReader constructor, and the br
variable may remain null. Then, when we try to close the file, we will dereference a
null variable, which will create an exception.

6.	 To avoid this problem, we need to ignore br if it is null. The following is the
complete code:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class Main {

 private static void useTheFile(String s) {
 System.out.println(s);
 throw new RuntimeException("oops");
 }

 public static void main(String[] args) throws Exception {

 BufferedReader br = null;
 try {
 br = new BufferedReader(new FileReader("input.txt"));
 System.out.println("opened the file");
 useTheFile(br.readLine());
 } catch (IOException e) {

Exception Mechanics | 289

 System.out.println("caught an I/O exception while reading the
file");
 throw new Exception("something is wrong with I/O", e);
 } catch (Exception e) {
 System.out.println("caught an exception while reading the
file");
 } finally {
 if (br != null) {
 br.close();
 System.out.println("closed the file");
 }
 }
 }

}

Activity 39: Working with Multiple Custom Exceptions

Remember that we wrote a program for an admission system for a roller coaster ride
that verified the visitors' age and heights. This time, we will assume that we have to
escort every applicant outside of the roller-coaster area afterward, whether they ride
the roller coaster or not.

We will admit visitors one by one. For each visitor, we will get their name, age, and
height from the keyboard. Then, we will print out the name of the visitor and that they
are riding the roller coaster.

Since roller coasters are only for adults with a certain height, we will reject visitors who
are younger than 15 years old or shorter than 130 cm. We will handle the rejection using
custom exceptions: TooYoungException and TooShortException. These exception objects
will contain the name and the relevant property of the person (age or height). When we
catch the exception, we will print an appropriate message that explains why they were
rejected.

Once we have finished with a visitor, whether they ride the roller coaster or not, we will
print that we are escorting the visitor outside the roller-coaster area.

We will continue to accept visitors until the name is empty.

290 | Exception Handling

To achieve this, perform the following steps:

1.	 Create a new class and enter RollerCoasterWithEscorting as the class name.

2.	 Also create two exception classes, TooYoungException and TooShortException.

3.	 Import the java.util.Scanner package.

4.	 In main(), create an infinite loop.

5.	 Get the user's name. If it is an empty string, break out of the loop.

6.	 Get the user's age. If it is lower than 15, throw a TooYoungException with this name
and age.

7.	 Get the user's height. If it is lower than 130, throw a TooShortException with this
name and age.

8.	 Print name as "John is riding the roller coaster."

9.	 Catch the two types of exceptions separately. Print appropriate messages for each.

10.	 Print that you are escorting the user off the premises. You have to be careful about
the scope of the name variable.

11.	 Run the main program.

The output should be similar to the following:

Enter name of visitor: John
Enter John's age: 20
Enter John's height: 180
John is riding the roller coaster.
Escorting John outside the premises.
Enter name of visitor: Jack
Enter Jack's age: 13
Jack is 13 years old, which is too young to ride.
Escorting Jack outside the premises.
Enter name of visitor: Jill
Enter Jill's age: 16
Enter Jill's height: 120

Exception Mechanics | 291

Jill is 120 cm tall, which is too short to ride.
Escorting Jill outside the premises.
Enter name of visitor:

Note

The solution for this activity can be found on page 370.

The try with resource Block

The try/ catch/ finally block is a great way to handle resources that you have
allocated. However, you will probably agree that it feels a bit like boilerplate. Allocating
resources and releasing them in a finally block is a very common pattern. Java 7
introduced a new block that simplifies this common pattern—the try with resource
block. In this new block, we place the resource allocations between parentheses right
after the try block and forget about them. The system will automatically call their
.close() methods:

try(Resource r1 = Resource(); OtherResource r2 = OtherResource()) {

 r1.useResource();

 r2.useOtherResource();

} // don't worry about closing the resources

For this to work, all of these resources have to implement the AutoCloseable interface.

Exercise 48: try with resources Block

In this exercise, we will have a look at the try with resource block:

1.	 Import the required classes as follows:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

292 | Exception Handling

2.	 Create a Main class with the useTheFile() method, which takes a string parameter
as follows:

public class Main {

 private static void useTheFile(String s) {
 System.out.println(s);
 throw new RuntimeException("oops");
 }

3.	 Convert our earlier example to use the try with resources block as follows:

public static void main(String[] args) throws Exception {

 try (BufferedReader br = new BufferedReader(new FileReader("input.
txt"))) {
 System.out.println("opened the file, which will be closed
automatically");
 useTheFile(br.readLine());
 } catch (IOException e) {
 System.out.println("caught an I/O exception while reading the
file");
 throw new Exception("something is wrong with I/O", e);
 } catch (Exception e) {
 System.out.println("caught an exception while reading the
file");
 }
 }

}

Best Practices
While learning about exception handling and its statements, mechanics, and classes is
required to use it, for most programmers this may not be enough. Usually, this set of
theoretical information needs practical experience of various cases to get a better feel
for exceptions. In this regard, some rules of thumb about the practical use of exceptions
are worth mentioning:

•	 Do not suppress exceptions unless you really handled them.

•	 Inform the user and let them take responsibility unless you can fix things silently.

•	 Be aware of the caller's behavior and don't leak exceptions unless it is expected.

•	 Wrap and chain with more specific exceptions when possible.

Best Practices | 293

Suppressing Exceptions

In your function, when you catch an exception and do no throw anything, you are
signaling that you took care of the exceptional case and you fixed the situation so that it
is as if that exceptional case had never happened. If you cannot make such a claim, then
you should not have suppressed that exception.

Exercise 49: Suppressing Exceptions

For example: let's assume that we have a list of strings that we expect to contain integer
numbers:

1.	 We will parse all of them and add them to a corresponding list of integers:

import java.util.ArrayList;
import java.util.List;

public class Main {

 private static List<Integer> parseIntegers(List<String> inputList) {
 List<Integer> integers = new ArrayList<>();
 for(String s: inputList) {
 integers.add(Integer.parseInt(s));
 }
 return integers;
 }

2.	 Add a main() method as follows:

 public static void main(String[] args) {
 List<String> inputList = new ArrayList<>();
 inputList.add("1");
 inputList.add("two");
 inputList.add("3");

 List<Integer> outputList = parseIntegers(inputList);

 int sum = 0;
 for(Integer i: outputList) {
 sum += i;
 }
 System.out.println("Sum is " + sum);
 }

}

294 | Exception Handling

When we run this, we get this output:

Exception in thread "main" java.lang.NumberFormatException: For input
string: "two"
 at java.lang.NumberFormatException.
forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at Main.parseIntegers(Main.java:9)
 at Main.main(Main.java:20)

3.	 We should do something about this; at least, we should not let our code
crash. What is the correct course of action? Should we catch the error inside
the parseIntegers function, or should we catch it in main? Let's catch it in
parseIntegers and see what happens:

import java.util.ArrayList;
import java.util.List;

public class Main {

 private static List<Integer> parseIntegers(List<String> inputList) {
 List<Integer> integers = new ArrayList<>();
 for(String s: inputList) {
 try {
 integers.add(Integer.parseInt(s));
 } catch (NumberFormatException e) {
 System.out.println("could not parse an element: " + s);
 }
 }
 return integers;
 }

4.	 Add a main() method as follows:

 public static void main(String[] args) {
 List<String> inputList = new ArrayList<>();
 inputList.add("1");
 inputList.add("two");
 inputList.add("3");

Best Practices | 295

 List<Integer> outputList = parseIntegers(inputList);

 int sum = 0;
 for(Integer i: outputList) {
 sum += i;
 }
 System.out.println("Sum is " + sum);
 }

}

Now here is our output:

could not parse an element: two
Sum is 4

It added 1 and 3 together, and ignored the "two." Is this what we wanted? We assumed
that the "two" was the correct number and we expected it to be in the sum. However, at
the moment, we are excluding it from the sum, and we are adding a note in the logs. If
this was a real-life scenario, probably nobody would look at the logs and the result that
we provide would be inaccurate. This is because we caught the error and did not do
anything meaningful about it.

What would be a better approach? We have two possibilities here: we either can assume
that every element in the list should actually be a number, or we can assume that there
will be mistakes and we should do something about them.

The latter is a trickier approach. Perhaps we can collect the offending entries in another
list and return it back to the caller, and then the caller would send it back to its origin
for re-evaluation. For example, it could show them to the user and ask them to be
corrected.

The former is an easier approach: we assume that the initial list contains number
strings. If this assumption breaks, however, we have to let the caller know. So, we
should throw an exception, rather than providing a half-correct sum.

What we should not do is take a third approach: hope that the list contains numbers,
but ignore the ones that are not numbers. Note that this is a choice we made, but
that's not what we thought of when we enumerated our two options above. This was
convenient to program, but it created an assumption that was not there in the original
business logic. Be very careful about situations like this. Make sure you write down
your assumptions and be strict in enforcing them. Do not let the convenience of
programming force you to accept weird assumptions.

296 | Exception Handling

If we take the assumption that the initial list contains number strings, here is how we
should have coded it:

import java.util.ArrayList;

import java.util.List;

public class Main {

 private static List<Integer> parseIntegers(List<String> inputList) {

 List<Integer> integers = new ArrayList<>();

 for(String s: inputList) {

 integers.add(Integer.parseInt(s));

 }

 return integers;

 }

 public static void main(String[] args) {

 List<String> inputList = new ArrayList<>();

 inputList.add("1");

 inputList.add("two");

 inputList.add("3");

 try {

 List<Integer> outputList = parseIntegers(inputList);

 int sum = 0;

 for(Integer i: outputList) {

 sum += i;

 }

 System.out.println("Sum is " + sum);

 } catch (NumberFormatException e) {

 System.out.println("There was a non-number element in the list.
Rejecting.");

Best Practices | 297

 }

 }

}

And the output would simply be as follows:

There was a non-number element in the list. Rejecting.

Keeping the User in the Loop

The previous rule of thumb advised us not to provide half-correct results by sweeping
problems under the rug. Now we'll extend it for cases when the program is an
interactive one. Unless your program is a batch process, it usually has some interaction
with a user. In that case, having the user be the arbiter of a problematic situation is
usually the right approach.

In our example of a list of string numbers, obviously, one of the strings is not parsable
as a number and there is not much the program can do. However, if the user saw the
"two," they could replace it with a "2" to fix the situation. Therefore, rather than trying
to silently fix things, we should find ways of involving the user in the decision-making
process and get their help to resolve the problem.

Exercise 50: Asking the User for Help

We can extend our previous example so that we identify the offending entry in the list
and ask the user to correct it:

1.	 Here is an approach for this:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

class NonNumberInListException extends Exception {
 public int index;

 NonNumberInListException(int index, Throwable cause) {
 super(cause);
 this.index = index;
 }
}

298 | Exception Handling

public class Main {

 private static List<Integer> parseIntegers(List<String> inputList)
throws NonNumberInListException {
 List<Integer> integers = new ArrayList<>();
 int index = 0;
 for(String s: inputList) {
 try {
 integers.add(Integer.parseInt(s));
 } catch (NumberFormatException e) {
 throw new NonNumberInListException(index, e);
 }
 index++;
 }
 return integers;
 }

2.	 Add a main() method as follows:

 public static void main(String[] args) {
 List<String> inputList = new ArrayList<>();
 inputList.add("1");
 inputList.add("two");
 inputList.add("3");

 boolean done = false;
 while (!done) {
 try {
 List<Integer> outputList = parseIntegers(inputList);

 int sum = 0;
 for(Integer i: outputList) {
 sum += i;
 }
 System.out.println("Sum is " + sum);
 done = true;
 } catch (NonNumberInListException e) {
 System.out.println("This element does not seem to be a
number: " + inputList.get(e.index));
 System.out.print("Please provide a number instead: ");
 Scanner scanner = new Scanner(System.in);
 String newValue = scanner.nextLine();
 inputList.set(e.index, newValue);

Best Practices | 299

 }
 }
 }

}

And here is a sample output:

This element does not seem to be a number: two
Please provide a number instead: 2
Sum is 6

Note that we identified the offending element and asked the user to fix it. This is a good
way to keep the user in the loop and give them a chance to fix the problem.

Do Not Throw Unless It Is Expected

So far, we have been suggesting that throwing exceptions is a good thing and that
we should not suppress them. However, in some cases, this may not be the case. This
reminds us that everything about exceptions depends on the context and we should
think about each situation rather than blindly following patterns.

Every now and then, you might use a third-party library and you might provide them
with classes of yours so that they call your methods. For example: a game engine may
get your object and call its update() method 60 times per second. In a case such as this,
you should be careful about understanding what it may mean if you throw an exception.
If it is the case that the exception that you throw exits the game, or shows a popup that
an error happened, maybe you should not throw exceptions about things that are not
showstoppers. Let's say that you are not able to calculate a required value in this frame,
but maybe it will work in the next frame. Is it worth stopping the game for this? Perhaps
not.

Especially when you are overriding classes/implementing interfaces and handing your
object to another entity to manage, you should be mindful about what propagating
an exception out of your methods entails. If the caller encourages exceptions, great.
Otherwise you may have to wrap all your methods in a broad try/catch to ensure that
you do not leak exceptions for things that are not showstoppers.

300 | Exception Handling

Consider Chaining and Being More Specific When You Let Exceptions

Propagate

When you propagate an exception to your caller, you usually have a chance to add
more information to that exception so that it will be more useful to the caller. For
example: you may be parsing the user's age, phone number, height, and so on, from
strings that they provided. Simply raising a NumberFormatException, without informing
the caller about which value it was for is not a very helpful strategy. Instead, catching
the NumberFormatException separately for each parse operation gives us the chance
to identify the offending value. Then, we can create a new Exception object, provide
more information in it, give the NumberFormatException as the initial cause, and throw
that instead. Then, the caller can catch it and be informed about which entity was the
offending one.

The earlier exercise, in which we used our custom NonNumberInListException to identify
the index of the offending entry in the list, is a good example of this rule of thumb.
Whenever possible, it is a better idea to throw a more informative exception that we
create ourselves, rather than letting the internal exception propagate without much
context.

Summary
In this lesson, we covered exceptions in Java from a practical point of view. First, we
discussed the motivation behind exception handling and how it provides advantages
over other ways of trying to handle erroneous cases. Then, we took the point of view
of a newbie Java programmer with a powerful IDE and provided guidance on how to
best handle and specify exceptions. Later, we dived deeper into causes of exceptions
and various exception types, followed by the mechanics of exception handling using
the try/catch, try/catch/finally, and try with resource blocks. We finish this discussion
with a list of best practices to guide your decision process in various situations that
involve exceptions.

About

This section is included to assist the students to perform the activities in the book.

It includes detailed steps that are to be performed by the students to achieve the objectives of
the activities.

Appendix

>

304 | Appendix

Lesson 1: Introduction to Java

Activity 1: Printing the Results of Simple Arithmetic Operations

Solution:

1.	 Create a class named Operations as follows:

public class Operations
{

2.	 Within main(), print a sentence describing the operation on the values you will be
performing along with the result:

 public static void main(String[] args) {
 System.out.println("The sum of 3 + 4 is " + (3 + 4));
 System.out.println("The product of 3 + 4 is " + (3 * 4));
 }
}

The output will be as follows:

The sum of 3 + 4 is 7
The product of 3 + 4 is 12

Activity 2: Reading Values from the User and Performing Operations Using

the Scanner Class.

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter ReadScanner as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 In the main() enter the following:

public class ReadScanner
{
 static Scanner sc = new Scanner(System.in);
 public static void main(String[] args) {
 System.out.print("Enter a number: ");
 int a = sc.nextInt();
 System.out.print("Enter 2nd number: ");
 int b = sc.nextInt();

Lesson 1: Introduction to Java | 305

 System.out.println("The sum is " + (a + b) + ".");

 }
}

5.	 Run the main program.

The output will be as follows:

Enter a number: 12
Enter 2nd number: 23
The sum is 35.

Activity 3: Calculating the Percent Increase or Decrease of Financial Instru-

ments

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter StockChangeCalculator as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 In the main() enter the following:

public class StockChangeCalculator{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
 System.out.print("Enter the stock symbol: ");
 String symbol = sc.nextLine();
 System.out.printf("Enter %s's day 1 value: ", symbol);
 double day1 = sc.nextDouble();
 System.out.printf("Enter %s's day 2 value: ", symbol);
 double day2 = sc.nextDouble();
 double percentChange = 100 * (day2 - day1) / day1;
 System.out.printf("%s has changed %.2f%% in one day.", symbol,
percentChange);
}
}

306 | Appendix

5.	 Run the main program.

The output should be similar to:

Enter the stock symbol: AAPL
Enter AAPL's day 1 value: 100
Enter AAPL's day 2 value: 91.5
AAPL has changed -8.50% in one day.

Lesson 2: Variables, Data Types, and Operators

Activity 4: Inputting Student Information and Outputting an ID

Solution:

1.	 Import the Scanner package and create a new class

import java.util.Scanner;
{
public class Input{
static Scanner sc = new Scanner(System.in);
 public static void main(String[] args)
{

2.	 Take the student name as a string.

System.out.print("Enter student name: ");
String name = sc.nextLine();

3.	 Take the university name as a string.

System.out.print("Enter Name of the University: ");
String uni = sc.nextLine();

4.	 Take the student's age as an integer.

System.out.print("Enter Age: ");
int age = sc.nextInt();

Lesson 2: Variables, Data Types, and Operators | 307

5.	 Print out the student details.

System.out.println("Here is your ID");
System.out.println("*********************************");
System.out.println("Name: " + name);
System.out.println("University: " + uni);
System.out.println("Age: " + age);
System.out.println("*********************************");
 }
}
}

Activity 5: Calculating the Number of Full Fruit Boxes

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter PeachCalculator as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 In the main() enter the following:

public class PeachCalculator{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
 System.out.print("Enter the number of peaches picked: ");
 int numberOfPeaches = sc.nextInt();
 int numberOfFullBoxes = numberOfPeaches / 20;
 int numberOfPeachesLeft = numberOfPeaches - numberOfFullBoxes * 20;
 System.out.printf("We have %d full boxes and %d peaches left.",
numberOfFullBoxes, numberOfPeachesLeft);
}
}

5.	 Run the main program.

The output should be similar to:

Enter the number of peaches picked: 55
We have 2 full boxes and 15 peaches left.

308 | Appendix

Lesson 3: Control Flow

Activity 6: Controlling the Flow of Execution Using Conditionals

Solution:

1.	 Create a class named Salary and add main() method:

public class Salary {
 public static void main(String args[]) {

2.	 Initialize two variables workerhours and salary.

int workerhours = 10;
double salary = 0;

3.	 In the if condition, check whether the working hours of the worker is below the
required hours. If the condition holds true, then the salary should be (working
hours * 10).

if (workerhours <= 8)
salary = workerhours*10;

4.	 Use the else if statement to check if the working hours lies between 8 hours and
12 hours. If that is true, then the salary should be calculated at $10 per hour for the
first eight hours and the remaining hours should be calculated at $12 per hour.

else if((workerhours > 8) && (workerhours < 12))
salary = 8*10 + (workerhours - 8) * 12;

5.	 Use the else block for the default of $160 (additional day's salary) per day.

else
 salary = 160;
System.out.println("The worker's salary is " + salary);
}
}

Lesson 3: Control Flow | 309

Activity 7: Developing a Temperature System

Solution:

1.	 Declare two strings, temp and weatherWarning, and then initialize temp with either
High, Low, or Humid.

public class TempSystem
{
 public static void main(String[] args) {
 String temp = "Low";
 String weatherWarning;

2.	 Create a switch statement that checks the different cases of temp, and then initial-
ize the variable weatherWarning to appropriate messages for each case of temp
(High, Low, Humid).

switch (temp) {
 case "High":
 weatherWarning = "It's hot outside, do not forget sunblock.";
 break;
 case "Low":
 weatherWarning = "It's cold outside, do not forget your
coat.";
 break;
 case "Humid":
 weatherWarning = "The weather is humid, open your windows.";
 break;

3.	 In the default case, initialize weatherWarning to "The weather looks good. Take a
walk outside".

default:
 weatherWarning = "The weather looks good. Take a walk outside";
 break;

4.	 After you complete the switch construct, print the value of weatherWarning.

}
 System.out.println(weatherWarning);
 }
}

310 | Appendix

5.	 Run the program to see the output, it should be similar to:

It's cold outside, do not forget your coat.

Full code is as follows:

public class TempSystem
{
 public static void main(String[] args) {
 String temp = "Low";
 String weatherWarning;
 switch (temp) {
 case "High":
 weatherWarning = "It's hot outside, do not forget sunblock.";
 break;
 case "Low":
 weatherWarning = "It's cold outside, do not forget your
coat.";
 break;
 case "Humid":
 weatherWarning = "The weather is humid, open your windows.";
 break;

 default:
 weatherWarning = "The weather looks good. Take a walk
outside";
 break;
 }
 System.out.println(weatherWarning);
 }
}

Activity 8: Implementing the for Loop

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter PeachBoxCounter as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

Lesson 3: Control Flow | 311

4.	 In the main() enter the following:

public class PeachBoxCounter
{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
System.out.print("Enter the number of peaches picked: ");
int numberOfPeaches = sc.nextInt();
for (int numShipped = 0; numShipped < numberOfPeaches; numShipped += 20)
{
System.out.printf("shipped %d peaches so far\n", numShipped);
}
}
}

Activity 9: Implementing the while Loop

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter PeachBoxCounters as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 In the main() enter the following:

public class PeachBoxCounters{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
 System.out.print("Enter the number of peaches picked: ");
 int numberOfPeaches = sc.nextInt();
 int numberOfBoxesShipped = 0;

 while (numberOfPeaches >= 20) {
 numberOfPeaches -= 20;
 numberOfBoxesShipped += 1;
 System.out.printf("%d boxes shipped, %d peaches remaining\n",
 numberOfBoxesShipped, numberOfPeaches);
 }
}
}

312 | Appendix

Activity 10: Implementing Looping Constructs

Solution:

1.	 Import the packages that are required to read data from the user.

import java.util.Scanner;
public class Theater {
public static void main(String[] args)

2.	 Declare the variables to store the total number of seats available, remaining seats,
and tickets requested.

{
int total = 10, request = 0, remaining = 10;

3.	 Within a while loop, implement the if else loop that checks whether the request
is valid, which implies that the number of tickets requested is less than the
number of seats remaining.

while (remaining>=0)
{
System.out.println("Enter the number of tickets");
Scanner in = new Scanner(System.in);
request = in.nextInt();

4.	 If the logic in the previous step is true, then print a message to denote that the
ticket is processed, set the remaining seats to the appropriate value, and ask for
the next set of tickets.

if(request <= remaining)
{
System.out.println("Your " + request +" tickets have been procced. Please
pay and enjoy the show.");
remaining = remaining - request;
request = 0;
}

Lesson 3: Control Flow | 313

5.	 If the logic in step 3 is false, then print an appropriate message and break out of
the loop:

else
{
System.out.println("Sorry your request could not be processed");
break;
}
}
}
}

Activity 11: Continuous Peach Shipment with Nested Loops

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter PeachBoxCounter as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 In the main() enter the following:

public class PeachBoxCount{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
 int numberOfBoxesShipped = 0;
 int numberOfPeaches = 0;
 while (true) {
 System.out.print("Enter the number of peaches picked: ");
 int incomingNumberOfPeaches = sc.nextInt();
 if (incomingNumberOfPeaches == 0) {
 break;
 }
 numberOfPeaches += incomingNumberOfPeaches;
 while (numberOfPeaches >= 20) {
 numberOfPeaches -= 20;

314 | Appendix

 numberOfBoxesShipped += 1;
 System.out.printf("%d boxes shipped, %d peaches remaining\n",
 numberOfBoxesShipped, numberOfPeaches);
 }
 }
}
}

Lesson 4: Object-Oriented Programming

Activity 12: Creating a Simple Class in Java

Solution:

1.	 Create a new project in the IDE named Animals.

2.	 In the project, create a new file named Animal.java under the src/ folder.

3.	 Open Animal.java and paste in the following code:

public class Animal {

}

4.	 Inside the curly braces, create the following instance variables to hold our data, as
shown here:

public class Animal {
 int legs;
 int ears;
 int eyes;
 String family;
 String name;

 }

5.	 Below the instance variables, define two constructors. One will take no arguments
and initialize legs to 4, ears to 2, and eyes to 2. The second constructor will take
the value of legs, ears, and eyes as arguments and set those values:

public class Animal {
 int legs;
 int ears;
 int eyes;
 String family;

Lesson 4: Object-Oriented Programming | 315

 String name;

 public Animal(){
 this(4, 2,2);
 }
 public Animal(int legs, int ears, int eyes){
 this.legs = legs;
 this.ears = ears;
 this.eyes = ears;
 }
}

6.	 Define four methods, two to set and get the family and two to set and get the
name:

Note

The methods that set values in an object are called setters, while those that get
those values are called getters.

public class Animal {
 int legs;
 int ears;
 int eyes;
 String family;
 String name;

 public Animal(){
 this(4, 2,2);
 }
 public Animal(int legs, int ears, int eyes){
 this.legs = legs;
 this.ears = ears;
 this.eyes = ears;

 }
 public String getFamily() {
 return family;
 }

316 | Appendix

 public void setFamily(String family) {
 this.family = family;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

We have finished constructing our Animal class. Let's continue and create a few
instances of this class.

7.	 Create a new file named Animals.java and copy the following code into it, as
shown here:

public class Animals {

 public static void main(String[] args){

 }
}

8.	 Create two objects of the Animal class:

public class Animals {
 public static void main(String[] args){
 Animal cow = new Animal();
 Animal goat = new Animal();
 }
}

9.	 Let's create another animal with 2 legs, 2 ears and 2 eyes:

Animal duck = new Animal(2, 2, 2);

Lesson 4: Object-Oriented Programming | 317

10.	 To set the animals' names and family, we will use the getters and setters we
created in the class. Copy/write the following lines into the Animals class:

public class Animals {

 public static void main(String[] args){

 Animal cow = new Animal();
 Animal goat = new Animal();

 Animal duck = new Animal(2, 2, 2);

 cow.setName("Cow");
 cow.setFamily("Bovidae");

 goat.setName("Goat");
 goat.setFamily("Bovidae");

 duck.setName("Duck");
 duck.setFamily("Anatidae");

 System.out.println(cow.getName());
 System.out.println(goat.getName());
 System.out.println(duck.getFamily());

 }
}

The output of the preceding code is as follows:

Cow
Goat
Anatide

Figure 4.9: Output of the Animal class

318 | Appendix

Activity 13: Writing a Calculator Class

Solution:

1.	 Create a Calculator class as follows:

public class Calculator {

2.	 Create three fields double operand1, double operand2, and String operator. Add a
constructor that sets all three fields.

private final double operand1;
private final double operand2;
private final String operator;

public Calculator(double operand1, double operand2, String operator){
this.operand1 = operand1;
this.operand2 = operand2;
this.operator = operator;
}

3.	 In this class, add an operate method that will check what operator is ("+", "-", "x" or
"/") and executes the correct operation, returning the result:

public double operate() {
if (this.operator.equals("-")) {
return operand1 - operand2;
} else if (this.operator.equals("x")) {
return operand1 * operand2;
} else if (this.operator.equals("/")) {
return operand1 / operand2;
} else {
// If operator is sum or unknown, return sum
return operand1 + operand2;
}
}

4.	 Write a main() method as follows:

public static void main (String [] args) {
 System.out.println("1 + 1 = " + new Calculator(1, 1, "+").
operate());
 System.out.println("4 - 2 = " + new Calculator(4, 2, "-").
operate());
 System.out.println("1 x 2 = " + new Calculator(1, 2, "x").
operate());

Lesson 4: Object-Oriented Programming | 319

 System.out.println("10 / 2 = " + new Calculator(10, 2, "/").
operate());
 }
}

Activity 14: Creating a Calculator Using Java

Solution:

1.	 Create a class Operator that has one String field initialized in the constructor that
represents the operator. This class should have a default constructor that repre-
sents the default operator, which is sum. The Operator class should also have a
method called operate that receives two doubles and return the result of the oper-
ator as a double. The default operation is sum:

public class Operator {

 public final String operator;

 public Operator() {
 this("+");
 }

 public Operator(String operator) {
 this.operator = operator;
 }

 public boolean matches(String toCheckFor) {
 return this.operator.equals(toCheckFor);
 }

 public double operate(double operand1, double operand2) {
 return operand1 + operand2;
 }

}

320 | Appendix

2.	 Create another class named Subtraction. It extends from Operator and override
the operate method with each operation that it represents. It also need a no-argu-
ment constructor that calls super passing the operator that it
represents:

public class Subtraction extends Operator {

 public Subtraction() {
 super("-");
 }

 @Override
 public double operate(double operand1, double operand2) {
 return operand1 - operand2;
 }

}

3.	 Create another class named Multiplication. It extends from Operator and over-
ride the operate method with each operation that it represents. It also need a
no-argument constructor that calls super passing the operator that it represents:

public class Multiplication extends Operator {

 public Multiplication() {
 super("x");
 }

 @Override
 public double operate(double operand1, double operand2) {
 return operand1 * operand2;
 }

}

4.	 Create another class named Division. It extends from Operator and override the
operate method with each operation that it represents. It also need a no-argument
constructor that calls super passing the operator that it represents:

public class Division extends Operator {

 public Division() {
 super("/");

Lesson 4: Object-Oriented Programming | 321

 }

 @Override
 public double operate(double operand1, double operand2) {
 return operand1 / operand2;
 }

}

5.	 As the previous Calculator class, this one will also have an operate method, but it
will only delegate to the operator instance. Last, write a main method that calls the
new calculator a few times, printing the results of the operation for each time:

public class CalculatorWithFixedOperators {
 public static void main (String [] args) {
 System.out.println("1 + 1 = " + new
CalculatorWithFixedOperators(1, 1, "+").operate());
 System.out.println("4 - 2 = " + new
CalculatorWithFixedOperators(4, 2, "-").operate());
 System.out.println("1 x 2 = " + new
CalculatorWithFixedOperators(1, 2, "x").operate());
 System.out.println("10 / 2 = " + new
CalculatorWithFixedOperators(10, 2, "/").operate());
 }

 private final double operand1;
 private final double operand2;

 // The current operator
 private final Operator operator;

 // All possible operations
 private final Division division = new Division();
 private final Multiplication multiplication = new Multiplication();
 private final Operator sum = new Operator();
 private final Subtraction subtraction = new Subtraction();

322 | Appendix

 public CalculatorWithFixedOperators(double operand1, double operand2,
String operator) {
 this.operand1 = operand1;
 this.operand2 = operand2;

 if (subtraction.matches(operator)) {
 this.operator = subtraction;
 } else if (multiplication.matches(operator)) {
 this.operator = multiplication;
 } else if (division.matches(operator)) {
 this.operator = division;
 } else {
 this.operator = sum;
 }
 }

 public double operate() {
 return operator.operate(operand1, operand2);
 }

}

Activity 15: Understanding Inheritance and Polymorphism in Java

Solution:

1.	 Create a Cat class that inherits from Animal:

 public class Cat extends Animal {

2.	 Create instance variables owner, numberOfTeeth, and age as follows:

//Fields specific to the Cat family
String owner;
int numberOfTeeth;
int age;

3.	 Create main() method as follows:

public static void main(String[] args){
Cat myCat = new Cat();
//Since Cat inherits from Animal, we have access to it's methods and fields
//We don't need to redefine these methods and fields
myCat.setFamily("Cat");
myCat.setName("Puppy");

Lesson 4: Object-Oriented Programming | 323

myCat.ears = 2;
myCat.legs = 4;
myCat.eyes = 2;
System.out.println(myCat.getFamily());
System.out.println(myCat.getName());
System.out.println(myCat.ears);
System.out.println(myCat.legs);
System.out.println(myCat.eyes);
}
}

The output is as follows

Cat
Puppy
2
4
2

Lesson 5: OOP in Depth

Activity 16: Creating and Implementing Interfaces in Java

Solution:

1.	 Open our Animals project from the previous lesson.

2.	 Create a new interface called AnimalBehavior.

3.	 In this create two methods void move() and void makeSound().

4.	 Create a new public class called Cow and implement the AnimalBehavior interface.
Override the two methods, but leave them blank for now.

5.	 Inside the Cow class, create two fields, as follows:

public class Cow implements AnimalBehavior, AnimalListener {
String sound;
String movementType;

324 | Appendix

Edit the overridden methods to look like this:

@Override
public void move() {
 this.movementType = "Walking";
 this.onAnimalMoved();
}

@Override
public void makeSound() {
 this.sound = "Moo";
 this.onAnimalMadeSound();
}

6.	 Create another interface called AnimalListener with the following methods:

public interface AnimalListener {
 void onAnimalMoved();
 void onAnimalMadeSound();
}

7.	 Let the Cow class also implement this interface. Make sure that you override the
two methods in the interface.

8.	 Edit the two methods to look like this:

@Override
 public void onAnimalMoved() {
 System.out.println("Animal moved: " + this.movementType);
 }

@Override
public void onAnimalMadeSound() {
 System.out.println("Sound made: " + this.sound);
}

9.	 Finally, create a main method to test your code:

public static void main(String[] args){
 Cow myCow = new Cow();
 myCow.move();
 myCow.makeSound();
}
}

Lesson 4: Object-Oriented Programming | 325

10.	 Run the Cow class and view the output. It should look something like this:

Animal moved: Walking
Sound made: Moo

Activity 17: Using instanceof and Typecasting

Solution:

1.	 Import Random package to generate random employees:

import java.util.Random;

2.	 Create an EmployeeLoader class that will serve as a datasource as follows:

public class EmployeeLoader {

3.	 Declare a static pseudo-random generator as follows:

private static Random random = new Random(15);

4.	 Generate a new randomly picked employee as follows:

public static Employee getEmployee() {
 int nextNumber = random.nextInt(4);
 switch(nextNumber) {
 case 0:
 // A sales person with total sales between 5000 and
1550000
 double grossSales = random.nextDouble() * 150000 + 5000;
 return new SalesWithCommission(grossSales);
 case 1:
 return new Manager();
 case 2:
 return new Engineer();
 case 3:
 return new Sales();
 default:
 return new Manager();
 }
 }

326 | Appendix

5.	 Create another file with SalesWithCommission class that extends Sales. Add a
constructor that receives the gross sales as double and store it as a field. Also add
a method called getCommission which returns a double that is the gross sales times
15% (0.15):

public class SalesWithCommission extends Sales implements Employee {

 private final double grossSales;

 public SalesWithCommission(double grossSales) {
 this.grossSales = grossSales;
 }
 public double getCommission() {
 return grossSales * 0.15;
 }
}

6.	 Write a class ShowSalaryAndCommission with main() method, that calls getEm-
ployee() repeatedly inside a for loop and print the information about the
Employee salary and tax. And if the employee is an instance of SalesWithCommis-
sion, also print his commission:

public class ShowSalaryAndCommission {

 public static void main (String [] args) {
 for (int i = 0; i < 10; i++) {
 Employee employee = EmployeeLoader.getEmployee();
 System.out.println("--- " + employee.getClass().getName());

 System.out.println("Net Salary: " + employee.getNetSalary());
 System.out.println("Tax: " + employee.getTax());

 if (employee instanceof SalesWithCommission) {
 // Cast to sales with commission
 SalesWithCommission sales = (SalesWithCommission)
employee;
 System.out.println("Commission: " + sales.
getCommission());
 }
 }
 }
}

Lesson 4: Object-Oriented Programming | 327

Activity 18: Understanding Typecasting in Java

Solution:

1.	 Open our Animals project.

2.	 Create a new class called AnimalTest and, inside it, create the main method:

public class AnimalTest {

 public static void main(String[] args){

 }
}

3.	 Inside the main method, create two variables:

Cat cat = new Cat();
Cow cow = new Cow();

4.	 Print the owner of the cat:

System.out.println(cat.owner);

5.	 Upcast the cat to Animal and try to print the owner once more. What error do you
get? Why?

Animal animal = (Animal)cat;
System.out.println(animal.owner);

The error message is as follows:

Figure 5.7: Exception while accessing the variables of the subclass for upcasting

Reason: Since we did an upcast, we cannot access the variables of the subclass
anymore.

6.	 Print the sound of the cow:

System.out.println(cow.sound);

328 | Appendix

7.	 Try to upcast the cow to Animal. Why error do you get? Why?

Animal animal1 = (Animal)cow;

The error message is as follows:

Figure 5.8: Exception while upcasting cow to Animal

Reason: Cow does not inherit from the Animal class, so they don't share the same
hierarchical tree.

8.	 Downcast the animal to cat1 and print the owner again:

Cat cat1 = (Cat)animal;
System.out.println(cat1.owner);

9.	 The full AnimalTest class should look like this:

public class AnimalTest {

 public static void main(String[] args){

 Cat cat = new Cat();
 Cow cow = new Cow();

 System.out.println(cat.owner);

 Animal animal = (Animal)cat;
 //System.out.println(animal.owner);
 System.out.println(cow.sound);

 //Animal animal1 = (Animal)cow;
 Cat cat1 = (Cat)animal;
 System.out.println(cat1.owner);
 }
}

Lesson 4: Object-Oriented Programming | 329

The output is as follows:

Figure 5.9: Output of the AnimalTest class

Activity 19: Implementing Abstract Classes and Methods in Java

Solution:

1.	 Create a new project called Hospital and open it.

2.	 Inside the src folder, create an abstract class called Person:

public abstract class Patient {

}

3.	 Create an abstract method that returns the type of person in the hospital. Name
this method String getPersonType(), returning a String:

public abstract String getPersonType();

We have finished our abstract class and method. Now, we will continue to inherit
from it and implement this abstract method.

4.	 Create a new class called Doctor that inherits from the Person class:

public class Doctor extends Patient {
}

5.	 Override the getPersonType abstract method in our Doctor class. Return the string
"Arzt". This is German for Doctor:

@Override
public String getPersonType() {
 return "Arzt";
}

330 | Appendix

6.	 Create another class called Patient to represent the patients in the hospital. Simi-
larly, make sure that the class inherits from Person and overrides the getPerson-
Type method. Return "Kranke". This is German for Patient:

public class People extends Patient{
 @Override
 public String getPersonType() {
 return "Kranke";
 }
}

Now, we have the two classes. We will now test our code using a third test class.

7.	 Create a third class called HospitalTest. We will use this class to test the two
classes we created previously.

8.	 Inside the HospitalTest class, create the main method:

public class HospitalTest {
 public static void main(String[] args){

 }
}

9.	 Inside the main method, create an instance of Doctor and another instance of
Patient:

Doctor doctor = new Doctor();
People people = new People();

10.	 Try calling the getPersonType method for each of the objects and print it out to the
console. What is the output?

String str = doctor.getPersonType();
String str1 = patient.getPersonType();
System.out.println(str);
System.out.println(str1);

The output is as follows:

Figure 5.10: Output on calling getPersonType()

Lesson 4: Object-Oriented Programming | 331

Activity 20: Use abstract class to Encapsulate Common Logic

Solution:

1.	 Create an abstract class GenericEmployee that has a constructor that receives the
gross salary and stores that in a field. It should implement the Employee interface
and have two methods: getGrossSalary() and getNetSalary(). The first will just
return the value passed into the constructor. The latter will return the gross salary
minus the result of calling getTax() method:

public abstract class GenericEmployee implements Employee {

 private final double grossSalary;

 public GenericEmployee(double grossSalary) {
 this.grossSalary = grossSalary;
 }

 public double getGrossSalary() {
 return grossSalary;
 }

 @Override
 public double getNetSalary() {
 return grossSalary - getTax();
 }

}

2.	 Create a new generic version of each type of employee: GenericEngineer. It will
need a constructor that receives gross salary and pass it to the super constructor.
It also needs to implement the getTax() method, returning the correct tax value
for each class:

public class GenericEngineer extends GenericEmployee {

 public GenericEngineer(double grossSalary) {
 super(grossSalary);
 }

 @Override
 public double getTax() {

332 | Appendix

 return (22.0/100) * getGrossSalary();
 }

}

3.	 Create a new generic version of each type of employee: GenericManager. It will
need a constructor that receives gross salary and pass it to the super constructor.
It also needs to implement the getTax() method, returning the correct tax value
for each class:

public class GenericManager extends GenericEmployee {

 public GenericManager(double grossSalary) {
 super(grossSalary);
 }

 @Override
 public double getTax() {
 return (28.0/100) * getGrossSalary();
 }

}

4.	 Create a new generic version of each type of employee: GenericSales. It will need a
constructor that receives gross salary and pass it to the super constructor. It also
needs to implement the getTax() method, returning the correct tax value for each
class:

public class GenericSales extends GenericEmployee {

 public GenericSales(double grossSalary) {
 super(grossSalary);
 }

 @Override
 public double getTax() {
 return (19.0/100) * getGrossSalary();
 }

}

Lesson 4: Object-Oriented Programming | 333

5.	 Create a new generic version of each type of employee: GenericSalesWithCom-
mission. It will need a constructor that receives gross salary and pass it to the
super constructor. It also needs to implement the getTax() method, returning
the correct tax value for each class. Remember to also receive the gross sales on
the GenericSalesWithCommission class, and add the method that calculates the
commission:

public class GenericSalesWithCommission extends GenericEmployee {
 private final double grossSales;

 public GenericSalesWithCommission(double grossSalary, double
grossSales) {
 super(grossSalary);
 this.grossSales = grossSales;
 }

 public double getCommission() {
 return grossSales * 0.15;
 }

 @Override
 public double getTax() {
 return (19.0/100) * getGrossSalary();
 }

}

6.	 Add a new method getEmployeeWithSalary to your EmployeeLoader class. This
method will generate a random salary between 70,000 and 120,000 and assign to
the newly created employee before returning it. Remember to also provide a gross
sales when creating a GenericSalesWithCommission employee:

public static Employee getEmployeeWithSalary() {
 int nextNumber = random.nextInt(4);

 // Random salary between 70,000 and 70,000 + 50,000
 double grossSalary = random.nextDouble() * 50000 + 70000;
 switch(nextNumber) {
 case 0:
 // A sales person with total sales between 5000 and
1550000
 double grossSales = random.nextDouble() * 150000 + 5000;

334 | Appendix

 return new GenericSalesWithCommission(grossSalary,
grossSales);
 case 1:
 return new GenericManager(grossSalary);
 case 2:
 return new GenericEngineer(grossSalary);
 case 3:
 return new GenericSales(grossSalary);
 default:
 return new GenericManager(grossSalary);
 }
 }

}

7.	 Write an application that calls the getEmployeeWithSalary method multiple times
from inside for loop. This method will work like the one in the previous activity:
print the net salary and tax for all employees. If the employee is an instance of
GenericSalesWithCommission also print his commission.

public class UseAbstractClass {

 public static void main (String [] args) {
 for (int i = 0; i < 10; i++) {
 Employee employee = EmployeeLoader.getEmployeeWithSalary();
 System.out.println("--- " + employee.getClass().getName());

 System.out.println("Net Salary: " + employee.getNetSalary());
 System.out.println("Tax: " + employee.getTax());

 if (employee instanceof GenericSalesWithCommission) {
 // Cast to sales with commission
 GenericSalesWithCommission sales =
(GenericSalesWithCommission) employee;
 System.out.println("Commission: " + sales.
getCommission());
 }
 }
 }

}

Lesson 6: Data Structures, Arrays, and Strings | 335

Lesson 6: Data Structures, Arrays, and Strings

Activity 21: Finding the Smallest Number in an Array

Solution:

1.	 Set up the main method in a new class file known as ExampleArray:

public class ExampleArray {
 public static void main(String[] args) {
 }
}

2.	 Create an array of 20 numbers:

double[] array = {14.5, 28.3, 15.4, 89.0, 46.7, 25.1, 9.4, 33.12, 82,
11.3, 3.7, 59.99, 68.65, 27.78, 16.3, 45.45, 24.76, 33.23, 72.88, 51.23};

3.	 Set the minimum float as the first number

double min = array[0];

4.	 Create a for loop to check all the numbers in the array

for (doublefloat f : array) {
}

5.	 Use if to test each number against the minimum. If it is smaller than the minimum
then make that number the new minimum:

if (f < min)
min = f;
}

6.	 After the loop completes, print out the minimum number:

System.out.println("The lowest number in the array is " + min);
}
}

The full code should look like this.

public class ExampleArray {
 public static void main(String[] args) {
 double[] array = {14.5, 28.3, 15.4, 89.0, 46.7, 25.1, 9.4,
33.12, 82, 11.3, 3.7, 59.99, 68.65, 27.78, 16.3, 45.45, 24.76, 33.23,
72.88, 51.23};
 double min = array[0];
 for (double f : array) {

336 | Appendix

 if (f < min)
 min = f;
 }
 System.out.println("The lowest number in the array is " +
min);
 }
}

Activity 22: Calculator with Array of Operators

Solution:

1.	 Create a class Operators that will contain the logic of determining what operator
to use based out of a String. In this class create a public constant field default_
operator that is going to be an instance of the Operator class. Then create another
constant field called operators of type array of Operator and initialize it with an
instance of each of the operators you have:

public class Operators {

 public static final Operator DEFAULT_OPERATOR = new Operator();

 public static final Operator [] OPERATORS = {
 new Division(),
 new Multiplication(),
 DEFAULT_OPERATOR,
 new Subtraction(),
 };

2.	 In the Operators class, add a public static method called findOperator that
receives the operator as a String and return an instance of Operator. Inside it
iterate over the possible operators array and, using the matches method for each
operator, return the selected operator, or the default one if it didn't match any of
them:

public static Operator findOperator(String operator) {
 for (Operator possible : OPERATORS) {
 if (possible.matches(operator)) {
 return possible;
 }
 }
 return DEFAULT_OPERATOR;
 }

Lesson 6: Data Structures, Arrays, and Strings | 337

}

3.	 Create a new CalculatorWithDynamicOperator class with three fields: operand1 and
operator2 as double and operator of type Operator:

public class CalculatorWithDynamicOperator {

 private final double operand1;
 private final double operand2;

 // The current operator
 private final Operator operator;

4.	 Add a constructor that receives three parameters: operand1 and operand2 of type
double and operator as a String. In the constructor, instead of having an if-else to
select the operator, use the Operators.findOperator method to set the operator
field:

public CalculatorWithDynamicOperator(double operand1, double operand2,
String operator) {
 this.operand1 = operand1;
 this.operand2 = operand2;
 this.operator = Operators.findOperator(operator);
 }

 public double operate() {
 return operator.operate(operand1, operand2);
 }

5.	 Add a main method where you call the Calculator class multiple times and print
the results:

public static void main (String [] args) {
 System.out.println("1 + 1 = " + new
CalculatorWithDynamicOperator(1, 1, "+").operate());
 System.out.println("4 - 2 = " + new
CalculatorWithDynamicOperator(4, 2, "-").operate());
 System.out.println("1 x 2 = " + new
CalculatorWithDynamicOperator(1, 2, "x").operate());
 System.out.println("10 / 2 = " + new
CalculatorWithDynamicOperator(10, 2, "/").operate());
 }
}

338 | Appendix

Activity 23: Working with ArrayList

Solution:

1.	 Import ArrayList and Iterator from java.util:

import java.util.ArrayList;
import java.util.Iterator;

2.	 Create a new class called StudentsArray:

public class StudentsArray extends Student{

3.	 In the main method define an ArrayList of Student objects. Insert 4 student
instances, instantiated with different kinds of constructors we created earlier:

public static void main(String[] args){
 ArrayList<Student> students = new ArrayList<>();
 Student james = new Student();
 james.setName("James");
 Student mary = new Student();
 mary.setName("Mary");
 Student jane = new Student();
 jane.setName("Jane");
 Student pete = new Student();
 pete.setName("Pete");
 students.add(james);
 students.add(mary);
 students.add(jane);
 students.add(pete);

4.	 Create an iterator for your list and print the name of each student:

 Iterator studentsIterator = students.iterator();
 while (studentsIterator.hasNext()){
 Student student = (Student) studentsIterator.next();
 String name = student.getName();
 System.out.println(name);
 }

5.	 Clear all the students:

 students.clear();
 }
}

Lesson 6: Data Structures, Arrays, and Strings | 339

The final code should look like this:

import java.util.ArrayList;
import java.util.Iterator;

public class StudentsArray extends Student{
 public static void main(String[] args){

 ArrayList<Student> students = new ArrayList<>();

 Student james = new Student();
 james.setName("James");

 Student mary = new Student();
 mary.setName("Mary");

 Student jane = new Student();
 jane.setName("Jane");

 students.add(james);
 students.add(mary);
 students.add(jane);
 Iterator studentsIterator = students.iterator();
 while (studentsIterator.hasNext()){
 Student student = (Student) studentsIterator.next();
 String name = student.getName();
 System.out.println(name);
 }

 students.clear();

 }

}

The output is as follows:

Figure 6.30: Output of the StudentsArray class

340 | Appendix

Activity 24: Input a String and Output Its Length and as an Array

Solution:

1.	 Import the java.util.Scanner package:

import java.util.Scanner;

2.	 Create a public class called NameTell and a main method:

public class NameTell
{
 public static void main(String[] args)
 {

3.	 Use the Scanner and nextLine to input a string at the prompt "Enter your name:"

System.out.print("Enter your name:");
Scanner sc = new Scanner(System.in);
String name = sc.nextLine();

4.	 Count the length of the string and find the first character:

int num = name.length();
char c = name.charAt(0);

5.	 Print an output:

System.out.println("\n Your name has " + num + " letters including
spaces.");
System.out.println("\n The first letter is: " + c);
 }
}

The output is as follows:

Figure 6.31: Output of the NameTell class

Lesson 6: Data Structures, Arrays, and Strings | 341

Activity 25: Calculator Reads from Input

Solution:

1.	 Create a new class called CommandLineCalculator with a main() method in it:

import java.util.Scanner;
public class CommandLineCalculator {
 public static void main (String [] args) throws Exception {
 Scanner scanner = new Scanner(System.in);

2.	 Use an infinite loop to keep the application running until the user asks to exit.

while (true) {
 printOptions();
 String option = scanner.next();

 if (option.equalsIgnoreCase("Q")) {
 break;
 }

3.	 Collect the user input to decide which action to execute. If the action is Q or q,
exit the loop:

System.out.print("Type first operand: ");
 double operand1 = scanner.nextDouble();

 System.out.print("Type second operand: ");
 double operand2 = scanner.nextDouble();
 Operator operator = Operators.findOperator(option);
 double result = operator.operate(operand1, operand2);
 System.out.printf("%f %s %f = %f\n", operand1, operator.
operator, operand2, result);
 System.out.println();
 }
 }

342 | Appendix

4.	 If the action is anything else, find an operator and request two other inputs that
will be the operands covering them to double:

 private static void printOptions() {
 System.out.println("Q (or q) - To quit");
 System.out.println("An operator. If not supported, will use
sum.");
 System.out.print("Type your option: ");
 }
}

Call the operate method on the Operator found and print the result to the console.

Activity 26: Removing Duplicate Characters from a String

Solution:

1.	 Create a Unique class as follows:

public class Unique {

2.	 Create a new method removeDups called that takes and returns a string. This is
where our algorithm will go. This method should be public and static:

public static String removeDups(String string){

3.	 Inside the method, check whether the string is null, empty, or has a length of 1. If
any of these cases are true, then just return the original string since there check-
ing is not needed:

if (string == null)
 return string;
 if (string == "")
 return string;
 if (string.length() == 1)
 return string;

4.	 Create a string called result that is empty. This will be a unique string to be
returned:

String result = "";

Lesson 6: Data Structures, Arrays, and Strings | 343

5.	 Create for loop from 0 to the length of the string passed into the method. Inside
the for loop, get the character at the current index of the string. Name the vari-
able c. Also create a boolean called isDuplicate and initialize it to false. When we
encounter a duplicate, we will change it to true.

for (int i = 0; i < string.length() ; i++){
 char c = string.charAt(i);
 boolean isDuplicate = false;

6.	 Create another nested for loop from 0 to the length() of result. Inside the for
loop, also get the character at the current index of result. Name it d. Compare c
and d. If they are equal, then set isDuplicate to true and break. Close the inner
for loop and go inside the first for loop. Check if isDuplicate is false. If it is,
then append c to result. Go outside the first for loop and return the result. That
concludes our algorithm:

for (int j = 0; j < result.length(); j++){
 char d = result.charAt(j);
 if (c == d){ //duplicate found
 isDuplicate = true;
 break;
 }
 }
 if (!isDuplicate)
 result += ""+c;
 }
 return result;
 }

7.	 Create a main() method as follows:

public static void main(String[] args){
 String a = "aaaaaaa";
 String b = "aaabbbbb";
 String c = "abcdefgh";
 String d = "Ju780iu6G768";
 System.out.println(removeDups(a));
 System.out.println(removeDups(b));
 System.out.println(removeDups(c));
 System.out.println(removeDups(d));
 }

}

344 | Appendix

The output is as follows:

Figure 6.32: Output of Unique class

The full code is as follows:

public class Unique {
 public static String removeDups(String string){
 if (string == null)
 return string;
 if (string == "")
 return string;
 if (string.length() == 1)
 return string;
 String result = "";
 for (int i = 0; i < string.length() ; i++){
 char c = string.charAt(i);
 boolean isDuplicate = false;
 for (int j = 0; j < result.length(); j++){
 char d = result.charAt(j);
 if (c == d){ //duplicate found
 isDuplicate = true;
 break;
 }
 }
 if (!isDuplicate)
 result += ""+c;
 }
 return result;
 }
public static void main(String[] args){
 String a = "aaaaaaa";
 String b = "aaabbbbb";
 String c = "abcdefgh";
 String d = "Ju780iu6G768";
 System.out.println(removeDups(a));

Lesson 7: The Java Collections Framework and Generics | 345

 System.out.println(removeDups(b));
 System.out.println(removeDups(c));
 System.out.println(removeDups(d));
 }

}

The output is as follows:

Figure 6.33: Output of Unique class

Lesson 7: The Java Collections Framework and Generics

Activity 27: Read Users from CSV Using Array with Initial Capacity

Solution:

1.	 Create a class called UseInitialCapacity with a main() method

public class UseInitialCapacity {
 public static final void main (String [] args) throws Exception {
 }
}

2.	 Add a constant field that will be the initial capacity of the array. It will also be used
when the array needs to grow:

private static final int INITIAL_CAPACITY = 5;

3.	 Add a static method that will resize arrays. It receives two parameters: an array of
Users and an int that represents the new size for the array. It should also return
an array of Users. Implement the resize algorithm using System.arraycopy like you
did in the previous exercise. Be mindful that the new size might be smaller than
the current size of the passed in array:

private static User[] resizeArray(User[] users, int newCapacity) {
 User[] newUsers = new User[newCapacity];
 int lengthToCopy = newCapacity > users.length ? users.length :
newCapacity;

346 | Appendix

 System.arraycopy(users, 0, newUsers, 0, lengthToCopy);
 return newUsers;
}

4.	 Write another static method that will load the users from a CSV file into an array.
It needs to ensure that the array has the capacity to receive the users as they are
loaded from the file. You'll also need to ensure that after finishing loading the
users, the array do not contain extra slots at the end:

public static User[] loadUsers(String pathToFile) throws Exception {
 User[] users = new User[INITIAL_CAPACITY];

 BufferedReader lineReader = new BufferedReader(new
FileReader(pathToFile));
 try (CSVReader reader = new CSVReader(lineReader)) {
 String [] row = null;
 while ((row = reader.readRow()) != null) {
 // Reached end of the array
 if (users.length == reader.getLineCount()) {
 // Increase the array by INITIAL_CAPACITY
 users = resizeArray(users, users.length + INITIAL_CAPACITY);
 }

 users[users.length - 1] = User.fromValues(row);
 } // end of while

 // If read less rows than array capacity, trim it
 if (reader.getLineCount() < users.length - 1) {
 users = resizeArray(users, reader.getLineCount());
 }
 } // end of try

 return users;
}

5.	 In the main method, call the load users method and print the total number of users
loaded:

User[] users = loadUsers(args[0]);
System.out.println(users.length);

Lesson 7: The Java Collections Framework and Generics | 347

6.	 Add imports:

import java.io.BufferedReader;
import java.io.FileReader;

The output is as follows:

27

Activity 28: Reading a Real Dataset Using Vector

Solution:

1.	 Before starting, change your CSVLoader to support files without headers. To do
that, add a new constructor that receives a boolean that tells if it should ignore the
first line or not:

public CSVReader(BufferedReader reader, boolean ignoreFirstLine) throws
IOException {
 this.reader = reader;
 if (ignoreFirstLine) {
 reader.readLine();
 }
}

2.	 Change the old constructor to call this new one passing true to ignore the first
line. This will avoid you to go back and change any existing code:

public CSVReader(BufferedReader reader) throws IOException {
 this(reader, true);
}

3.	 Create a class called CalculateAverageSalary with main method:

public class CalculateAverageSalary {
 public static void main (String [] args) throws Exception {
 }
}

348 | Appendix

4.	 Create another method that reads data from the CSV and load the wages into a
Vector. The method should return the Vector at the end:

private static Vector loadWages(String pathToFile) throws Exception {
 Vector result = new Vector();
 FileReader fileReader = new FileReader(pathToFile);
 BufferedReader bufferedReader = new BufferedReader(fileReader);
 try (CSVReader csvReader = new CSVReader(bufferedReader, false)) {
 String [] row = null;
 while ((row = csvReader.readRow()) != null) {
 if (row.length == 15) { // ignores empty lines
 result.add(Integer.parseInt(row[2].trim()));
 }
 }
 }
 return result;
}

5.	 In the main method, call the loadWages method and store the loaded wages in a
Vector. Also store the initial time that the application started:

Vector wages = loadWages(args[0]);
long start = System.currentTimeMillis();

6.	 Initialize three variables to store the min, max and sum of all wages:

int totalWage = 0;
int maxWage = 0;
int minWage = Integer.MAX_VALUE;

7.	 In a for-each loop, process all wages, storing the min, max and adding it to the
sum:

for (Object wageAsObject : wages) {
 int wage = (int) wageAsObject;
 totalWage += wage;
 if (wage > maxWage) {
 maxWage = wage;
 }
 if (wage < minWage) {
 minWage = wage;
 }
}

Lesson 7: The Java Collections Framework and Generics | 349

8.	 At the end print the number of wages loaded and total time it took to load and
process them. Also print the average, min and max wages:

System.out.printf("Read %d rows in %dms\n", wages.size(), System.
currentTimeMillis() - start);
System.out.printf("Average, Min, Max: %d, %d, %d\n", totalWage / wages.
size(), minWage, maxWage);

9.	 Add imports:

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Vector;

The output is as follows:

Read 32561 rows in 198ms
Average, Min, Max: 57873, 12285, 1484705

Activity 29: Iterating on Vector of Users

Solution:

1.	 Create a new class called IterateOnUsersVector with main method:

public class IterateOnUsersVector {
 public static void main(String [] args) throws IOException {
 }
}

2.	 In the main method, call the UsersLoader.loadUsersInVector passing the first argu-
ment passed from the command line as the file to load from and store the data in a
Vector:

Vector users = UsersLoader.loadUsersInVector(args[0]);

3.	 Iterate over the users Vector using a for-each loop and print the information about
the users to the console:

for (Object userAsObject : users) {
 User user = (User) userAsObject;
 System.out.printf("%s - %s\n", user.name, user.email);
}

350 | Appendix

4.	 Add imports:

import java.io.IOException;
import java.util.Vector;

The output is as follows:

Bill Gates - william.gates@microsoft.com
Jeff Bezos - jeff.bezos@amazon.com
Marc Benioff - marc.benioff@salesforce.com
Bill Gates - william.gates@microsoft.com
Jeff Bezos - jeff.bezos@amazon.com
Sundar Pichai - sundar.pichai@google.com
Jeff Bezos - jeff.bezos@amazon.com
Larry Ellison - lawrence.ellison@oracle.com
Marc Benioff - marc.benioff@salesforce.com
Larry Ellison - lawrence.ellison@oracle.com
Jeff Bezos - jeff.bezos@amazon.com
Bill Gates - william.gates@microsoft.com
Sundar Pichai - sundar.pichai@google.com
Jeff Bezos - jeff.bezos@amazon.com
Sundar Pichai - sundar.pichai@google.com
Marc Benioff - marc.benioff@salesforce.com
Larry Ellison - lawrence.ellison@oracle.com
Marc Benioff - marc.benioff@salesforce.com
Jeff Bezos - jeff.bezos@amazon.com
Marc Benioff - marc.benioff@salesforce.com
Bill Gates - william.gates@microsoft.com
Sundar Pichai - sundar.pichai@google.com
Larry Ellison - lawrence.ellison@oracle.com
Bill Gates - william.gates@microsoft.com
Larry Ellison - lawrence.ellison@oracle.com
Jeff Bezos - jeff.bezos@amazon.com
Sundar Pichai - sundar.pichai@google.com

Lesson 7: The Java Collections Framework and Generics | 351

Activity 30: Using a Hashtable to Group Data

Solution:

1.	 Create a class called GroupWageByEducation with a main method:

public class GroupWageByEducation {
 public static void main (String [] args) throws Exception {
 }
}

2.	 Create a static method that creates and returns a Hashtable with keys of type
String and values of type Vector of Integers:

private static Hashtable<String, Vector<Integer>> loadWages(String
pathToFile) throws Exception {
 Hashtable<String, Vector<Integer>> result = new Hashtable<>();
 return result;
}

3.	 Between creating the Hashtable and returning it, load the rows from the CSV
ensuring they have the correct format:

FileReader fileReader = new FileReader(pathToFile);
BufferedReader bufferedReader = new BufferedReader(fileReader);
try (CSVReader csvReader = new CSVReader(bufferedReader, false)) {
 String [] row = null;
 while ((row = csvReader.readRow()) != null) {
 if (row.length == 15) {
 }
 }
}

4.	 In the if inside the while loop, get the education level and wage for the record:

String education = row[3].trim();
int wage = Integer.parseInt(row[2].trim());

5.	 Find the Vector in the Hashtable that corresponds to the current education level
and add the new wage to it:

// Get or create the vector with the wages for the specified education
Vector<Integer> wages = result.getOrDefault(education, new Vector<>());
wages.add(wage);
// Ensure the vector will be in the hashtable next time
result.put(education, wages);

352 | Appendix

6.	 In the main method, call your loadWages method passing the first argument from
the command line as the file to load the data from:

Hashtable<String,Vector<Integer>> wagesByEducation = loadWages(args[0]);

7.	 Iterate on the Hashtable entries using a for-each loop and for each entry, get the
Vector of the corresponding wages and initialize min, max and sum variables for it:

for (Entry<String, Vector<Integer>> entry : wagesByEducation.entrySet()) {
 Vector<Integer> wages = entry.getValue();
 int totalWage = 0;
 int maxWage = 0;
 int minWage = Integer.MAX_VALUE;
}

8.	 After initializing the variables, iterate over all wages and store the min, max and
sum values:

for (Integer wage : wages) {
 totalWage += wage;
 if (wage > maxWage) {
 maxWage = wage;
 }
 if (wage < minWage) {
 minWage = wage;
 }
}

9.	 Then, print the information found for the specified entry, which represents an
education level:

System.out.printf("%d records found for education %s\n", wages.size(),
entry.getKey());
System.out.printf("\tAverage, Min, Max: %d, %d, %d\n", totalWage / wages.
size(), minWage, maxWage);

10.	 Add imports:

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Hashtable;
import java.util.Map.Entry;
import java.util.Vector;

Lesson 7: The Java Collections Framework and Generics | 353

The output is as follows:

1067 records found for education Assoc-acdm
 Average, Min, Max: 193424, 19302, 1455435
433 records found for education 12th
 Average, Min, Max: 199097, 23037, 917220
1382 records found for education Assoc-voc
 Average, Min, Max: 181936, 20098, 1366120
5355 records found for education Bachelors
 Average, Min, Max: 188055, 19302, 1226583
51 records found for education Preschool
 Average, Min, Max: 235889, 69911, 572751
10501 records found for education HS-grad
 Average, Min, Max: 189538, 19214, 1268339
168 records found for education 1st-4th
 Average, Min, Max: 239303, 34378, 795830
333 records found for education 5th-6th
 Average, Min, Max: 232448, 32896, 684015
576 records found for education Prof-school
 Average, Min, Max: 185663, 14878, 747719
514 records found for education 9th
 Average, Min, Max: 202485, 22418, 758700
1723 records found for education Masters
 Average, Min, Max: 179852, 20179, 704108
933 records found for education 10th
 Average, Min, Max: 196832, 21698, 766115
413 records found for education Doctorate
 Average, Min, Max: 186698, 19520, 606111
7291 records found for education Some-college
 Average, Min, Max: 188742, 12285, 1484705
646 records found for education 7th-8th
 Average, Min, Max: 188079, 20057, 750972
1175 records found for education 11th
 Average, Min, Max: 194928, 19752, 806316

354 | Appendix

Activity 31: Sorting Users

Solution:

1.	 Write a comparator class to compare Users by ID:

import java.util.Comparator;
public class ByIdComparator implements Comparator<User> {
 public int compare(User first, User second) {
 if (first.id < second.id) {
 return -1;
 }
 if (first.id > second.id) {
 return 1;
 }
 return 0;
 }
}

2.	 Write a comparator class to compare Users by email:

import java.util.Comparator;
public class ByEmailComparator implements Comparator<User> {
 public int compare(User first, User second) {
 return first.email.toLowerCase().compareTo(second.email.toLowerCase());
 }
}

3.	 Write a comparator class to compare Users by name:

import java.util.Comparator;
public class ByNameComparator implements Comparator<User> {
 public int compare(User first, User second) {
 return first.name.toLowerCase().compareTo(second.name.toLowerCase());
 }
}

4.	 Create a new class called SortUsers with a main method which loads the unique
users keyed by email:

public class SortUsers {
 public static void main (String [] args) throws IOException {
 Hashtable<String, User> uniqueUsers = UsersLoader.
loadUsersInHashtableByEmail(args[0]);
 }
}

Lesson 7: The Java Collections Framework and Generics | 355

5.	 After loading the users, transfer the users into a Vector of Users to be able to
preserve order since Hashtable doesn't do that:

Vector<User> users = new Vector<>(uniqueUsers.values());

6.	 Ask the user to pick what field he wants to sort the users by and collect the input
from standard input:

Scanner reader = new Scanner(System.in);
System.out.print("What field you want to sort by: ");
String input = reader.nextLine();

7.	 Use the input in a switch statement to pick what comparator to use. If the input is
not valid, print a friendly message and exit:

Comparator<User> comparator;
switch(input) {
 case "id":
 comparator = newByIdComparator();
 break;
 case "name":
 comparator = new ByNameComparator();
 break;
 case "email":
 comparator = new ByEmailComparator();
 break;
 default:
 System.out.printf("Sorry, invalid option: %s\n", input);
 return;
}

8.	 Tell the user what field you're going to sort by and sort the Vector of users:

System.out.printf("Sorting by %s\n", input);
Collections.sort(users, comparator);

9.	 Print the users using a for-each loop:

for (User user : users) {
 System.out.printf("%d - %s, %s\n", user.id, user.name, user.email);
}

356 | Appendix

10.	 Add imports:

import java.io.IOException;
import java.util.Collections;
import java.util.Comparator;
import java.util.Hashtable;
import java.util.Scanner;
import java.util.Vector;

The output is as follows:

5 unique users found.
What field you want to sort by: email
Sorting by email
30 - Jeff Bezos, jeff.bezos@amazon.com
50 - Larry Ellison, lawrence.ellison@oracle.com
20 - Marc Benioff, marc.benioff@salesforce.com
40 - Sundar Pichai, sundar.pichai@google.com
10 - Bill Gates, william.gates@microsoft.com

Lesson 8: Advanced Data Structures in Java

Activity 32: Creating a Custom Linked List in Java

Solution:

1.	 Create a class named, SimpleObjLinkedList.

public class SimpleObjLinkedList {

2.	 Create a class named Node that represents each element in a Linked List. Each
node will have an Object that it needs to hold, and it will have a reference to the
next Node. The LinkedList class will have a reference to the head node and will
be able to traverse to the next Node by using Node.getNext(). Head being the first
element, we could traverse to the next element by moving next in the current
Node. Like this, we could traverse till the last element of the list:

static class Node {
Object data;
Node next;
Node(Object d) {
data = d;
next = null;
}

Lesson 8: Advanced Data Structures in Java | 357

Node getNext() {
return next;
}
void setNext(Node node) {
next = node;
}
Object getData() {
return data;
}
}

3.	 Implement a toString() method to represent this object. Starting from the
head Node, iterate all the nodes until the last node is found. On each iteration,
construct a string representation of the object stored in each node:

public String toString() {
String delim = ",";
StringBuffer stringBuf = new StringBuffer();
if (head == null)
return "LINKED LIST is empty";
Node currentNode = head;
while (currentNode != null) {
stringBuf.append(currentNode.getData());
currentNode = currentNode.getNext();
if (currentNode != null)
stringBuf.append(delim);
}
return stringBuf.toString();
}

4.	 Implement the add(Object item) method so that any item/object can be added
into this List. Construct a new Node object by passing the newItem = new
Node(item) Item. Starting at the head node, crawl to the end of the list. In the last
node, set the next node as our newly created node (newItem). Increment the index:

// appends the specified element to the end of this list.
public void add(Object element) {
// create a new node
Node newNode = new Node(element);
//if head node is empty, create a new node and assign it to Head
//increment index and return
if (head == null) {
head = newNode;
return;

358 | Appendix

}
Node currentNode = head;
// starting at the head node
// move to last node
while (currentNode.getNext() != null) {
currentNode = currentNode.getNext();
}
// set the new node as next node of current
currentNode.setNext(newNode);
}

5.	 Implement get(Integer index) method to retrieve the item from the list based on
the index. Index must not be less than 0. Write a logic to crawl to the specified
index, identify the node, and return the value from the node.

public Object get(int index) {
// Implement the logic returns the element
// at the specified position in this list.
if (head == null || index < 0)
return null;
if (index == 0){
return head.getData();
}
Node currentNode = head.getNext();
for (int pos = 0; pos < index; pos++) {
currentNode = currentNode.getNext();
if (currentNode == null)
return null;
}
return currentNode.getData();
}

6.	 Implement the remove(Integer index) method to remove the item from the list
based on the index. Write logic to crawl to the node before the specified index
and identify the node. In this node, set the next as getNext(). Return true if the
element was found and deleted. If the element was not found, return false:

public boolean remove(int index) {
if (index < 0)
return false;
if (index == 0)
{
head = null;
return true;

Lesson 8: Advanced Data Structures in Java | 359

}

Node currentNode = head;
for (int pos = 0; pos < index-1; pos++) {
if (currentNode.getNext() == null)
return false;
currentNode = currentNode.getNext();
}
currentNode.setNext(currentNode.getNext().getNext());
return true;
}

7.	 Create a member attribute of type Node (pointing to the head node). Write a main
method, create an object of SimpleObjLinkedList, and add five strings, one after
the other ("INPUT-1", "INPUT-2", "INPUT-3", "INPUT-4","INPUT-5"), to it respec-
tively. Print the SimpleObjLinkedList object. In the main method, get the item from
the list using get(2) and print the value of the item retrieved. Also, remove the
item from list remove(2) and print the value of the list. One element should have
been deleted from the list:

Node head;
 public static void main(String[] args) {
 SimpleObjLinkedList list = new SimpleObjLinkedList();
 list.add("INPUT-1");
 list.add("INPUT-2");
 list.add("INPUT-3");
 list.add("INPUT-4");
 list.add("INPUT-5");
 System.out.println(list);
 System.out.println(list.get(2));
 list.remove(3);
 System.out.println(list);
}
}

The output is as follows:

[INPUT-1 ,INPUT-2 ,INPUT-3 ,INPUT-4 ,INPUT-5]
INPUT-3
[INPUT-1 ,INPUT-2 ,INPUT-3 ,INPUT-5]

360 | Appendix

Activity 33: Implementing the Methods in the BinarySearchTree Class to Find

the Highest and Lowest Value in the BST

Solution:

1.	 Take the same class we used in the previous exercise: BinarySearchTree. Add a
new method, int getLow(), to find the lowest value in the BST and return it. As we
learned about the BST, the leftmost node will be the lowest of all the values. Iterate
all of the left nodes until we reach an empty left node and get the value of its root:

 /**
 * As per BST, the left most node will be lowest of the all. iterate
all the
 * left nodes until we reach empty left and get the value of it root.
 * @return int lowestValue
 */
 public int getLow() {
 Node current = parent;
 while (current.left != null) {
 current = current.left;
 }
 return current.data;
 }

2.	 Add a new method, int getHigh(), to find the highest value in the BST and return
it. As we learned about the BST, the rightmost node will be the highest of all the
values. Iterate all the right nodes until we reach an empty right node and get the
value of its root:

 /**
 * As per BST, the right most node will be highest of the all. iterate
all
 * the right nodes until we reach empty right and get the value of it
root.
 * @return int highestValue
 */
 public int getHigh() {
 Node current = parent;
 while (current.right != null) {
 current = current.right;
 }
 return current.data;
 }

Lesson 8: Advanced Data Structures in Java | 361

3.	 In the main method, construct a BST, add values to it, and then print the highest
and lowest values by calling getLow() and getHigh():

/**
 * Main program to demonstrate the BST functionality.
 * - Adding nodes
 * - finding High and low
 * - Traversing left and right
 * @param args
 */
 public static void main(String args[]) {
 BinarySearchTree bst = new BinarySearchTree();
 // adding nodes into the BST
 bst.add(32);
 bst.add(50);
 bst.add(93);
 bst.add(3);
 bst.add(40);
 bst.add(17);
 bst.add(30);
 bst.add(38);
 bst.add(25);
 bst.add(78);
 bst.add(10);
 //printing lowest and highest value in BST
 System.out.println("Lowest value in BST :" + bst.getLow());
 System.out.println("Highest value in BST :" + bst.getHigh());
 }

The output is as follows:

Lowest value in BST :3
Highest value in BST :93

362 | Appendix

Activity 34: Using an Enum to Hold College Department Details

Solution:

1.	 Create a DeptEnum enum using the enum keyword. Add two private attributes (String
deptName and int deptNo) to hold the values to be kept in the enum. Override a
constructor to take an acronym and deptNo and place it in the member variables.
Add enum constants adhering to the constructor:

 public enum DeptEnum {
 BE("BACHELOR OF ENGINEERING", 1), BCOM("BACHELOR OF COMMERCE", 2),
BSC("BACHELOR OF SCIENCE",
 3), BARCH("BACHELOR OF ARCHITECTURE", 4), DEFAULT("BACHELOR",
0);

 private String acronym;
 private int deptNo;

 DeptEnum(String accr, int deptNo) {
 this.accronym = acr;
 this.deptNo = deptNo;
 }

2.	 Add getter methods for deptName and deptNo:

 public String getAcronym() {
 return acronym;
 }

 public int getDeptNo() {
 return deptNo;
 }

3.	 Let's write a main method and sample program to demonstrate the use of enums:

public static void main(String[] args) {
// Fetching the Enum using Enum name as string
DeptEnum env = DeptEnum.valueOf("BE");
System.out.println(env.getAcronym() + " : " + env.getDeptNo());

// Printing all the values of Enum
for (DeptEnum e : DeptEnum.values()) {
System.out.println(e.getAcronym() + " : " + e.getDeptNo()); }
// Compare the two enums using the the equals() method or using //the ==
operator.

Lesson 8: Advanced Data Structures in Java | 363

System.out.println(DeptEnum.BE == DeptEnum.valueOf("BE"));
}
}

4.	 Output:

BACHELOR OF ENGINEERING : 1
BACHELOR OF ENGINEERING : 1
BACHELOR OF COMMERCE : 2
BACHELOR OF SCIENCE : 3
BACHELOR OF ARCHITECTURE : 4
BACHELOR : 0
True

Activity 35: Implementing Reverse Lookup

Solution:

1.	 Create an enum App, that declares constants BE, BCOM, BSC and BARC, along with
their full forms and department numbers.

public enum App {
 BE("BACHELOR OF ENGINEERING", 1), BCOM("BACHELOR OF COMMERCE", 2),
BSC("BACHELOR OF SCIENCE", 3), BARCH("BACHELOR OF ARCHITECTURE", 4),
DEFAULT("BACHELOR", 0);

2.	 Also declare two private variables accronym and deptNo.

 private String accronym;
 private int deptNo;

3.	 Create a parameterized constructor and assign the variables accronym and deptNo
with values passed as arguments.

 App(String accr, int deptNo) {
 this.accronym = accr;
 this.deptNo = deptNo;
 }

364 | Appendix

4.	 Declare a public method getAccronym() that returns the variable accronym and a
public method getDeptNo() that returns the variable deptNo.

 public String getAccronym() {
 return accronym;
 }
 public int getDeptNo() {
 return deptNo;
 }

5.	 Implement reverse look up that takes in the course name, and searches the corre-
sponding acronym in the App enum.

 //reverse lookup
 public static App get(String accr) {
 for (App e : App.values()) {
 if (e.getAccronym().equals(accr))
 return e;
 }
 return App.DEFAULT;
 }

6.	 Implement the main method, and run the program.

 public static void main(String[] args) {

 // Fetching Enum with value of Enum (reverse lookup)
 App noEnum = App.get("BACHELOR OF SCIENCE");
 System.out.println(noEnum.accronym + " : " + noEnum.deptNo);
 // Fetching Enum with value of Enum (reverse lookup)

 System.out.println(App.get("BACHELOR OF SCIENCE").name());
 }
}

Your Output should be similar to:

BACHELOR OF SCIENCE : 3
BSC

Lesson 8: Advanced Data Structures in Java | 365

Lesson 9: Exception Handling

Activity 36: Handling Mistakes in Numeric User Input

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Create a class Adder, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 Create a class named Adder:

import java.util.Scanner;
public class Adder {

5.	 In main() method, use the for loop to read values from the user:

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int total = 0;
 for (int i = 0; i < 3; i++) {
 System.out.print("Enter a whole number: ");

6.	 In the same loop, check if the valid value is entered. If the value is valid, add a try
block to calculate the sum of three numbers.

 boolean isValid = false;
 while (!isValid) {
 if (input.hasNext()) {
 String line = input.nextLine();
 try {
 int newVal = Integer.parseInt(line);
 isValid = true;
 total += newVal;

7.	 The catch block should prompt the user to input valid numbers.

} catch (NumberFormatException e) {
 System.out.println("Please provide a valid whole
number");
 }
 }
 }
 }

366 | Appendix

8.	 Print the sum:

System.out.println("Total is " + total);
 }
}

Print the result to the console. Here is a sample output of a case with no errors:

Enter a whole number: 10
Enter a whole number: 11
Enter a whole number: 12
Total is 33

And here is a sample output of a run with errors:

Enter a whole number: 10
Enter a whole number: hello
Please provide a valid whole number
11.1
Please provide a valid whole number
11
Enter a whole number: 12
Total is 33

Activity 37: Writing Custom Exceptions in Java

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter RollerCoasterWithAge as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 Create an exception class, TooYoungException:

class TooYoungException extends Exception {
 int age;
 String name;
 TooYoungException(int age, String name) {
 this.age = age;
 this.name = name;
 }
}

Lesson 8: Advanced Data Structures in Java | 367

5.	 In main(), create a loop that reads in the names of the visitors:

public class RollerCoasterWithAge {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 while (true) {
 System.out.print("Enter name of visitor: ");
 String name = input.nextLine().trim();
 if (name.length() == 0) {
 break;
 }

6.	 The try block, read the age of the visitors, throws TooYoungException if the age is
below 15, prints the name of the visitor riding the Roller Coaster:

 try {
 System.out.printf("Enter %s's age: ", name);
 int age = input.nextInt();
 input.nextLine();
 if (age < 15) {
 throw new TooYoungException(age, name);
 }

 System.out.printf("%s is riding the roller coaster.\n",
name);

7.	 The catch block will display the message that is to be displayed for visitors below
the age of 15:

 } catch (TooYoungException e) {
 System.out.printf("%s is %d years old, which is too young
to ride.\n", e.name, e.age);
 }
 }
 }
}

368 | Appendix

Activity 38: Dealing with Multiple Exceptions in a Block

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter RollerCoasterWithAgeAndHeight as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 Create an exception class, TooYoungException:

class TooYoungException extends Exception {
 int age;
 String name;
 TooYoungException(int age, String name) {
 this.age = age;
 this.name = name;
 }
}

5.	 Create an exception class, TooShortException:

class TooShortException extends Exception {
 int height;
 String name;
 TooShortException(int height, String name) {
 this.height = height;
 this.name = name;
 }
}

6.	 In main(), create a loop that reads in the names of the visitors:

public class RollerCoasterWithAgeAndHeight {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 while (true) {
 System.out.print("Enter name of visitor: ");
 String name = input.nextLine().trim();
 if (name.length() == 0) {
 break;
 }

Lesson 8: Advanced Data Structures in Java | 369

7.	 The try block, read the age of the visitors, throws TooYoungException if the age is
below 15, TooShortException if the height is below 130, and prints the name of the
visitor riding the Roller Coaster:

 try {
 System.out.printf("Enter %s's age: ", name);
 int age = input.nextInt();
 input.nextLine();
 if (age < 15) {
 throw new TooYoungException(age, name);
 }
 System.out.printf("Enter %s's height: ", name);
 int height = input.nextInt();
 input.nextLine();
 if (height < 130) {
 throw new TooShortException(height, name);
 }

 System.out.printf("%s is riding the roller coaster.\n",
name);
 }

8.	 The catch block will display the message that is to be displayed for visitors below
the age of 15 or height below 130:

catch (TooYoungException e) {
 System.out.printf("%s is %d years old, which is too young
to ride.\n", e.name, e.age);
 } catch (TooShortException e) {
 System.out.printf("%s is %d cm tall, which is too short to
ride.\n", e.name, e.height);
 }
 }
 }
}

370 | Appendix

Activity 39: Working with Multiple Custom Exceptions

Solution:

1.	 Right-click the src folder and select New | Class.

2.	 Enter RollerCoasterWithAgeAndHeight as the class name, and then click OK.

3.	 Import the java.util.Scanner package:

import java.util.Scanner;

4.	 Create an exception class, TooYoungException:

class TooYoungException extends Exception {
 int age;
 String name;
 TooYoungException(int age, String name) {
 this.age = age;
 this.name = name;
 }
}

5.	 Create an exception class, TooShortException

class TooShortException extends Exception {
 int height;
 String name;
 TooShortException(int height, String name) {
 this.height = height;
 this.name = name;
 }
}

6.	 In main(), create a loop that reads in the names of the visitors:

public class Main {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 while (true) {
 System.out.print("Enter name of visitor: ");
 String name = input.nextLine().trim();
 if (name.length() == 0) {
 break;
 }

Lesson 8: Advanced Data Structures in Java | 371

7.	 The try block, read the age of the visitors, throws TooYoungException if the age is
below 15, TooShortException if the height is below 130, and prints the name of the
visitor riding the Roller Coaster:

 try {
 System.out.printf("Enter %s's age: ", name);
 int age = input.nextInt();
 input.nextLine();
 if (age < 15) {
 throw new TooYoungException(age, name);
 }
 System.out.printf("Enter %s's height: ", name);
 int height = input.nextInt();
 input.nextLine();
 if (height < 130) {
 throw new TooShortException(height, name);
 }

 System.out.printf("%s is riding the roller coaster.\n",
name);
 }

8.	 Create a catch block for TooYoungException:

catch (TooYoungException e) {
 System.out.printf("%s is %d years old, which is too young
to ride.\n", e.name, e.age);
 }

9.	 Create a catch block for TooShortException:

catch (TooShortException e) {
 System.out.printf("%s is %d cm tall, which is too short to
ride.\n", e.name, e.height);
 }

10.	 Create a finally block that prints a message for escorting visitors off the premises:

finally {
 System.out.printf("Escorting %s outside the premises.\n",
name);
 }
 }
 }
}

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
abstract: 66, 99-100,

114-115, 117-118,
168, 329, 331

abstracted: 102, 175
abstracts: 84
access: 65, 75, 80, 108,

114, 123-124, 130, 132,
135, 152, 176, 197-198,
217, 268, 285, 322, 327

acronym: 224-225,
362, 364

adhere: 20
agestring: 283
alarmed: 6
algorithm: 122,

136-139, 158-159,
190, 192, 194-195,
218, 342-343, 345

algorithms: 121-122,
137, 159, 161, 173,
189, 192, 209

allocated: 156, 158, 291
allocating: 291
amazon: 163, 203-204,

350, 356
anatidae: 317
anatide: 317
animaltest: 113, 327-329
apache: 3
append: 29, 140,

142, 156-157, 159,
215, 343, 357

applets: 3
arbiter: 297
arraycopy: 170,

172, 345-346
arraydeque: 205-206
arraylist: 112, 140-149,

159, 162, 197-198,

212, 293-294, 296-298,
338-339

arraylists: 198, 212
arrays: 62, 121, 123, 125,

129, 132, 135-140, 144,
152, 159, 162, 169,
173-176, 178-179, 193,
198, 212-213, 335, 345

arrayset: 200
attribute: 183, 215-216,

230, 359
autobox: 142
autoboxing: 112, 118
automate: 3
average: 176, 183-184,

349, 353
avoidance: 207

B
batches: 60, 162
binary: 21-24, 27, 136,

162-163, 201, 211-212,
217-218, 222

blocks: 36, 239, 241, 251,
254, 269, 274, 276-277,
280-281, 286-287, 300

blueprint: 73, 100
boolean: 18, 25, 30, 56,

83, 124, 156, 158, 230,
298, 319, 343-344,
347, 358, 365

branches: 201
breakdown: 241
breakpoint: 241
breaks: 181, 295
browser: 3, 175
buffer: 163
builder: 158
built-in: 92
bytecode: 4

C
calculate: 14, 31, 40, 44, 58,

117, 176, 183, 299, 365
callbacks: 103
camelcase: 69, 181
category: 260
catowner: 69
chained: 283
checked: 43, 47, 56, 92,

260-264, 266, 271
classname: 68, 88, 103
classpath: 206
collection: 2-3, 26, 54,

111, 123, 147, 159, 161,
177-178, 185, 192,
194-197, 199, 208

column: 130, 132
columns: 129
comparable: 190, 205, 208
comparator: 190-192,

195, 200-203, 205,
208, 354-356

compare: 39, 137, 158,
161-162, 189-192, 195,
209, 212, 223, 230,
232, 343, 354, 362

compareto: 190-191, 354
comparing: 155,

173, 189, 192
comparison: 42,

87, 190, 195
compile: 4, 9, 25, 168,

175, 184-185, 241-242,
260, 275-276, 278

compiler: 3-5, 9, 24,
26, 36, 42-44, 89,
91-92, 101, 111-112,
162, 177, 184-185, 187

comply: 174, 181
comprehend: 132
compute: 27

computer: 2, 9, 18-19,
122-123, 137, 151, 162, 175

computers: 2, 18, 162, 178
computing: 3, 122
concat: 151
concept: 65-66, 85,

100, 122, 159, 212
concurrent: 197
condition: 36-39, 41-43,

45-48, 51, 53, 56-58,
125, 164, 308

conditions: 35-36, 39,
41, 43, 103, 139

confident: 227
console: 11, 14, 27, 71, 77,

105, 116, 154, 243-244,
246, 258-259, 330,
342, 349, 366

constant: 29, 129, 336, 345
constraint: 205
construct: 9, 42, 46,

125, 214-216, 238,
309, 357, 361

constructs: 35-36, 46,
52, 60, 66, 100, 312

context: 244, 299-300
contexts: 177
contiguous: 212
continue: 9, 44, 51,

59, 61, 115, 164, 248,
262, 271, 273, 276,
281, 289, 316, 329

continues: 37, 51, 59,
61, 192, 243, 269

cryptic: 201
csvloader: 347
csvreader: 166-168, 171,

174, 176-177, 181, 183,
202, 206, 346-348, 351

D
database: 151, 169, 218
databases: 3
dataset: 175, 199, 347
datasource: 109, 325
datastr: 125-126
dayofweek: 87, 223
decimal: 10, 14, 21, 28
default: 29, 43-45, 73, 75,

80, 84, 96, 129, 158, 173,
203, 239, 241-242, 257,
308-310, 319, 325, 334,
336, 355, 362-364

defaults: 46, 83
delegate: 84, 174, 321
delimiters: 150, 163
deprecated: 91
deptenum: 224, 362-363
deptname: 224, 362
deptno: 224-225, 362-364
dequeue: 205
dequeued: 204
dequeuing: 206
detector: 207
dictionary: 218
dimension: 132
dissect: 8
double: 18, 26-27, 29-30,

77, 83-86, 91, 110, 124,
129-130, 135, 150, 154,
305, 308, 318-322,
325-326, 331-333,
335, 337, 341-342

doubles: 29, 84,
124, 130, 319

downcast: 111-113, 328
downcasts: 147
download: 175, 183, 244
downloaded: 183
downward: 42
dynamic: 2, 129, 140,

173-174, 197, 212-213

E
earlier: 13, 50, 55, 75, 80,

96, 107, 114, 129, 136,
138, 148, 151, 186, 222,
239-240, 253, 259,
281, 292, 300, 338

ecfunction: 254-258
eclipse: 236
e-commerce: 40
ecosystem: 1-3, 18
element: 54-55, 123-124,

127-128, 130, 132,
137-138, 140, 142-145,
147-148, 173, 176-178,
180, 192, 194, 196-198,
200, 205-206, 208,
212-214, 216-217, 219,
231, 294-299, 356-359

elements: 54-55, 92,
123-124, 129, 131, 133,
136-137, 140, 142-145,
149, 173, 177-178, 185,
189, 192-193, 196-201,
204-205, 207, 212-213,
216-219, 222, 228, 231

ellison: 165-166, 169,
203-204, 350, 356

else-if: 36, 39-40
emails: 179, 205-207
embarking: 2
employee: 109-110, 117-118,

258, 325-326, 331-334
employees: 109-110,

117-118, 325, 334
enable: 100, 236
enables: 236
enclosed: 4, 25-26, 50, 124
enclosing: 26, 37, 50
encoding: 27

endswith: 156
enforce: 91-92, 223
enforcing: 295
enqueue: 205
enqueued: 204
entity: 299-300
entryset: 199, 352
enumerated: 295
erroneous: 236, 300
errors: 4, 9, 25, 91, 136,

237-239, 253-254, 257,
264, 266, 275, 366

escort: 289
escorting: 289-291, 371
especially: 243, 299
essential: 62
evaluate: 42, 46
evaluated: 39, 47, 57
evaluates: 47
events: 103, 118
export: 153
extend: 3, 79, 83-84,

174, 271, 297
extends: 79, 82-83, 87,

90-91, 93, 109-110,
114-115, 197, 205, 271,
297, 320, 322, 326,
329-333, 338-339,
366, 368, 370

F
feature: 4, 180, 185, 280
fibonacci: 58
fields: 67, 77-78, 83-84,

96, 100, 108, 122, 129,
166, 170, 222, 271,
318, 322-323, 337

filename: 164, 168

filereader: 163-165, 168,
171, 174-175, 181, 202,
206, 285-288, 291-292,
346-349, 351-352

filetoread: 171
floating: 23, 27-28, 128
floats: 28-29
foreach: 138
for-each: 54, 126,

128, 148, 176-178,
348-349, 352, 355

foreign: 14
for-loop: 129
format: 10, 21-22,

27-28, 68, 155, 176,
270, 272-273, 351

formats: 22, 56, 162
formatted: 10, 14
formatting: 10
fractional: 27-29, 258
framework: 140, 145, 147,

159, 161-162, 173-174,
181, 186, 189, 195-197,
199, 201, 205, 217, 345

frameworks: 173
function: 9-10, 180, 201,

219-221, 238, 243,
245-246, 253-254,
257-262, 266, 269, 271,
278, 282, 285, 293-294

functions: 62, 72, 122,
159, 218, 244-245,
253-255, 257-258, 278

G
garbage: 111
generic: 100, 117,

122, 184-188, 190,
196, 331-333

generics: 161-162,
184-186, 189, 217, 345

getacronym: 362
getage: 81-83, 87,

227, 229, 231
getcause: 284
getchars: 152
getclass: 326, 334
getdata: 214-215, 357-358
getdeptno: 225, 362, 364
getfamily: 315, 317, 323
getheight: 81
gethigh: 222, 360-361
getkey: 352
getlow: 222, 360-361
getmessage: 270, 272, 279
getname: 81-83, 87, 227,

229, 231, 316-317, 323,
326, 334, 338-339

getnext: 214-216, 356-359
getruntime: 206
gettax: 117, 326, 331-334
getter: 168, 224, 362
getters: 76, 213,

227, 315, 317
getvalue: 352
getweight: 81
github: 3, 175, 183
google: 3, 103,

203-204, 350, 356
gotoclass: 87

H
hardware: 27
harmony: 103
hashcode: 212,

226-227, 229-232
hashing: 180, 201
hashmap: 200-201

hashset: 201, 211,
227-229, 231-232

hashtable: 173,
179-183, 185-187,
195-196, 199-200,
351-352, 354-356

hashtables: 180-181
hasnext: 145-147, 177,

179, 338-339, 365
header: 163-164, 167, 176
headers: 176, 347
height: 42, 68-70, 74,

79-81, 89, 93-94, 189,
281-282, 289-290,
300, 368-371

heights: 289
helloworld: 5

I
if-else: 36, 38, 43,

50, 129, 337
illegal: 270
illustrate: 90, 93, 122
imagine: 3, 76, 86,

95, 103, 114
immutable: 149-150, 156
imperative: 27
implement: 17, 48, 58,

60, 65-66, 83, 87,
95, 99-101, 103-104,
106-107, 114-115,
117-118, 122, 136, 138,
167, 177, 190, 192, 195,
197, 199, 207, 211,
213-216, 218, 225, 230,
232, 235, 291, 312,
323-324, 329, 331-333,
345, 357-358, 364

implements: 100-105,
166, 172, 177, 190-191,
197, 200-201, 205, 208,
222, 323, 326, 331, 354

implies: 4, 36, 49, 60,
200, 251, 312

import: 8-10, 13-14, 23,
30-31, 49, 59-61, 127,
135, 139-141, 144, 146,
148, 153, 156, 168, 175,
181-182, 191, 202, 227,
242-245, 247-251, 254,
261-263, 273, 280-281,
285-288, 290-291,
293-294, 296-297,
304-307, 310-313,
325, 338-341, 347,
349-350, 352, 354, 356,
365-366, 368, 370

inbuilt: 20
inbyte: 8-9
index-: 359
indexof: 197
inherit: 78-80, 95-96, 111,

114-115, 122, 328-329
inherited: 78, 96, 122
inheriting: 66, 78,

100, 108, 114
inherits: 78, 82-83,

90, 96, 108, 115, 197,
322, 329-330

in-memory: 200
input-: 217, 359
inputlist: 293-296, 298
inputs: 154, 259, 342
inputted: 153
inputting: 13, 30, 306
insert: 124-126,

142, 148, 338

inserted: 142, 147,
158, 201, 204

inserting: 142, 212
insertion: 136-138,

201, 204
insertions: 200
inside: 2, 6, 8, 42, 50, 55,

68, 72-73, 89, 102-103,
109-110, 113, 115-116,
118, 129, 138-139,
158-159, 162, 164, 178,
183-184, 188, 208, 246,
248-250, 294, 314, 323,
326-327, 329-330, 334,
336, 342-343, 351

insist: 259
instanceof: 109, 118,

184, 325-326, 334
integer: 6, 10-11, 13, 18-19,

21, 23-24, 29-31, 40,
70, 74, 107, 112, 124,
139-144, 154-155, 171,
173, 186, 190, 213-216,
224, 227, 230, 253-254,
259, 265-266, 283-284,
293-296, 298, 306,
348, 351-352, 358, 365

integers: 11, 19, 21-22, 25,
30, 54, 112, 123-125,
127, 132, 138-139, 176,
183, 213, 215, 293-294,
296, 298, 351

integral: 21, 29-30
integrate: 66
intellij: 70, 72, 236,

242-244, 246, 252,
263, 265, 268

interface: 66, 93, 100-104,
106-107, 109, 117-118,
166, 174, 177, 190,
196-197, 199-200, 205,
291, 323-324, 331

interfacea: 103
internet: 2, 237, 244
interprets: 26
interrupt: 50
isalive: 206-207
isempty: 207, 269, 271
isolation: 2
isvalid: 365
iterable: 177
iterate: 55, 127, 129, 162,

173, 176-179, 183, 188,
199, 201, 212, 215-216,
336, 349, 352, 357, 360

iterates: 51
iterating: 146, 176, 178-179,

192, 197, 201, 349
iteration: 47-48,

51-52, 125, 132, 201,
215-216, 357

iterations: 52, 193, 200
iterator: 145-148,

177-179, 338-339
iterators: 145, 147

J
javadoc: 3, 186, 190
javadocs: 186, 190
javascript: 3
javaworks: 109, 117
jenkins: 3

K
key-value: 123, 180,

183, 196, 199-201
keyword: 8, 43, 71, 75,

79, 93, 96, 101, 112, 114,
124, 141, 224, 269, 362

L
left-child: 218
left-hand: 220
leftmost: 360
leftover: 49
length: 20-21, 124-125, 130,

139, 152-153, 156-159,
162, 170-172, 176, 269,
271, 340, 342-346, 348,
351, 367-368, 370

lesson: 1-2, 14, 17-18,
32, 35-36, 62, 65-66,
79, 96, 99-100, 102,
106, 118, 121-123, 159,
161-162, 166-167, 175,
183, 209, 211-212, 217,
232, 235-236, 300,
304, 306, 308, 314, 323,
335, 345, 356, 365

libraries: 3, 235, 259, 268
library: 3, 173, 195,

236, 239, 241, 243,
267-268, 299

linecount: 166-168
linereader: 171, 174,

181, 202, 346
linked: 198, 201, 211-213,

215-217, 356-357
linkedlist: 198, 201,

205, 216, 356
listener: 103
listeners: 103-104, 118
listens: 103, 106
literal: 22, 150
literals: 151
liverpool: 31
loaded: 164, 171-172,

182-183, 188-189, 203,
205, 207, 346, 348-349

loading: 162, 169, 175,
204, 346, 355

loadusers: 171, 346
loadwages: 348, 351-352
location: 18-19, 123,

132, 142, 151
locations: 258
locking: 197
logged: 246, 284
logging: 3
logical: 36
london: 146, 149
longer: 9, 136
looked: 14, 36, 66, 100,

118, 122, 129, 159, 232
looking: 18, 62, 66,

82, 123, 137, 189
lookup: 225, 363-364
looping: 32, 35-36, 46-47,

60, 62, 66, 123, 147, 312
lowercase: 12, 188, 190-191
lowest: 222, 335-336,

360-361

M
matrix: 129
mechanics: 266-267, 274,

281, 284, 292, 300
mechanism: 199-201, 236
mechanisms: 197
member: 69, 72, 215-216,

224, 359, 362
members: 227, 236
memory: 18-20, 28, 93,

107, 124, 178, 195, 209,
212-213, 217, 232, 237

merges: 194

message: 9, 49, 59-61, 109,
144, 151-152, 181-182,
188, 259, 266, 273, 281,
289, 312-313, 327-328,
355, 367, 369, 371

messages: 14, 38, 45,
282, 290, 309

metadata: 91
method: 5, 8-9, 38, 40,

47, 53, 58, 65, 71-73,
76-77, 80-92, 100,
102-104, 106-107,
109-110, 113-118, 122,
125, 127-129, 131-132,
136, 138-140, 143-144,
146-148, 151-156,
158-159, 164-165,
167-168, 171, 174-175,
177-179, 181-182, 186,
188, 190-191, 195, 199,
202-203, 205-206,
214-217, 219, 222-223,
225-230, 232, 240-242,
244-246, 253, 256-257,
262-263, 267, 270,
272, 278-282, 284-285,
292-294, 298-299, 308,
318-322, 324, 326-327,
329-338, 340-343,
345-349, 351-352, 354,
357-362, 364-365

multi-core: 178
multilevel: 218
multiline: 5
myarray: 123-126, 135
myclass: 13
mydoctor: 104-105, 107
myfunction: 261-263
myheight: 80, 89

myriad: 3
mystery: 212
myweight: 80, 89

N
namespaces: 11
nametell: 153, 340
newbie: 241-242, 300
newitem: 214, 216, 357
newline: 27, 150
newlines: 152
newnode: 214,

219-220, 357-358
newperson: 111
newstudent: 108, 111
newusers: 170-172,

345-346
newval: 365
newvalue: 298
nextdouble: 154, 305,

325, 333, 341
nextin: 13
nextint: 13, 23, 127,

205, 255-256, 304,
306-307, 311-313, 325,
333, 367, 369, 371

nextline: 153, 182, 188,
202, 298, 305-306,
340, 355, 365, 367-371

nextnumber: 325, 333
noenum: 364
non-ascii: 7
non-number: 296-297
non-strict: 2
notation: 22, 28-29, 130
number: 6, 9-11, 13,

19-23, 27-29, 31-32,
36, 38, 44-46, 49, 51,

6-61, 89, 108, 122-124,
127-128, 140, 148, 152,
155, 158, 164, 171-172,
182, 185, 188, 190, 192,
195-196, 198-199, 236,
240-241, 253, 258-259,
265-267, 270, 272-273,
295-300, 304-305,
307, 311-313, 335-336,
346, 349, 365-366

O
object: 5, 66-68, 70-75,

82, 90, 93-96, 99,
107-109, 111-113, 118, 122,
140, 142-145, 147-150,
155-156, 162, 177-178,
184-185, 190, 196-199,
214-217, 226-230, 232,
238-239, 248, 254, 257,
259, 266, 273, 299-300,
315, 348-349, 356-359

oracle: 10, 203-204,
350, 356

outputlist: 293,
295-296, 298

overflow: 24
overload: 88, 96
overloaded: 85-89, 95
overridden: 90-92,

95, 324
override: 84, 92, 96,

101-102, 104-107, 115,
155, 224, 230, 232,
320-321, 323-324,
329-333, 362

overrides: 115, 330
overriding: 65, 90-92,

100, 230, 232, 299
overwrite: 180

P
package: 1, 8, 10, 12-14,

30-31, 49, 59, 61, 69,
80, 127, 135, 141, 153,
163, 168, 268, 273,
281, 290, 304-307,
310-311, 313, 325, 340,
365-366, 368, 370

packages: 3, 8, 11-14,
60, 69, 146, 312

paradigm: 66-67
paradigms: 67
parameter: 71, 75, 85,

140, 275-276, 292
params: 220
parent: 90-91, 218-222,

249, 360
parsable: 297
parseint: 11, 155, 171, 259,

265-266, 283-284,
293-294, 296, 298,
348, 351, 365

parsing: 284, 300
pathtofile: 174, 181, 187,

202, 346, 348, 351
person: 44, 67-75, 79-80,

82-83, 87, 89-90,
93, 100-101, 103,
108-109, 111, 114-115,
124, 140-142, 281, 289,
325, 329-330, 333

persontest: 72-73
pointer: 95, 173
pointers: 95, 145
pointing: 215-216, 218, 359
points: 95, 128, 219
policy: 44
precision: 24, 27
predefined: 26, 123
premises: 290-291, 371

prepared: 173
primitive: 17-18, 20, 24,

32, 68, 100, 107, 112,
123, 140, 149, 154, 238

primitives: 112, 140
procedural: 103
processor: 205
program: 2, 4-9, 11, 13-14,

30-31, 36, 38-41,
45-46, 49, 54, 59-61,
72-73, 76, 82, 88-89,
91-92, 94, 109, 122-123,
126, 131, 136, 142, 148,
152-153, 158, 221, 225,
236, 243, 246-247,
257-259, 273-274, 276,
281-282, 289-290,
295, 297, 305-307,
310, 361-362, 364

prompt: 153, 340, 365
propagate: 239, 280,

282-283, 300
propagated: 239, 246
protected: 69-70, 96, 174
pseudo: 238-240
public: 4-8, 11, 13, 23, 38,

40, 47, 52-53, 56-58,
69-75, 79-83, 85-90,
92-94, 96, 101-106,
114-116, 125, 127, 129,
131-132, 134-135,
138-140, 144, 146,
150, 153, 156, 158,
164, 166-168, 170-171,
174-175, 181-182,
187-188, 191, 202,
206, 213-215, 218-221,
223-225, 227-228, 230,
240, 242-245, 247-250,
252, 254, 257, 261-263,
265-266, 269-272,
275-280, 283-288,

292-294, 296-298,
304-347, 349, 351, 354,
356-365, 367-368, 370

Q
queues: 140, 204, 213

R
random: 88, 109, 118,

138, 198, 201, 205, 213,
217, 254, 325, 333

readable: 43, 162,
236-238, 251

reader: 163-164, 166-168,
171, 174, 177, 181, 202,
206, 346-347, 355

readline: 11, 164, 167,
285-288, 292, 347

readrecord: 167
readrow: 167-168, 171,

174, 181, 202, 206,
346, 348, 351

recursive: 219
remove: 59, 61, 140,

143, 145, 158, 177-179,
196, 199, 201, 205,
216-217, 232, 358-359

removedups: 158, 342-345
reordering: 277
replace: 6-7, 93, 126,

142-143, 145, 199, 297
report: 92
reserve: 124
resize: 169, 173, 345
resource: 209, 237,

253-254, 285,
288, 291, 300

return: 54, 73, 77, 81,
84-86, 90-91, 109-110,
115, 117, 129, 150, 154,

156, 158-159, 164,
167-168, 171-172, 174,
177, 181-182, 190-191,
199, 203-206, 214-216,
220, 226-227, 230, 232,
238, 253-256, 258,
280, 283, 293-296,
298, 315-316, 318-322,
325-326, 329-334,
336-337, 342-346,
348, 351, 354-355,
357-360, 362, 364

reusable: 62

S
salesforce: 163,

203-204, 350, 356
scaling: 197
scanner: 13-14, 23, 30-31,

49, 59, 61, 127, 153-154,
182, 188, 202, 273, 281,
290, 297-298, 304-307,
310-313, 340-341,
355-356, 365-368, 370

scenario: 76, 86, 91,
95, 106, 113-114, 237,
251, 258, 284, 295

secure: 158
security: 2
select: 5-7, 10, 38, 40, 47,

53, 58, 129, 245, 247,
250, 262-263, 304-305,
307, 310-311, 313, 337,
365-366, 368, 370

selected: 129, 243, 336
seller: 40
semantic: 266-267
semicolon: 47, 50
servers: 2
setage: 227-231
setfamily: 316-317, 322

setname: 81-83, 87,
227-231, 316-317,
322, 338-339

setnext: 214, 357-359
setter: 213
setters: 76, 227, 315, 317
setting: 75
seventh: 123
simulate: 106, 205,

207, 254
software: 36, 49,

59-60, 91, 103, 114
sorting: 121-123, 136-139,

149, 173, 189, 192-195,
202-204, 354-356

sortusers: 354
stacks: 140, 213
static: 4-8, 11, 23, 38,

40, 47, 52-53, 56-58,
72, 82-83, 86-88, 94,
104-105, 116, 125, 127,
129, 131-132, 134-135,
138-140, 144, 146, 150,
156, 158, 162, 164,
168-169, 171, 173-175,
181-182, 187-188, 191,
202, 206, 213, 215, 221,
223, 228, 230, 240,
242-245, 247-250,
252, 255, 257, 261-263,
265-266, 269-272,
275-280, 283-288,
292-294, 296, 298,
304-313, 316-318,
321-322, 324-328, 330,
333-349, 351, 354,
356, 359, 361-362,
364-365, 367-368, 370

stdout: 243
stocks: 14
storage: 140, 200-201
stream: 163, 251

string: 4-8, 11, 18, 23,
26-27, 30, 38, 40, 47,
52-53, 56-58, 69-70,
72, 74, 77, 80-89, 93-94,
104-105, 115-116, 122,
125, 127, 129, 131-132,
134-135, 138-140,
144-159, 163-165,
167-168, 170-171, 174-177,
179, 181-182, 184-191,
202, 206, 215-216,
221, 223-224, 227-228,
230, 240, 242-245,
247-250, 252, 257,
261-263, 265-267,
269-273, 275-277,
279-281, 283-288, 290,
292-294, 296-298,
304-319, 321-324,
326-330, 334-349,
351-352, 354-355, 357,
359, 361-368, 370

stringbuf: 215, 357
strings: 10, 13, 30, 45,

62, 121, 123, 145-150,
155-156, 158-159, 171,
183, 188, 190-191, 206,
217, 293, 295-297,
300, 309, 335, 359

structure: 8, 12, 66, 100,
123, 140, 163, 180, 196,
200, 204, 208, 212, 218

structured: 162
structures: 32, 118,

121-123, 140, 162, 173,
196, 200-201, 209,
211-213, 237, 335, 356

subarray: 137
subclass: 78, 80,

96, 108-109, 114,
260, 269, 327

subclasses: 79, 100, 117

sublist: 197
subsequent: 18
subset: 267
substitute: 151
substring: 156
superclass: 78, 80, 90,

92, 96, 100, 107-108,
111, 122, 155

superset: 3
swapped: 192
swapping: 137-138, 149
sweeping: 244, 297
switch: 35-36, 42-46,

170, 202, 256, 309-310,
325, 333, 355

switches: 139
syntax: 4, 13, 37-39,

46, 54, 56, 79
syntaxes: 4
system: 2-11, 13-14, 23,

30-31, 37-38, 41-42,
45, 48-52, 54-61, 71,
74, 81-83, 86-88, 90,
92, 94, 104-106, 116,
125-127, 131, 133-135,
138-148, 150-153,
155-157, 165, 168,
170-172, 175-177, 182,
188, 191, 202-203,
205-207, 215, 220-221,
223, 228-229, 231, 240,
244-252, 255-257, 266,
270, 272-273, 275-281,
285-289, 291-296, 298,
304-314, 317-319, 321,
323-324, 326-328, 330,
334-346, 348-349,
352, 355, 359, 361-371

systems: 163

T
tables: 180, 200
technique: 232
tempsystem: 309-310
terminate: 50, 126
terminated: 47, 50
terminates: 51
thfunction: 254-258
thread: 185, 205, 207, 246,

266, 276, 283-284, 294
threads: 178
threearray: 132, 134-135
throwable: 260, 266,

268-269, 297
throwables: 275
throwing: 205, 244, 257,

261-262, 268-269,
282, 287, 299

thrown: 24, 178, 246, 257,
259-260, 264, 266,
275-277, 280-281

throws: 8, 143, 164,
167-168, 171, 174-175,
181-182, 187-188, 202,
206, 241-242, 245-246,
255, 260, 262-263, 265,
269, 271-272, 275-276,
278, 280, 282-288, 292,
298, 341, 345-349, 351,
354, 367, 369, 371

tocheckfor: 319
tofind: 188
tostring: 135-136,

138-139, 142-143, 152,
155-158, 215-216, 357

totalfound: 188
totalwage: 348-349, 352
traversal: 218
traverse: 198, 216,

220-222, 232, 356
treemap: 200-201, 205

treeset: 201-204
truncated: 22
try-catch: 238-239, 241
twoarray: 131
typecast: 108

U
unboxing: 112, 118
unicode: 20, 25, 27
uniform: 27
upcast: 111-113, 327-328
upcasting: 108,

122, 327-328
userinput: 182, 188
userloader: 175
username: 151
usersarray: 184-185
usersset: 202
userstable: 185-186
usethefile: 285-288, 292
usually: 9, 18, 27-29,

107, 122, 158, 236,
239, 242, 251-252,
275, 292, 297, 300

utilities: 3, 12
utility: 3, 12, 195

V
validation: 167
valueof: 223, 362-363
values: 7, 10, 13-14, 19,

21, 24-25, 27-28, 31,
36-37, 45, 58-59, 61,
70, 93-95, 112, 124, 127,
133, 163, 167, 170-171,
175-177, 179-180, 183,
195, 199, 201, 208, 216,
220-226, 228-230, 232,
253, 255, 304, 314-315,
351-352, 355, 360-365

variable: 9, 19, 21, 23-24,
30, 45, 48, 50, 53-54,
58-59, 61, 71, 73, 75,
95, 100, 106-108, 118,
125, 127, 158, 164, 172,
188, 198, 213, 223,
225, 248, 268, 288,
290, 309, 343, 364

variables: 10-11, 13, 17-19,
21-22, 30, 38, 40, 45,
50, 58, 60, 73, 75-76,
89, 93-95, 132, 193,
224-225, 255, 306,
308, 312, 314, 322, 327,
348, 352, 362-363

variation: 117
varies: 201
vector: 173-179, 183-188,

195-198, 200,
347-352, 355-356

vectors: 173-174, 179,
181, 183, 197-198, 213

verified: 289
version: 9, 54, 60, 91,

95, 117, 187, 239,
247, 288, 331-333

versions: 187

W
wrapper: 100, 112, 140
wrapping: 167, 248, 282

	Preface
	Introduction to Java
	Introduction
	The Java Ecosystem
	Our First Java Application
	Syntax of a Simple Java Program
	Exercise 1: A Simple Hello World Program
	Exercise 2: A Simple Program for Performing Simple Mathematic Operations
	Exercise 3: Displaying Non-ASCII Characters
	Activity 1: Printing the Results of Simple Arithmetic Operations
	Getting Input from the User
	Exercise 4: Reading Values from the User and Performing Operations

	Packages
	Rules to Follow When Using Packages
	Activity 2: Reading Values from the User and Performing Operations Using the Scanner Class
	Activity 3: Calculating the Percent Increase or Decrease of Financial Instruments

	Summary

	Variables, Data Types, and Operators
	Introduction
	Variables and Data Types
	Variables
	Reserved Keywords

	Integral Data Types
	int Data Type
	long Data Type

	Type Casting
	Exercise 5: Type Casting
	byte Data Type
	short Data Type
	Boolean Data Type
	char Data Type
	Floating-Point Data Types
	float Data Type
	double Data Type
	Activity 4: Inputting Student Information and Outputting an ID
	Activity 5: Calculating the Number of Full Fruit Boxes

	Summary

	Control Flow
	Introduction
	Conditional Statements
	The if Statement
	The else Statement
	Exercise 6: Implementing a Simple if-else Statement
	The else-if Statement
	Exercise 7: Implementing the else-if Statements
	Nested if Statements
	switch case Statements
	Activity 6: Controlling the Flow of Execution Using Conditionals
	Activity 7: Developing a Temperature System

	Looping Constructs
	for Loops
	Exercise 8: Implementing a Simple for Loop
	Activity 8: Implementing the for Loop
	Nested for Loops
	Exercise 9: Implementing a Nested for Loop
	for-each Loops
	The while and do while Loops
	Exercise 10: Implementing the while Loop
	Activity 9: Implementing the while Loop
	Activity 10: Implementing Looping Constructs
	Activity 11: Continuous Peach Shipment with Nested Loops.

	Summary

	Object-Oriented Programming
	Introduction
	Object-Oriented Principles
	Classes and Objects
	Object-Oriented Programming
	Naming Conventions for Class Names
	Exercise 11: Working with Classes and Objects
	Exercise 12: Using the Person Class

	Constructors
	The this Keyword
	Activity 12: Creating a Simple Class in Java
	Activity 13: Writing a Calculator Class

	Inheritance
	Types of Inheritance
	Importance of Inheritance in OOP
	Implementing Inheritance in Java
	Activity 14: Creating a Calculator Using Inheritance

	Overloading
	Constructor Overloading
	Polymorphism and Overriding
	The Difference between Overriding and Overloading

	Annotations
	Creating Your Own Annotation Types

	References
	Activity 15: Understanding Inheritance and Polymorphism in Java

	Summary

	OOP in Depth
	Introduction
	Interfaces
	Use Case: Listeners
	Exercise 13: Implementing Interfaces
	Activity 16: Creating and Implementing Interfaces in Java

	Typecasting
	Activity 17: Using instanceof and Typecasting

	The Object Class
	Autoboxing and Unboxing
	Activity 18: Understanding Typecasting in Java

	Abstract Classes and Methods
	Activity 19: Implementing Abstract Classes and Methods in Java
	Activity 20: Use abstract class to Encapsulate Common Logic

	Summary

	Data Structures, Arrays, and Strings
	Introduction
	Data Structures and Algorithms
	Arrays
	Creating and Initializing an Array
	Accessing Elements
	Exercise 14: Creating an Array Using a Loop
	Exercise 15: Searching for a Number in an Array
	Activity 21: Finding the Smallest Number in an Array
	Activity 22: Calculator with Array of Operators
	Two-Dimensional Arrays
	Exercise 16: Printing a Simple Two-Dimensional Array
	Exercise 17: Creating a Three-Dimensional Array
	The Arrays Class in Java
	Insertion sort
	Example
	Exercise 18: Implementing Insertion Sort
	Creating an ArrayList and Adding Elements
	Replacing and Removing Elements
	Exercise 19: Adding, Removing, and Replacing Elements in an Array
	Iterators
	Exercise 20: Iterating through an ArrayList
	Activity 23: Working with ArrayList

	Strings
	Creating a String
	Concatenation
	String Length and Characters
	Activity 24: Input a String and Output Its Length and as an Array
	Activity 25: Calculator Reads from Input
	Conversion
	Comparing Strings and Parts of Strings
	StringBuilder
	Exercise 21: Working with StringBuilder
	Activity 26: Removing Duplicate Characters from a String

	Summary

	The Java Collections Framework and Generics
	Introduction
	Reading Data from Files
	Binary versus Text Files
	CSV Files
	Reading Files in Java
	Exercise 22: Reading a CSV File
	Building a CSV Reader
	Exercise 23: Building a CSV Reader
	Arrays
	Exercise 24: Reading Users from a CSV File into an Array
	Activity 27: Read Users from CSV Using Array with Initial Capacity

	The Java Collections Framework
	Vectors
	Exercise 25: Reading Users from a CSV File into a Vector
	Activity 28: Reading a Real Dataset Using Vector
	Iterating over Collections
	Activity 29: Iterating on a Vector of Users
	Hashtable
	Exercise 26: Writing an Application that Finds a User by Email
	Activity 30: Using a Hashtable to Group Data

	Generics
	What was the Problem?
	How to Use Generics
	Exercise 27: Finding a User by Text in a Name or Email
	Sorting and Comparing
	Comparables and Comparators
	Exercise 28: Creating a Comparator that Compares Strings Alphabetically
	Sorting
	Bubble Sort
	Merge Sort
	Activity 31: Sorting Users
	Data Structures

	Collection
	List
	ArrayList
	LinkedList
	Map
	HashMap
	TreeMap
	LinkedHashMap
	Set
	HashSet
	TreeSet
	LinkedHashSet
	Exercise 29: Using TreeSet to Print Sorted Users
	Queue
	java.util.ArrayDeque
	java.util.PriorityQueue
	Exercise 30: Fake Email Sender
	Properties of Collections

	Summary

	Advanced Data Structures in Java
	Introduction
	Implementing a Custom Linked List
	Disadvantages of ArrayList
	Advantages of Linked List over Arrays
	Exercise 31: Adding Elements to a Linked list
	Activity 32: Creating a Custom Linked List in Java
	Drawbacks of Linked List

	Implementing Binary Search Tree
	Exercise 32: Creating a Binary Search Tree in Java
	Activity 33: Implementing the Methods in the BinarySearchTree Class to Find the Highest and Lowest Value in the BST

	Enumerations
	Exercise 33: Using Enum to Store Directions
	Activity 34: Using an Enum to Hold College Department Details
	Activity 35: Implementing Reverse Lookup

	Set and Uniqueness in Set
	Basic Rules for the equals() and hashCode() Methods
	Adding an Object to a Set
	Exercise 34: Understanding the Behavior of equals() and hashCode()
	Exercise 35: Overriding equals() and hashCode()

	Summary

	Exception Handling
	Introduction
	Motivation behind Exceptions
	Exercise 36: Introducing Exceptions
	An Inevitable Introduction to Exceptions
	Exercise 37: Using an IDE to Generate Exception-Handling Code
	Exceptions versus Error Codes
	Exercise 38: Exceptions Versus Error Codes
	Activity 36: Handling Mistakes in Numeric User Input

	Exception Sources
	Checked Exceptions
	Throwing a Checked Exception
	Exercise 39: Working with catch or Specify
	Unchecked Exceptions
	Exercise 40: Using Methods That Throw Unchecked Exceptions
	Exception Class Hierarchy
	Browsing the Exception Hierarchy
	Throwing Exceptions and Custom Exceptions
	Exercise 41: Throwing an Exception
	Exercise 42: Creating Custom Exception Classes
	Activity 37: Writing Custom Exceptions in Java.

	Exception Mechanics
	How try/catch Works
	Exercise 43: Exception Not Caught Because It Cannot Be Assigned to a Parameter in the catch Block
	Exercise 44: Multiple catch Blocks and Their Order
	Exercise 45: Exception Propagation
	Multiple Exception Types in One Block
	Activity 38: Dealing with Multiple Exceptions in a Block
	What Are We Supposed to Do in a Catch Block?
	Exercise 46: Chained Exceptions
	finally Block and Their Mechanics
	Exercise 47: Leaving a File Open as a Result of an Exception
	Activity 39: Working with Multiple Custom Exceptions
	The try with resource Block
	Exercise 48: try with resources Block

	Best Practices
	Suppressing Exceptions
	Exercise 49: Suppressing Exceptions
	Keeping the User in the Loop
	Exercise 50: Asking the User for Help
	Do Not Throw Unless It Is Expected
	Consider Chaining and Being More Specific When You Let Exceptions Propagate

	Summary

	Appendix
	Index
	_GoBack
	_3o7alnk
	_13ir0opqinym
	_wf1nq2qduwld
	_GoBack
	_j54osgzaehl3
	_GoBack
	_gjdgxs
	_459ljcuv0wi3
	_30j0zll
	_GoBack
	_1fob9te
	_gjdgxs
	_GoBack
	_mekaxt5h6e13
	_1fob9te
	_229bspcs37kg
	_3znysh7
	_bpj1lhm05wzm
	_2et92p0
	_87qm1i3bhwdg
	_tyjcwt
	_yfy1vkty0r4p
	_3dy6vkm
	_o7cnyiyv6ap8
	_1t3h5sf
	_p7qns42ezpi6
	_4d34og8
	_koqv4nm032bx
	_cp40bt4ggk31
	_cz41cpklu712
	_difcd37u96b6
	_5gs9s15n1n0o
	_6zjgsivzmqkj
	_wlm6kh5dnaad
	_y8a0udwwdwhu
	_4giaboqv5p0z
	_4ibsxqdxik56
	_9x0xksra86jc
	_6spaocf4wpd2
	_um7k3il1sf6h
	_gssgy5a11zyx
	_bkeufxfm4kno
	_d5va0yjhrivx
	_6hmadf97os2n
	_3fmjmh9nj105
	_adwve0yasidj
	_z1e7cu5znen3
	_4ej2uvj6o08x
	_1u3d5zfogemh
	_25mxe4nlyyi3
	_suk9edd3p1hg
	_4n7tqnt671aq
	_z1ohdcdiq8j4
	_xezatuqt5okv
	_35u0d7mb63pd
	_1vx0kek0jpbk
	_2s8eyo1
	_cpkh99z7tmkc
	_17dp8vu
	_viewquqihewn
	_877jx4qlqz7o
	_ea5sf16bjkln
	_4qi1eerq4piv
	_tv383x54xj2i
	_z5c0a2zuxfs
	_k54kn0q44lhj
	_ah4gih43xc7p
	_eghfi9kxrvh8
	_jockgcstsi0b
	_dsahum8rzzho
	_g737br7znma5
	_vjnasxsphkj
	_e880ocep4jr7
	_nu3717ousq6m
	_vqfribm1rhva
	_abmjtbmtwozz
	_vwxtyvqr8qkd
	_gq2vmpq3iayj
	_5w4vtd7ac199
	_8pazkjgh07a
	_1c83gb8b5dtt
	_arlm68r03brf
	_ogi3lsqgoc37
	_1l7xtmrg6mxb
	_wgjffcwbiurf
	_5ntnu4i346kw
	_3sjv54onmib2
	_3rdcrjn
	_2fnwdr8kwou7
	_5ne3fnu2st1s
	_26in1rg
	_7hv7urt5kzy1
	_lnxbz9
	_d4dob04jk9j
	_35nkun2
	_a8p1x8u4zle0
	_d06y0suxfv7q
	_1ksv4uv
	_2ko41uj59yxw
	_44sinio
	_7tihcyx9w1wa
	_2jxsxqh
	_xhuplxp8memf
	_z337ya
	_ehr1svn1a1c6
	_46p5n6ldx3v5
	_3j2qqm3
	_1y810tw
	_xbputrhda3q3
	_4i7ojhp
	_wjsfbsw7gcqo
	_2xcytpi
	_fqjw7qblzqsx
	_1ci93xb
	_3whwml4
	_8dlnve26670z
	_2bn6wsx
	_ibf6am6udyvr
	_qsh70q
	_9a2p477ddqpg
	_3as4poj
	_ucasi43gdb9n
	_1pxezwc
	_77nf312ohgkx
	_49x2ik5
	_q36hp5iuybjp
	_2p2csry
	_lh7ysl1887o2
	_147n2zr
	_82p2vvhzlcyd
	_3o7alnk
	_gcqstkhn0e0q
	_ihv636
	_73o7i0gimy3d
	_32hioqz
	_70xfe3nka2i0
	_3fwokq0
	_g2x68x4kj4sw
	_4f1mdlm
	_arj08maq55ya
	_2u6wntf
	_mw09crlx4fwo
	_19c6y18
	_kura0sefy1h6
	_3tbugp1
	_apxlv5x7e34g
	_GoBack
	_lu7xc17mwtu8
	_GoBack
	_rxyrst3a6nje
	_oim9blnftrtv
	_i7yj41s8m5f1
	_nfv6q4sqsrfl
	_eagtfjg8z7s2
	_wvpd3hsmw4ov
	_j0mti3umojlk
	_qrbfoc7pkmo6
	_4ubs102pw7o6
	_hkj5ioptcpig
	_tii64ezfakug
	_z0m0bee8k9mp
	_60s8cbcxicjk
	_7110sgwdmmkr
	_1h5ekp16ougg
	_j2h5igft5fot
	_kps95cn4m7om
	_pvhf928pq02l
	_8opvlxwbdyc7
	_4vzksq90uyyd
	_a2kafpjpic1k
	_GoBack

